This paper deals with a correction method for corrosive crack width caused by non-uniform corrosion. Considering the corrosion cracking characteristics of a reinforced concrete structure, a correction model of corrosi...This paper deals with a correction method for corrosive crack width caused by non-uniform corrosion. Considering the corrosion cracking characteristics of a reinforced concrete structure, a correction model of corrosive crack width involving the mutual impacts between adjacent measuring points is established. The calculation model for steel bar corrosion rate for single point is obtained through quantitative analysis and accelerated corrosion tests on more than 70 reinforced cubic members. Two methods are suggested by combining two models, the correction and the corrosion calculation ones. Electrolyte accelerated cor- rosion tests on seven beams are carried out to verify these methods. The experimental results show that the ratio between the maximum corrosion rate by the indirect method and the measured average value ranges from 1.4 to 2.4, and the indirect method is shown to be an effective method for calculating the maximum corrosion rate.展开更多
An analytical model for predicting the corrosion-induced cracking of concrete cover of reinforced concrete(RC) structures was developed.The effects of influence factors such as practical initial defects,corrosion rate...An analytical model for predicting the corrosion-induced cracking of concrete cover of reinforced concrete(RC) structures was developed.The effects of influence factors such as practical initial defects,corrosion rate,strength and elastic modulus of concrete on the corrosion-induced cracking of concrete cover were investigated.It was found that the size of practical initial defects was the most effective factor.Therefore,improving the compactness of concrete is an effective way to improve the durability of RC structures.It was also demonstrated that the accelerated corrosion tests may be unfavorable in the study of the relationship between cracking time and crack width.展开更多
In order to meet the requirement of structural inspection,the crack spacing and crack width at various heights in the tensile zone of six large depth reinforced concrete beams were measured under several loading level...In order to meet the requirement of structural inspection,the crack spacing and crack width at various heights in the tensile zone of six large depth reinforced concrete beams were measured under several loading levels of serviceability state.The effects of the depth of normal section beams on the crack spacing and crack width were analyzed,and the modified model is proposed for calculating the average crack spacing by thinking about the depth of normal section,the reinforcement arrangement and the effective reinforcement ratio.The relationships of crack widths at any position in the tensile zone and at the reinforcement level on the side surface of beam were studied.By theoretical and statistical analysis,a method is proposed to calculate the ratios of crack widths between any position and the reinforcement level on the side surface of large depth reinforced concrete beams.展开更多
A laboratory study was undertaken to investigate drying shrinkage and cracking sensitivity subjected to restrained shrinkage of mortar containing fly ash (FA), granulated blast-furnace slag (GBFS) and silica fume (SF)...A laboratory study was undertaken to investigate drying shrinkage and cracking sensitivity subjected to restrained shrinkage of mortar containing fly ash (FA), granulated blast-furnace slag (GBFS) and silica fume (SF). Six mortar mixtures including control Portland cement (PC) and FA, GBFS and SF mortar mixtures were prepared. FA replaced the cement on mass basis at the replacement ratios of 20% and 35%, GBFS replaced the cement at the replacement ratios of 40%, SF replaced the cement at the replacement ratios of 8% and the blended mixtures with 20% FA, 20% GBFS and 8% SF. Water-cementitious materials ratio and sand-cementitious materials ratio were 0.4 and 2.0 for all mixtures, respectively. The mixtures were cured at 65% relative humidity and 20℃. The drying shrinkage value, initial cracking time and cracking width of the mortar samples were measured. The results show that all the mortar mixture containing FA exhibited the decrease of drying shrinkage. Moreover, initial cracking time was markedly delayed, and the crack width of the initial crack was reduced. However, the incorporations of various ratios of GBFS and SF led to an increase of drying shrinkage, initial cracking time and cracking width as compared to control mixture.展开更多
In construction industry, the application of high-performance reinforcement bar is required strongly. Unfortunately, not nearly enough research has been conducted on high-performance steel in comparison with high stre...In construction industry, the application of high-performance reinforcement bar is required strongly. Unfortunately, not nearly enough research has been conducted on high-performance steel in comparison with high strength concrete. This paper describes the effect of high-performance steel as reinforcement steel bar on the tension response and cracking behavior of concrete and fiber-reinforced strain-hardening cement-based composite (SHCC) tension members. High-performance steel is characterized by higher strength in comparison to ASTM A615-06 Grade 60 steel. The tension stiffening effect on high-performance reinforcing bars embedded in cement-based composite prism is investigated experimentally. The variables in the study are types of cement-based composite (conventional concrete, synthetic fiber-reinforced cement composite), yielding strength of steel bars (400MPa and 600MPa), and types of loading (monotonic and repeated tension loading).展开更多
Comparative research on different countries’ structural design codes holds great importance and can gain valuable insights: Awareness of Design Levels, Identifying Code Deficiencies and Optimizing Designs. The crack ...Comparative research on different countries’ structural design codes holds great importance and can gain valuable insights: Awareness of Design Levels, Identifying Code Deficiencies and Optimizing Designs. The crack width of concrete structure is an important design aspect of the civil design. The four highly recognized and widely used crack width theories are systematically summarized. Based on the mentioned theories and project practices, American code ACI system, Eurocode 2 1992-1 and Chinese code GB 50010 have different crack width control requirement and calculation methods. The crack width control method based on ACI system code has evolved from the Z-factor method to the steel bar spacing control method which is simple and easy to be adopted for engineering. Meanwhile, the ACI 224.1R also gives a direct crack width calculation method consistent with the steel bar spacing control method. The Eurocode 2 and GB 50010 based on the bond-slip & no-slip theory consider much more affecting factors than ACI for predicting crack width. Taking the crack width calculation of Tunnel 5 intake as an example, the crack widths of the structure are calculated according to ACI system code, Eurocode 2 and GB 50010 respectively, the results show that the crack width results in various codes are not much different. The EN 1992-1 and GB 50010 results are almost the same which are less than the ACI 224.1Rresults.展开更多
Tests of 4 simply supported unbonded prestressed truss concrete composite beams encased with circular steel tube were carried out. It is found that the ratio of the stress increment of the unbonded tendon to that of t...Tests of 4 simply supported unbonded prestressed truss concrete composite beams encased with circular steel tube were carried out. It is found that the ratio of the stress increment of the unbonded tendon to that of the tensile steel tube is 0.252 during the using stage,and the average crack space of beams depends on the ratio of the sum of the bottom chord steel tube's outside diameter and the secondary bottom chord steel tube's section area to the effective tensile concrete area. The coefficient of uneven crack distribution is 1.68 and the formula for the calculation of crack width is established. Test results indicate that the ultimate stress increment of unbonded tendon in the beams decreases in linearity with the increase of the composite reinforcement index β0. The pure bending region of beams accords with the plane section assumption from loading to failure. The calculation formula of ultimate stress increment of the unbonded tendon and the method to calculate the bearing capacity of normal section of beams have been presented. Besides,the method to calculate the stiffness of this sort of beams is brought forward as well.展开更多
In order to overcome the wide crack of ordinary reinforced concrete (RC) at service stage which affects the service performance and durability of structures,a kind of concrete structure with skin textile reinforcement...In order to overcome the wide crack of ordinary reinforced concrete (RC) at service stage which affects the service performance and durability of structures,a kind of concrete structure with skin textile reinforcement is proposed,namely a part of concrete cover of RC members is replaced by textile reinforced concrete (TRC).The flexural experimental results indicate that when the reinforcement ratios of steel bars are constant,compared with control beams,the average value of crack loads of the beams,whose reinforcement ratios of textile are 0.018%,0.036% and 0.055%,increases by 15.5%,20.4% and 31.1%,respectively,the average value of yield loads respectively increases by 12.5%,19.9% and 21.1% and the average value of ultimate loads respectively increases by 8.5%,26.0% and 44.0%,respectively.Considerable reduction in cracks width and spacing is observed for specimens with a TRC layer,and when the beams yield,the maximum crack width of the beam with textile stuck no sand and the beam with textile stuck sand is reduced by around 60% and 70%,respectively.Surface treatment of textile and mixing polypropylene fiber into fine grained concrete contribute to enhance the service performance of the flexural element.Embedding U-shaped hoop has almost no effect on the control of the crack width.Finally,the calculation method of ultimate bearing capacity of this flexural component with TRC layer was presented.Comparison between the calculated and the experimental values reveals satisfactory agreement,and the maximum error is no more than 6%.展开更多
We adopted a notch method to study the influence of crack width (macro level) on chloride transport and binding of cracked concrete under a non-steady state migration test. The results show that migration coefficien...We adopted a notch method to study the influence of crack width (macro level) on chloride transport and binding of cracked concrete under a non-steady state migration test. The results show that migration coefficient of cracked concrete increases with increasing crack width up to a critical value (0.43 mm), for the whole concrete or the area close to crack; the increase of migration coefficient could be independent from crack parameter when a critical crack width is reached. For chloride binding, Langmuir isotherms of cracked concrete samples exhibit the similar decreasing trend as crack width increases from 0.27 to 1.96 mm. The increased current value could be responsible for the trend based on the hypothesis of electric force.展开更多
The use of steel reinforced concrete facade is gradually becoming unpopular because of the damage caused to the elements as a result of corrosion of the steel reinforcement. It is now possible to build lightweight and...The use of steel reinforced concrete facade is gradually becoming unpopular because of the damage caused to the elements as a result of corrosion of the steel reinforcement. It is now possible to build lightweight and slender concrete structures which are invulnerable to corrosion with the use of fiber reinforcements, which are gradually replacing the corrosion prone steel. This paper describes the construction of faqade panels made of rattan cane reinforcements and steel reinforcements, ten number model sized elements of area 0.15 m2 and a depth of 40 mm were considered, with five panels for each reinforcement type. The elements were subjected to incremental load of 1 kN until failure occurred. Deflections were measured for each element, and crack width was measured at failure load. The results for both types of reinforcements when compared showed the rattan cane reinforced panels failing earlier than the steel reinforced panels. However a lower defection and crack width was recorded in the rattan cane reinforced panel. This paper concludes that the lower crack width formed after failure in the rattan cane reinforced panel gave it advantage over the steel reinforced panel, since it has lower space for the ingress of water which is the main agents of corrosion.展开更多
For low cost houses in Pakistan, Reinforced Baked Clay (RBC) is considered to be a potential construction material as a substitute of Reinforced Cement Concrete (RCC). Deflection and cracks are important parameters fo...For low cost houses in Pakistan, Reinforced Baked Clay (RBC) is considered to be a potential construction material as a substitute of Reinforced Cement Concrete (RCC). Deflection and cracks are important parameters for design of beams in a building. However, for RBC beams it is still unknown that how the deflection and crack width could be controlled by increasing ratio of reinforcement. This study investigates the effect of ratio of reinforcement on deflection and cracking behaviour of baked clay beams. The results show that by increasing area of reinforcement by 50% in baked clay beams: 1) deflection was decreased to 2.5 times, and 2) crack width was reduced to three times.展开更多
Past earthquakes have shown that cracking affects post-earthquake functionality and accounted for huge repair costs for reinforced concrete(RC)wall buildings,even though the code-compliant seismic design prevents col-...Past earthquakes have shown that cracking affects post-earthquake functionality and accounted for huge repair costs for reinforced concrete(RC)wall buildings,even though the code-compliant seismic design prevents col-lapse.Engineers should know the maximum residual flexural crack width and volume of repair material needed for the flexural cracks to determine the damage degree and the repair cost.This paper presents the experimental campaign on four RC slender walls that investigated the effect of confining reinforcement and thickness of the wall on flexural crack parameters under quasi-static reversed cyclic loading.The width of all flexural cracks was measured when reaching each cycle peak drift and when unloading to zero lateral loads.Crack widths at peak and residual states increased with increasing peak drift.Based on the experimental observations,it was found that the maximum residual crack width is obtained as a simple function of the extreme tension fiber elongation of the wall tensile fiber within±30%error.In addition,this paper outlines methods to calculate the volume of repair material for flexural cracks from the extreme tension fiber elongation of the wall.With the funda-mental rules found from the experiment in this paper,it will become possible to obtain the maximum crack width and the volume of repair material from simple numerical analysis tools such as a multi-spring line element model.展开更多
This paper presents an experimental study of the possibility of transition from multiple macro-cracking to multiple micro-cracking in cementitious composites. Conventional polyvinyl alcohol fiber reinforced cementitio...This paper presents an experimental study of the possibility of transition from multiple macro-cracking to multiple micro-cracking in cementitious composites. Conventional polyvinyl alcohol fiber reinforced cementitious composites normally exhibit macroscopic strain-hardening and multiple cracking after the first cracks appear. However, the individual crack width at the saturated stage is normally 60 to 80 μm. In the current study, the effect of fine aggregate size on the cracking performance, especially the individual crack width in the strain-hardening stage was studied by bending tests. The results show that the individual crack widths can be reduced from 60-80 μm to 10-30 μm by modifying the particle size of the fine aggregates used in the composites.展开更多
Three groups of concrete beams reinforced with high-strength steel bars were tested,and the crack width and deformation of the specimens were observed and studied.To facilitate the predictions,two simplified formulati...Three groups of concrete beams reinforced with high-strength steel bars were tested,and the crack width and deformation of the specimens were observed and studied.To facilitate the predictions,two simplified formulations according to a theory developed by the first author were proposed.The advantages of the formulations were verified by the test data and compared with several formulas in different codes.展开更多
Soil-rock mixture(SRM),as a type of extremely heterogeneous geomaterial,is very common in nature and engineering.The fracture and damage of SRM often induce severe geological disasters.Hence,it is important to analyze...Soil-rock mixture(SRM),as a type of extremely heterogeneous geomaterial,is very common in nature and engineering.The fracture and damage of SRM often induce severe geological disasters.Hence,it is important to analyze the fracture evolution process of this material.In the present research,real-time computed tomography(CT)scanning was conducted on SRM and pure soil samples under uniaxial compressive experiments to investigate the influence of rocks on fracture evolution in SRM.The initiation of cracks,the original values of,and variations in,average density and heterogeneity in the soil matrix,the crack width evolution during loading,and the final failure modes were all studied.Cracks with a width greater than 0.1 mm will not arise until over 90%of ultimate stress is reached.In general,in SRM,areas where the initial average density of the soil matrix is smaller and the initial heterogeneity is greater,are much easier to crack,but the results for pure soil show the opposite effect.According to fracturing conditions shown in CT slices,fracturing and non-fracturing areas in the soil matrix were investigated.The average density of the soil matrix decreases in all areas under loading,except non-fracturing areas in SRM.For the whole sample,the increase in heterogeneity in the soil matrix of SRM is greater than that of pure soil;but for the fracturing areas,this increase in pure soil is greater.Besides,the average and standard deviations of crack width both follow logarithmic distributions with high correlation coefficients.展开更多
To study the flexural behavior of prestressed concrete beams with high-strength steel reinforcement and high-strength concrete and improve the crack width calculation method for flexural components with such reinforce...To study the flexural behavior of prestressed concrete beams with high-strength steel reinforcement and high-strength concrete and improve the crack width calculation method for flexural components with such reinforcement and concrete,12 specimens were tested under static loading.The failure modes,flexural strength,ductility,and crack width of the specimens were analyzed.The results show that the failure mode of the test beams was similar to that of the beams with normal reinforced concrete.A brittle failure did not occur in the specimens.To further understand the working mechanism,the results of other experimental studies were collected and discussed.The results show that the normalized reinforcement ratio has a greater effect on the ductility than the concrete strength.The cracking-and peak-moment formulas in the code for the design of concrete(GB 50010-2010)applied to the beams were both found to be acceptable.However,the calculation results of the maximum crack width following GB 50010-2010 and EN 1992-1-1:2004 were considerably conservative.In the context of GB 50010-2010,a revised formula for the crack width is proposed with modifications to two major factors:the average crack spacing and an amplification coefficient of the maximum crack width to the average spacing.The mean value of the ratio of the maximum crack width among the 12 test results and the relative calculation results from the revised formula is 1.017,which is better than the calculation result from GB 50010-2010.Therefore,the new formula calculates the crack width more accurately in high-strength concrete and high-strength steel reinforcement members.Finally,finite element models were established using ADINA software and validated based on the test results.This study provides an important reference for the development of high-strength concrete and highstrength steel reinforcement structures.展开更多
基金Project supported by the Western Transportation Construction Sci-ence&Technology Program,Ministry of Transport of China(No.201332849A090)
文摘This paper deals with a correction method for corrosive crack width caused by non-uniform corrosion. Considering the corrosion cracking characteristics of a reinforced concrete structure, a correction model of corrosive crack width involving the mutual impacts between adjacent measuring points is established. The calculation model for steel bar corrosion rate for single point is obtained through quantitative analysis and accelerated corrosion tests on more than 70 reinforced cubic members. Two methods are suggested by combining two models, the correction and the corrosion calculation ones. Electrolyte accelerated cor- rosion tests on seven beams are carried out to verify these methods. The experimental results show that the ratio between the maximum corrosion rate by the indirect method and the measured average value ranges from 1.4 to 2.4, and the indirect method is shown to be an effective method for calculating the maximum corrosion rate.
基金Supported by National Natural Science Foundation of China (No. 50908148)Natural Science Foundation for Team Project of Guangdong Province(No. 9351806001000001)+1 种基金Scientific Research Foundation for Returned Overseas Chinese Scholars,Ministry of Education(41 Batch)Open Fund of State Key Laboratory of Coastal and Of fshore Engineering of Dalian University of Technology (No. LP1111)
文摘An analytical model for predicting the corrosion-induced cracking of concrete cover of reinforced concrete(RC) structures was developed.The effects of influence factors such as practical initial defects,corrosion rate,strength and elastic modulus of concrete on the corrosion-induced cracking of concrete cover were investigated.It was found that the size of practical initial defects was the most effective factor.Therefore,improving the compactness of concrete is an effective way to improve the durability of RC structures.It was also demonstrated that the accelerated corrosion tests may be unfavorable in the study of the relationship between cracking time and crack width.
基金Sponsored by the Outstanding Youth Scientific Fund of Henan Province(Grant No.04120002300)Program for Innovation in University of Henan Province(Grant No.[2004]294)
文摘In order to meet the requirement of structural inspection,the crack spacing and crack width at various heights in the tensile zone of six large depth reinforced concrete beams were measured under several loading levels of serviceability state.The effects of the depth of normal section beams on the crack spacing and crack width were analyzed,and the modified model is proposed for calculating the average crack spacing by thinking about the depth of normal section,the reinforcement arrangement and the effective reinforcement ratio.The relationships of crack widths at any position in the tensile zone and at the reinforcement level on the side surface of beam were studied.By theoretical and statistical analysis,a method is proposed to calculate the ratios of crack widths between any position and the reinforcement level on the side surface of large depth reinforced concrete beams.
基金Funded by the 863 Program from Ministry of Science and Technology of China(2005AA332010) the Key Technologies R&D Program from Department of Science and Technology. Hubei Province (200410G0121)
文摘A laboratory study was undertaken to investigate drying shrinkage and cracking sensitivity subjected to restrained shrinkage of mortar containing fly ash (FA), granulated blast-furnace slag (GBFS) and silica fume (SF). Six mortar mixtures including control Portland cement (PC) and FA, GBFS and SF mortar mixtures were prepared. FA replaced the cement on mass basis at the replacement ratios of 20% and 35%, GBFS replaced the cement at the replacement ratios of 40%, SF replaced the cement at the replacement ratios of 8% and the blended mixtures with 20% FA, 20% GBFS and 8% SF. Water-cementitious materials ratio and sand-cementitious materials ratio were 0.4 and 2.0 for all mixtures, respectively. The mixtures were cured at 65% relative humidity and 20℃. The drying shrinkage value, initial cracking time and cracking width of the mortar samples were measured. The results show that all the mortar mixture containing FA exhibited the decrease of drying shrinkage. Moreover, initial cracking time was markedly delayed, and the crack width of the initial crack was reduced. However, the incorporations of various ratios of GBFS and SF led to an increase of drying shrinkage, initial cracking time and cracking width as compared to control mixture.
文摘In construction industry, the application of high-performance reinforcement bar is required strongly. Unfortunately, not nearly enough research has been conducted on high-performance steel in comparison with high strength concrete. This paper describes the effect of high-performance steel as reinforcement steel bar on the tension response and cracking behavior of concrete and fiber-reinforced strain-hardening cement-based composite (SHCC) tension members. High-performance steel is characterized by higher strength in comparison to ASTM A615-06 Grade 60 steel. The tension stiffening effect on high-performance reinforcing bars embedded in cement-based composite prism is investigated experimentally. The variables in the study are types of cement-based composite (conventional concrete, synthetic fiber-reinforced cement composite), yielding strength of steel bars (400MPa and 600MPa), and types of loading (monotonic and repeated tension loading).
文摘Comparative research on different countries’ structural design codes holds great importance and can gain valuable insights: Awareness of Design Levels, Identifying Code Deficiencies and Optimizing Designs. The crack width of concrete structure is an important design aspect of the civil design. The four highly recognized and widely used crack width theories are systematically summarized. Based on the mentioned theories and project practices, American code ACI system, Eurocode 2 1992-1 and Chinese code GB 50010 have different crack width control requirement and calculation methods. The crack width control method based on ACI system code has evolved from the Z-factor method to the steel bar spacing control method which is simple and easy to be adopted for engineering. Meanwhile, the ACI 224.1R also gives a direct crack width calculation method consistent with the steel bar spacing control method. The Eurocode 2 and GB 50010 based on the bond-slip & no-slip theory consider much more affecting factors than ACI for predicting crack width. Taking the crack width calculation of Tunnel 5 intake as an example, the crack widths of the structure are calculated according to ACI system code, Eurocode 2 and GB 50010 respectively, the results show that the crack width results in various codes are not much different. The EN 1992-1 and GB 50010 results are almost the same which are less than the ACI 224.1Rresults.
文摘Tests of 4 simply supported unbonded prestressed truss concrete composite beams encased with circular steel tube were carried out. It is found that the ratio of the stress increment of the unbonded tendon to that of the tensile steel tube is 0.252 during the using stage,and the average crack space of beams depends on the ratio of the sum of the bottom chord steel tube's outside diameter and the secondary bottom chord steel tube's section area to the effective tensile concrete area. The coefficient of uneven crack distribution is 1.68 and the formula for the calculation of crack width is established. Test results indicate that the ultimate stress increment of unbonded tendon in the beams decreases in linearity with the increase of the composite reinforcement index β0. The pure bending region of beams accords with the plane section assumption from loading to failure. The calculation formula of ultimate stress increment of the unbonded tendon and the method to calculate the bearing capacity of normal section of beams have been presented. Besides,the method to calculate the stiffness of this sort of beams is brought forward as well.
基金Project(51108451)supported by the National Natural Science Foundation of ChinaProject(BK2011220)supported by the Natural Science Foundation of Jiangsu Province,China+2 种基金Projects(2010QNA45,2011FZA4017)supported by the Fundamental Research Funds for the Central Universities of ChinaProject(2012M511817)supported by the Postdoctoral Science Foundation of ChinaProject(1102082C)supported by the Postdoctoral Science Foundation of Jiangsu Province,China
文摘In order to overcome the wide crack of ordinary reinforced concrete (RC) at service stage which affects the service performance and durability of structures,a kind of concrete structure with skin textile reinforcement is proposed,namely a part of concrete cover of RC members is replaced by textile reinforced concrete (TRC).The flexural experimental results indicate that when the reinforcement ratios of steel bars are constant,compared with control beams,the average value of crack loads of the beams,whose reinforcement ratios of textile are 0.018%,0.036% and 0.055%,increases by 15.5%,20.4% and 31.1%,respectively,the average value of yield loads respectively increases by 12.5%,19.9% and 21.1% and the average value of ultimate loads respectively increases by 8.5%,26.0% and 44.0%,respectively.Considerable reduction in cracks width and spacing is observed for specimens with a TRC layer,and when the beams yield,the maximum crack width of the beam with textile stuck no sand and the beam with textile stuck sand is reduced by around 60% and 70%,respectively.Surface treatment of textile and mixing polypropylene fiber into fine grained concrete contribute to enhance the service performance of the flexural element.Embedding U-shaped hoop has almost no effect on the control of the crack width.Finally,the calculation method of ultimate bearing capacity of this flexural component with TRC layer was presented.Comparison between the calculated and the experimental values reveals satisfactory agreement,and the maximum error is no more than 6%.
基金Funded by China Scholarship Council,the Special Research Fund(BOF)of Ghent UniversityNational Natural Science Foundation of China(No.51178363)
文摘We adopted a notch method to study the influence of crack width (macro level) on chloride transport and binding of cracked concrete under a non-steady state migration test. The results show that migration coefficient of cracked concrete increases with increasing crack width up to a critical value (0.43 mm), for the whole concrete or the area close to crack; the increase of migration coefficient could be independent from crack parameter when a critical crack width is reached. For chloride binding, Langmuir isotherms of cracked concrete samples exhibit the similar decreasing trend as crack width increases from 0.27 to 1.96 mm. The increased current value could be responsible for the trend based on the hypothesis of electric force.
文摘The use of steel reinforced concrete facade is gradually becoming unpopular because of the damage caused to the elements as a result of corrosion of the steel reinforcement. It is now possible to build lightweight and slender concrete structures which are invulnerable to corrosion with the use of fiber reinforcements, which are gradually replacing the corrosion prone steel. This paper describes the construction of faqade panels made of rattan cane reinforcements and steel reinforcements, ten number model sized elements of area 0.15 m2 and a depth of 40 mm were considered, with five panels for each reinforcement type. The elements were subjected to incremental load of 1 kN until failure occurred. Deflections were measured for each element, and crack width was measured at failure load. The results for both types of reinforcements when compared showed the rattan cane reinforced panels failing earlier than the steel reinforced panels. However a lower defection and crack width was recorded in the rattan cane reinforced panel. This paper concludes that the lower crack width formed after failure in the rattan cane reinforced panel gave it advantage over the steel reinforced panel, since it has lower space for the ingress of water which is the main agents of corrosion.
文摘For low cost houses in Pakistan, Reinforced Baked Clay (RBC) is considered to be a potential construction material as a substitute of Reinforced Cement Concrete (RCC). Deflection and cracks are important parameters for design of beams in a building. However, for RBC beams it is still unknown that how the deflection and crack width could be controlled by increasing ratio of reinforcement. This study investigates the effect of ratio of reinforcement on deflection and cracking behaviour of baked clay beams. The results show that by increasing area of reinforcement by 50% in baked clay beams: 1) deflection was decreased to 2.5 times, and 2) crack width was reduced to three times.
文摘Past earthquakes have shown that cracking affects post-earthquake functionality and accounted for huge repair costs for reinforced concrete(RC)wall buildings,even though the code-compliant seismic design prevents col-lapse.Engineers should know the maximum residual flexural crack width and volume of repair material needed for the flexural cracks to determine the damage degree and the repair cost.This paper presents the experimental campaign on four RC slender walls that investigated the effect of confining reinforcement and thickness of the wall on flexural crack parameters under quasi-static reversed cyclic loading.The width of all flexural cracks was measured when reaching each cycle peak drift and when unloading to zero lateral loads.Crack widths at peak and residual states increased with increasing peak drift.Based on the experimental observations,it was found that the maximum residual crack width is obtained as a simple function of the extreme tension fiber elongation of the wall tensile fiber within±30%error.In addition,this paper outlines methods to calculate the volume of repair material for flexural cracks from the extreme tension fiber elongation of the wall.With the funda-mental rules found from the experiment in this paper,it will become possible to obtain the maximum crack width and the volume of repair material from simple numerical analysis tools such as a multi-spring line element model.
基金the National Natural Science Foundation of China (No. 50178043)
文摘This paper presents an experimental study of the possibility of transition from multiple macro-cracking to multiple micro-cracking in cementitious composites. Conventional polyvinyl alcohol fiber reinforced cementitious composites normally exhibit macroscopic strain-hardening and multiple cracking after the first cracks appear. However, the individual crack width at the saturated stage is normally 60 to 80 μm. In the current study, the effect of fine aggregate size on the cracking performance, especially the individual crack width in the strain-hardening stage was studied by bending tests. The results show that the individual crack widths can be reduced from 60-80 μm to 10-30 μm by modifying the particle size of the fine aggregates used in the composites.
基金The financial support provided by the National Hi-Technology Research&Development Program of China(Grant No.2012 BAJ06B001)is gratefully acknowledged.
文摘Three groups of concrete beams reinforced with high-strength steel bars were tested,and the crack width and deformation of the specimens were observed and studied.To facilitate the predictions,two simplified formulations according to a theory developed by the first author were proposed.The advantages of the formulations were verified by the test data and compared with several formulas in different codes.
基金the National Natural Science Foundation of China(Grant Nos.42090023,51734009 and 42002279)the Science Foundation of Key Laboratory of Shale Gas and Geoengineering,Institute of Geology and Geophysics,Chinese Academy of Sciences(Grant No.KLSG201708)。
文摘Soil-rock mixture(SRM),as a type of extremely heterogeneous geomaterial,is very common in nature and engineering.The fracture and damage of SRM often induce severe geological disasters.Hence,it is important to analyze the fracture evolution process of this material.In the present research,real-time computed tomography(CT)scanning was conducted on SRM and pure soil samples under uniaxial compressive experiments to investigate the influence of rocks on fracture evolution in SRM.The initiation of cracks,the original values of,and variations in,average density and heterogeneity in the soil matrix,the crack width evolution during loading,and the final failure modes were all studied.Cracks with a width greater than 0.1 mm will not arise until over 90%of ultimate stress is reached.In general,in SRM,areas where the initial average density of the soil matrix is smaller and the initial heterogeneity is greater,are much easier to crack,but the results for pure soil show the opposite effect.According to fracturing conditions shown in CT slices,fracturing and non-fracturing areas in the soil matrix were investigated.The average density of the soil matrix decreases in all areas under loading,except non-fracturing areas in SRM.For the whole sample,the increase in heterogeneity in the soil matrix of SRM is greater than that of pure soil;but for the fracturing areas,this increase in pure soil is greater.Besides,the average and standard deviations of crack width both follow logarithmic distributions with high correlation coefficients.
基金The research in this paper was financially supported by the National Natural Science Foundation of China(Grant Nos.51878233 and 51778201)the Anhui Key Laboratory of Civil Engineering and Materials(No.PA2019GDPK0034).
文摘To study the flexural behavior of prestressed concrete beams with high-strength steel reinforcement and high-strength concrete and improve the crack width calculation method for flexural components with such reinforcement and concrete,12 specimens were tested under static loading.The failure modes,flexural strength,ductility,and crack width of the specimens were analyzed.The results show that the failure mode of the test beams was similar to that of the beams with normal reinforced concrete.A brittle failure did not occur in the specimens.To further understand the working mechanism,the results of other experimental studies were collected and discussed.The results show that the normalized reinforcement ratio has a greater effect on the ductility than the concrete strength.The cracking-and peak-moment formulas in the code for the design of concrete(GB 50010-2010)applied to the beams were both found to be acceptable.However,the calculation results of the maximum crack width following GB 50010-2010 and EN 1992-1-1:2004 were considerably conservative.In the context of GB 50010-2010,a revised formula for the crack width is proposed with modifications to two major factors:the average crack spacing and an amplification coefficient of the maximum crack width to the average spacing.The mean value of the ratio of the maximum crack width among the 12 test results and the relative calculation results from the revised formula is 1.017,which is better than the calculation result from GB 50010-2010.Therefore,the new formula calculates the crack width more accurately in high-strength concrete and high-strength steel reinforcement members.Finally,finite element models were established using ADINA software and validated based on the test results.This study provides an important reference for the development of high-strength concrete and highstrength steel reinforcement structures.