Fatigue crack growth behaviors in electron beam weldments of a nickel-base superalloy are studied. The objective of this paper is to discuss effects of the inhomogeneity of mechanical performance on fatigue crack grow...Fatigue crack growth behaviors in electron beam weldments of a nickel-base superalloy are studied. The objective of this paper is to discuss effects of the inhomogeneity of mechanical performance on fatigue crack growth (FCG) rate and crack path deviation (CPD). The base metal served in a turbine disk of aerospace engine was selected to fabricate bead-on-plate weldments by using electron beam welding. Some wedge-type opening loading specimens, notched in three different zone of weld metal, HAZ and base metal, were employed and performed fatigue crack growth tests at 650℃. The results show that the fatigue crack growth of electron beam welded joints is instable due to the influence of mechanical heterogeneities. Owing to the crack deviation at the weld metal and heat-affected-zone (HAZ), the effective growth driving force at the tip of fatigue crack was reduced with the reduction of the effective stress intensity factor (SIF) which finally causes fatigue crack rate decrease. Fatigue crack was strongly affected by size and the symmetrical characteristics of the plastic zone at the crack tip, which means that the integrity of the welded structure containing the fatigue crack mainly depended on the toughness of the low strength zone.展开更多
The effect of lamellar orientation on crack paths in PST crystals of y-TiAl based alloys was investigated by in-situ SEM technique. The results indicate that the crack paths in PST crystals of y-TiAl based alloys are ...The effect of lamellar orientation on crack paths in PST crystals of y-TiAl based alloys was investigated by in-situ SEM technique. The results indicate that the crack paths in PST crystals of y-TiAl based alloys are strongly dependent on lamellar orientation ofPST crystals, and the differently oriented PST crystals show different nucleation and propagation mechanisms of crack, resulting in different levels of fracture toughness.展开更多
Al-Zn-Mg-Sc-Zr alloy samples were annealed to four different states (under-aging, peak-aging, over-aging and double-aging) and then thoroughly investigated by means of electron backscatter diffraction (EBSD), tran...Al-Zn-Mg-Sc-Zr alloy samples were annealed to four different states (under-aging, peak-aging, over-aging and double-aging) and then thoroughly investigated by means of electron backscatter diffraction (EBSD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), tensile and fatigue crack growth rate tests to explore the influence of annealing treatment on microstmcture and fatigue crack growth behavior. The results indicate that Al3(Sc,Zr) particles can effectively refine grains and enhance tensile properties and fatigue properties. After annealing treatment, the under-aged sample and double-aged sample obtained average grain sizes of 4.9473 and 4.1257 μm, and the maximum value of yield/tensile strength (561 MPa/581 MPa) was obtained in peak-aged state. In the Paris region, fatigue crack growth rate, crack deflection and bifurcation, crack blunting and inter/trans-granular propagation were discussed based on data fitting and Laird model and Griffith theory. And the results show that the under-aged sample possesses the best resistance to fatigue crack propagation and the most tortuous and bifurcated crack path. For all samples, the fatigue crack growth rate in the rupture region was inversely proportional to yield strength.展开更多
In this study, the crack propagation behaviors in the equiaxed and equiaxed-columnar grain regions of a heat-treated laser additive manufacturing(LAM) TC11 alloy with a special bi-modal microstructure are investigated...In this study, the crack propagation behaviors in the equiaxed and equiaxed-columnar grain regions of a heat-treated laser additive manufacturing(LAM) TC11 alloy with a special bi-modal microstructure are investigated. The results indicate that the alloy presents a special bi-modal microstructure that comprises a fork-like primary α(αp) phase surrounded by a secondary α colony(αs) in the α phase matrix after the heat treatment is completed. The samples demonstrate a fast crack growth rate with larger da/d N values through the equiaxed grain sample versus across the equiaxed-columnar grain sample at low K values(<13.8). The differences that are observed between the crack propagation behaviors(in the crack initiation stage) of the samples can be mostly attributed to the different size and morphology of the αp lamellae and αscolony within the grains in the equiaxed and columnar grain regions rather than the grain boundaries. The cracks prefer to grow along the α/β boundary with a smooth propagation route and a fast propagation rate in the equiaxed grain region, where the αpand α clusters have a large size.However, in the columnar grain region, small and randomly distributed αplamellae generate a zigzagshaped propagation path with a reduction in the da/d N value. Additionally, the change in the size of the αp lamellae in the equiaxed grains(heat affected bands, HAB) is also observed to influence the propagation behavior of the crack during the crack initiation stage.展开更多
Top-down crack in asphalt pavements has been reported as a widespread mode of failure.A solid understanding of the mechanisms of crack growth is essential to predict pavement performance in the context of thickness de...Top-down crack in asphalt pavements has been reported as a widespread mode of failure.A solid understanding of the mechanisms of crack growth is essential to predict pavement performance in the context of thickness design,as well as in the design and optimization of mixtures.Using the coupled element free Galerkin (EFG) and finite element (FE) method,top-down crack propagation in asphalt pavements is numerically simulated on the basis of fracture mechanics.A parametric study is conducted to isolate the effects of overlay thickness and stiffness,base thickness and stiffness on top-down crack propagation in asphalt pavements.The results show that longitudinal wheel loads are disadvantageous to top-down crack because it increases the compound stress intensity factor (SIF) at the tip of top-down crack and shortens the crack path,and thus the fatigue life descends.The SIF experiences a process "sharply ascending—slowly descending—slowly ascending—sharply ascending again" with the crack propagating.The thicker the overlay or the base,the lower the SIF; the greater the overlay stiffness,the higher the SIF.The crack path is hardly affected by stiffness of the overlay and base.展开更多
Generally,edge crack of rolled magnesium alloy sheets initiates in the RD(rolling direction)-ND(normal direction)plane and then propagate in the RD-TD(transverse direction)plane.Hence,the Mg-2Zn-1.5Mn(ZM21)alloy sheet...Generally,edge crack of rolled magnesium alloy sheets initiates in the RD(rolling direction)-ND(normal direction)plane and then propagate in the RD-TD(transverse direction)plane.Hence,the Mg-2Zn-1.5Mn(ZM21)alloy sheets with and without crack notch were designed to carry out in-situ tensile experiments under 150℃(the same temperature of rolling),with the aim to understand their crack propagation mechanism.The scanning electron microscopy(SEM)and electron backscattered diffraction(EBSD)techniques were utilized to reveal microstructural evolution in real time at designated displacements.The results show that the prismatic slip,basal slip,and extension twining play synergistic role in coordinating strain during the tensile process in ZM21 alloy sheet at 150℃.In both tensile samples with and without crack notch,localized strain is mainly concentrated at relatively fine grain area and the grain boundaries or triple junctions of the grains with large basal Schmid factor(SF)difference,which eventually leads to severe surface roughening and subsequent crack initiation.Compared with the sample without crack notch,the pre-cracked sample exhibits severer deformation at the crack tip due to strain concentration.Strain gradient distribution is observed at the crack tip region in the pre-cracked sample.The crack propagation path of the sample with pre-crack is identified and the underlying mechanism is also discussed.展开更多
In this paper, a compression-to-tension conversion technique is developed by applying predominant mode I loading test, using a servo-controlled compression system. The technique is applied to thin mortar plate specime...In this paper, a compression-to-tension conversion technique is developed by applying predominant mode I loading test, using a servo-controlled compression system. The technique is applied to thin mortar plate specimens of different widths that include a prefabricated crack on either a single side to facilitate unilateral crack propagation, or prefabricated cracks positioned on both sides asymmetrically with respect to the specimen midpoint to facilitate bilateral crack propagation under direct tensile stress with a loading rate of 0.001 mm/s. The results show that the main pathways of unilateral crack propagation governing specimen failure are fluctuated locally, but present an approximately straight line overall in the absence of pre-existing internal defects. However, the pathways of bilateral crack propagation are relatively complex, although they present similar characteristics. Analysis results suggest that bilateral crack propagation can be basically divided into three stages, i.e. a stage of linear propagation, a stage representing deviation from the other crack, and a stage where one crack approaches either the other crack or approaches the opposite edge of the specimen, and thereby forming a continuous crack through the specimen. In addition, the stressestrain curves of bilateral crack specimens do not vary significantly around the point of peak stress prior to specimen failure, which means that the specimens do not fail instantaneously.展开更多
基金National Defense Key Lab for High Energy Density Beam Technology in China for the financial support.
文摘Fatigue crack growth behaviors in electron beam weldments of a nickel-base superalloy are studied. The objective of this paper is to discuss effects of the inhomogeneity of mechanical performance on fatigue crack growth (FCG) rate and crack path deviation (CPD). The base metal served in a turbine disk of aerospace engine was selected to fabricate bead-on-plate weldments by using electron beam welding. Some wedge-type opening loading specimens, notched in three different zone of weld metal, HAZ and base metal, were employed and performed fatigue crack growth tests at 650℃. The results show that the fatigue crack growth of electron beam welded joints is instable due to the influence of mechanical heterogeneities. Owing to the crack deviation at the weld metal and heat-affected-zone (HAZ), the effective growth driving force at the tip of fatigue crack was reduced with the reduction of the effective stress intensity factor (SIF) which finally causes fatigue crack rate decrease. Fatigue crack was strongly affected by size and the symmetrical characteristics of the plastic zone at the crack tip, which means that the integrity of the welded structure containing the fatigue crack mainly depended on the toughness of the low strength zone.
文摘The effect of lamellar orientation on crack paths in PST crystals of y-TiAl based alloys was investigated by in-situ SEM technique. The results indicate that the crack paths in PST crystals of y-TiAl based alloys are strongly dependent on lamellar orientation ofPST crystals, and the differently oriented PST crystals show different nucleation and propagation mechanisms of crack, resulting in different levels of fracture toughness.
基金Project(2012CB691503)supported by the National Key Basic Research and Development Program of ChinaProject(2016B090931001)supported by Science and Technology Program of Guangdong Province,China
文摘Al-Zn-Mg-Sc-Zr alloy samples were annealed to four different states (under-aging, peak-aging, over-aging and double-aging) and then thoroughly investigated by means of electron backscatter diffraction (EBSD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), tensile and fatigue crack growth rate tests to explore the influence of annealing treatment on microstmcture and fatigue crack growth behavior. The results indicate that Al3(Sc,Zr) particles can effectively refine grains and enhance tensile properties and fatigue properties. After annealing treatment, the under-aged sample and double-aged sample obtained average grain sizes of 4.9473 and 4.1257 μm, and the maximum value of yield/tensile strength (561 MPa/581 MPa) was obtained in peak-aged state. In the Paris region, fatigue crack growth rate, crack deflection and bifurcation, crack blunting and inter/trans-granular propagation were discussed based on data fitting and Laird model and Griffith theory. And the results show that the under-aged sample possesses the best resistance to fatigue crack propagation and the most tortuous and bifurcated crack path. For all samples, the fatigue crack growth rate in the rupture region was inversely proportional to yield strength.
基金supported by the Beijing Municipal Science & Technology Commission (Z171100000817002)the National Postdoctoral Program for Innovative Talents of China (BX201600010)the China Postdoctoral Science Foundation (2017M620014)
文摘In this study, the crack propagation behaviors in the equiaxed and equiaxed-columnar grain regions of a heat-treated laser additive manufacturing(LAM) TC11 alloy with a special bi-modal microstructure are investigated. The results indicate that the alloy presents a special bi-modal microstructure that comprises a fork-like primary α(αp) phase surrounded by a secondary α colony(αs) in the α phase matrix after the heat treatment is completed. The samples demonstrate a fast crack growth rate with larger da/d N values through the equiaxed grain sample versus across the equiaxed-columnar grain sample at low K values(<13.8). The differences that are observed between the crack propagation behaviors(in the crack initiation stage) of the samples can be mostly attributed to the different size and morphology of the αp lamellae and αscolony within the grains in the equiaxed and columnar grain regions rather than the grain boundaries. The cracks prefer to grow along the α/β boundary with a smooth propagation route and a fast propagation rate in the equiaxed grain region, where the αpand α clusters have a large size.However, in the columnar grain region, small and randomly distributed αplamellae generate a zigzagshaped propagation path with a reduction in the da/d N value. Additionally, the change in the size of the αp lamellae in the equiaxed grains(heat affected bands, HAB) is also observed to influence the propagation behavior of the crack during the crack initiation stage.
基金Project (Nos. 50908093 and 50778077) supported by the National Natural Science Foundation of China
文摘Top-down crack in asphalt pavements has been reported as a widespread mode of failure.A solid understanding of the mechanisms of crack growth is essential to predict pavement performance in the context of thickness design,as well as in the design and optimization of mixtures.Using the coupled element free Galerkin (EFG) and finite element (FE) method,top-down crack propagation in asphalt pavements is numerically simulated on the basis of fracture mechanics.A parametric study is conducted to isolate the effects of overlay thickness and stiffness,base thickness and stiffness on top-down crack propagation in asphalt pavements.The results show that longitudinal wheel loads are disadvantageous to top-down crack because it increases the compound stress intensity factor (SIF) at the tip of top-down crack and shortens the crack path,and thus the fatigue life descends.The SIF experiences a process "sharply ascending—slowly descending—slowly ascending—sharply ascending again" with the crack propagating.The thicker the overlay or the base,the lower the SIF; the greater the overlay stiffness,the higher the SIF.The crack path is hardly affected by stiffness of the overlay and base.
基金This work was financially supported by the National Key Research and development Program(2021YFB3701000)National Science Foundation of China(No.52071036,U2037601)+1 种基金the Guangdong Major Project of Basic and Applied Basic Research(2020B0301030006)the Independent Research Project of State Key Laboratory of Mechanical Transmissions(SKLMT-ZZKT-2022Z01,SKLMT-ZZKT-2022M12).
文摘Generally,edge crack of rolled magnesium alloy sheets initiates in the RD(rolling direction)-ND(normal direction)plane and then propagate in the RD-TD(transverse direction)plane.Hence,the Mg-2Zn-1.5Mn(ZM21)alloy sheets with and without crack notch were designed to carry out in-situ tensile experiments under 150℃(the same temperature of rolling),with the aim to understand their crack propagation mechanism.The scanning electron microscopy(SEM)and electron backscattered diffraction(EBSD)techniques were utilized to reveal microstructural evolution in real time at designated displacements.The results show that the prismatic slip,basal slip,and extension twining play synergistic role in coordinating strain during the tensile process in ZM21 alloy sheet at 150℃.In both tensile samples with and without crack notch,localized strain is mainly concentrated at relatively fine grain area and the grain boundaries or triple junctions of the grains with large basal Schmid factor(SF)difference,which eventually leads to severe surface roughening and subsequent crack initiation.Compared with the sample without crack notch,the pre-cracked sample exhibits severer deformation at the crack tip due to strain concentration.Strain gradient distribution is observed at the crack tip region in the pre-cracked sample.The crack propagation path of the sample with pre-crack is identified and the underlying mechanism is also discussed.
基金support provided by the Strategic Program of Chinese Academy of Sciences (Grant No. XDB10030400)the Hundred Talent Program of Chinese Academy of Sciences (Grant No. Y323081C01)
文摘In this paper, a compression-to-tension conversion technique is developed by applying predominant mode I loading test, using a servo-controlled compression system. The technique is applied to thin mortar plate specimens of different widths that include a prefabricated crack on either a single side to facilitate unilateral crack propagation, or prefabricated cracks positioned on both sides asymmetrically with respect to the specimen midpoint to facilitate bilateral crack propagation under direct tensile stress with a loading rate of 0.001 mm/s. The results show that the main pathways of unilateral crack propagation governing specimen failure are fluctuated locally, but present an approximately straight line overall in the absence of pre-existing internal defects. However, the pathways of bilateral crack propagation are relatively complex, although they present similar characteristics. Analysis results suggest that bilateral crack propagation can be basically divided into three stages, i.e. a stage of linear propagation, a stage representing deviation from the other crack, and a stage where one crack approaches either the other crack or approaches the opposite edge of the specimen, and thereby forming a continuous crack through the specimen. In addition, the stressestrain curves of bilateral crack specimens do not vary significantly around the point of peak stress prior to specimen failure, which means that the specimens do not fail instantaneously.