In the current era of intelligent technologies,comprehensive and precise regional coverage path planning is critical for tasks such as environmental monitoring,emergency rescue,and agricultural plant protection.Owing ...In the current era of intelligent technologies,comprehensive and precise regional coverage path planning is critical for tasks such as environmental monitoring,emergency rescue,and agricultural plant protection.Owing to their exceptional flexibility and rapid deployment capabilities,unmanned aerial vehicles(UAVs)have emerged as the ideal platforms for accomplishing these tasks.This study proposes a swarm A^(*)-guided Deep Q-Network(SADQN)algorithm to address the coverage path planning(CPP)problem for UAV swarms in complex environments.Firstly,to overcome the dependency of traditional modeling methods on regular terrain environments,this study proposes an improved cellular decomposition method for map discretization.Simultaneously,a distributed UAV swarm system architecture is adopted,which,through the integration of multi-scale maps,addresses the issues of redundant operations and flight conflicts inmulti-UAV cooperative coverage.Secondly,the heuristic mechanism of the A^(*)algorithmis combinedwith full-coverage path planning,and this approach is incorporated at the initial stage ofDeep Q-Network(DQN)algorithm training to provide effective guidance in action selection,thereby accelerating convergence.Additionally,a prioritized experience replay mechanism is introduced to further enhance the coverage performance of the algorithm.To evaluate the efficacy of the proposed algorithm,simulation experiments were conducted in several irregular environments and compared with several popular algorithms.Simulation results show that the SADQNalgorithmoutperforms othermethods,achieving performance comparable to that of the baseline prior algorithm,with an average coverage efficiency exceeding 2.6 and fewer turning maneuvers.In addition,the algorithm demonstrates excellent generalization ability,enabling it to adapt to different environments.展开更多
Collaborative coverage path planning(CCPP) refers to obtaining the shortest paths passing over all places except obstacles in a certain area or space. A multi-unmanned aerial vehicle(UAV) collaborative CCPP algorithm ...Collaborative coverage path planning(CCPP) refers to obtaining the shortest paths passing over all places except obstacles in a certain area or space. A multi-unmanned aerial vehicle(UAV) collaborative CCPP algorithm is proposed for the urban rescue search or military search in outdoor environment.Due to flexible control of small UAVs, it can be considered that all UAVs fly at the same altitude, that is, they perform search tasks on a two-dimensional plane. Based on the agents’ motion characteristics and environmental information, a mathematical model of CCPP problem is established. The minimum time for UAVs to complete the CCPP is the objective function, and complete coverage constraint, no-fly constraint, collision avoidance constraint, and communication constraint are considered. Four motion strategies and two communication strategies are designed. Then a distributed CCPP algorithm is designed based on hybrid strategies. Simulation results compared with patternbased genetic algorithm(PBGA) and random search method show that the proposed method has stronger real-time performance and better scalability and can complete the complete CCPP task more efficiently and stably.展开更多
Unmanned aerial vehicles(UAVs),commonly known as drones,have drawn significant consideration thanks to their agility,mobility,and flexibility features.They play a crucial role in modern reconnaissance,inspection,intel...Unmanned aerial vehicles(UAVs),commonly known as drones,have drawn significant consideration thanks to their agility,mobility,and flexibility features.They play a crucial role in modern reconnaissance,inspection,intelligence,and surveillance missions.Coverage path planning(CPP)which is one of the crucial aspects that determines an intelligent system’s quality seeks an optimal trajectory to fully cover the region of interest(ROI).However,the flight time of the UAV is limited due to a battery limitation and may not cover the whole region,especially in large region.Therefore,energy consumption is one of the most challenging issues that need to be optimized.In this paper,we propose an energy-efficient coverage path planning algorithm to solve the CPP problem.The objective is to generate a collision-free coverage path that minimizes the overall energy consumption and guarantees covering the whole region.To do so,the flight path is optimized and the number of turns is reduced to minimize the energy consumption.The proposed approach first decomposes the ROI into a set of cells depending on a UAV camera footprint.Then,the coverage path planning problem is formulated,where the exact solution is determined using the CPLEX solver.For small-scale problems,the CPLEX shows a better solution in a reasonable time.However,the CPLEX solver fails to generate the solution within a reasonable time for large-scale problems.Thus,to solve the model for large-scale problems,simulated annealing forCPP is developed.The results show that heuristic approaches yield a better solution for large-scale problems within amuch shorter execution time than the CPLEX solver.Finally,we compare the simulated annealing against the greedy algorithm.The results show that simulated annealing outperforms the greedy algorithm in generating better solution quality.展开更多
It is difficult to solve complete coverage path planning directly in the obstructed area. Therefore, in this paper, we propose a method of complete coverage path planning with improved area division. Firstly, the bous...It is difficult to solve complete coverage path planning directly in the obstructed area. Therefore, in this paper, we propose a method of complete coverage path planning with improved area division. Firstly, the boustrophedon cell decomposition method is used to partition the map into sub-regions. The complete coverage paths within each sub-region are obtained by the Boustrophedon back-and-forth motions, and the order of traversal of the sub-regions is then described as a generalised traveling salesman problem with pickup and delivery based on the relative positions of the vertices of each sub-region. An adaptive large neighbourhood algorithm is proposed to quickly obtain solution results in traversal order. The effectiveness of the improved algorithm on traversal cost reduction is verified in this paper through multiple sets of experiments. .展开更多
Complex multi-area collaborative coverage path planning in dynamic environments poses a significant challenge for multi-fixed-wing UAVs(multi-UAV).This study establishes a comprehensive framework that incorporates UAV...Complex multi-area collaborative coverage path planning in dynamic environments poses a significant challenge for multi-fixed-wing UAVs(multi-UAV).This study establishes a comprehensive framework that incorporates UAV capabilities,terrain,complex areas,and mission dynamics.A novel dynamic collaborative path planning algorithm is introduced,designed to ensure complete coverage of designated areas.This algorithm meticulously optimizes the operation,entry,and transition paths for each UAV,while also establishing evaluation metrics to refine coverage sequences for each area.Additionally,a three-dimensional path is computed utilizing an altitude descent method,effectively integrating twodimensional coverage paths with altitude constraints.The efficacy of the proposed approach is validated through digital simulations and mixed-reality semi-physical experiments across a variety of dynamic scenarios,including both single-area and multi-area coverage by multi-UAV.Results show that the coverage paths generated by this method significantly reduce both computation time and path length,providing a reliable solution for dynamic multi-UAV mission planning in semi-physical environments.展开更多
We propose a contraction transformation algorithm to plan a complete coverage trajectory for a mobile robot to ac-complish specific types of missions based on the Arnold dynamical system. First, we construct a chaotic...We propose a contraction transformation algorithm to plan a complete coverage trajectory for a mobile robot to ac-complish specific types of missions based on the Arnold dynamical system. First, we construct a chaotic mobile robot by com-bining the variable z of the Arnold equation and the kinematic equation of the robot. Second, we construct the candidate sets including the initial points with a relatively high coverage rate of the constructed mobile robot. Then the trajectory is contracted to the current position of the robot based on the designed contraction transformation strategy, to form a continuous complete cov-erage trajectory to execute the specific types of missions. Compared with the traditional method, the designed algorithm requires no obstacle avoidance to the boundary of the given workplace, possesses a high coverage rate, and keeps the chaotic characteristics of the produced coverage trajectory relatively unchanged, which enables the robot to accomplish special missions with features of completeness, randomness, or unpredictability.展开更多
A coverage path planning algorithm is proposed for discrete harvesting in cashew orchards.The main challenge in such an orchard is the collection of fruits and nuts lying on the floor.The manual collection of fruits a...A coverage path planning algorithm is proposed for discrete harvesting in cashew orchards.The main challenge in such an orchard is the collection of fruits and nuts lying on the floor.The manual collection of fruits and nuts is both time consuming and labour intensive.The scenario begs for automated collection of fruits and nuts.There are methods developed in research for continuous crop fields,but none for discrete coverage.The problem is visualized as a graph traversal problem and paths for autonomous maneuvering are generated.A novel Mahalanobis distance based partitioning approach for performing coverage is introduced.The proposed path planner was able to achieve a mean coverage of 52.78 percentage with a deviation of 18.95 percentage between the best and worst solutions.Optimization of the generated paths is achieved through a combination of local and global search techniques.This was implemented by combining a discrete invasive weed optimization technique with an improved 2-Opt operator.A case study is formulated for the fruit picking operations in the orchards of Puducherry.The performance of the proposed algorithm is benchmarked against existing methods and also with performance metrics such as convergence rate,convergence diversity and deviation ratio.The convergence rate was observed to be 99.97 percent and 97.83 percent for a dataset with 48 and 442 nodes respectively.The deviation ratio was 0.02 percent and 2.16 percent,with a convergence diversity of 1.18 percent and 30.14 percent for datasets with 48 and 442 nodes.The achieved solutions was on par with the global best solutions achieved so far for the test datasets.展开更多
We propose a novel parameter value selection strategy for the Lüsystem to construct a chaotic robot to accomplish the complete coverage path planning(CCPP)task.The algorithm can meet the requirements of high rand...We propose a novel parameter value selection strategy for the Lüsystem to construct a chaotic robot to accomplish the complete coverage path planning(CCPP)task.The algorithm can meet the requirements of high randomness and coverage rate to perform specific types of missions.First,we roughly determine the value range of the parameter of the Lüsystem to meet the requirement of being a dissipative system.Second,we calculate the Lyapunov exponents to narrow the value range further.Next,we draw the phase planes of the system to approximately judge the topological distribution characteristics of its trajectories.Furthermore,we calculate the Pearson correlation coefficient of the variable for those good ones to judge its random characteristics.Finally,we construct a chaotic robot using variables with the determined parameter values and simulate and test the coverage rate to study the relationship between the coverage rate and the random characteristics of the variables.The above selection strategy gradually narrows the value range of the system parameter according to the randomness requirement of the coverage trajectory.Using the proposed strategy,proper variables can be chosen with a larger Lyapunov exponent to construct a chaotic robot with a higher coverage rate.Another chaotic system,the Lorenz system,is used to verify the feasibility and effectiveness of the designed strategy.The proposed strategy for enhancing the coverage rate of the mobile robot can improve the efficiency of accomplishing CCPP tasks under specific types of missions.展开更多
Path planning and task allocation are the key technologies of multi-machine collaboration.Current approaches focus on field operations,but actually orchard operations are also a promising area.In order to improve the ...Path planning and task allocation are the key technologies of multi-machine collaboration.Current approaches focus on field operations,but actually orchard operations are also a promising area.In order to improve the efficiency of orchard mowing,a cooperative operation scheduling method was proposed for multiple mowing robots in the dwarf dense planting orchards.It aims to optimize the non-working time of the robot in the intra-plot paths and inter-plot routes.Firstly,a genetic algorithm with multi-mutation and improved circle algorithm(MC-GA)was proposed for path planning.Subsequently,an ant colony optimization algorithm with mixed operator(Mix-ACO)was proposed for task allocation.With regard to the shortage of robots,a local search algorithm was designed to reassign work routes.Simulation experiment results show that MC-GA can significantly reduce the total turning time and the number of reverses for the robot.Mix-ACO can effectively allocate tasks by generating multiple work routes and reduce the total transfer time for the robot fleet.When the number of work routes exceeds the number of mowing robots,the local search algorithm can reasonably reallocate multiple routes to robots,reducing the difference in task completion time of the robot fleet.Field experiment results indicate that compared with the reciprocating method,SADG,and GA,MC-GA can reduce fuel consumption rate by 1.55%-8.69%and operation time by 84-776 s.Compared with ACO,Mix-ACO can reduce the total transfer time by 130 s.The research results provide a more reasonable scheduling method for the cooperative operation of multiple mowing robots.展开更多
Unmanned aerial vehicles(UAVs)are emerging as a powerful tool for inspections and repair works in large-scale and unstructured 3D infrastructures,but current approaches take a long time to cover the entire area.Planni...Unmanned aerial vehicles(UAVs)are emerging as a powerful tool for inspections and repair works in large-scale and unstructured 3D infrastructures,but current approaches take a long time to cover the entire area.Planning using UAVs for inspections and repair works puts forward a requirement of improving time efficiency in large-scale and cluster environments.This paper presents a hierarchical multi-UAV cooperative framework for infrastructure inspection and reconstruction to balance the workload and reduce the overall task completion time.The proposed framework consists of two stages,the exploration stage and the exploitation stage,resolving the task in a sequential manner.At the exploration stage,the density map is developed to update global and local information for dynamic load-balanced area partition based on reconstructability and relative positions of UAVs,and the Voronoi-based planner is used to enable the UAVs to reach their best region.After obtaining the global map,viewpoints are generated and divided while taking into account the battery capacity of each UAV.Finally,a shortest path planning method is used to minimize the total traveling cost of these viewpoints for obtaining a high-quality reconstruction.Several experiments are conducted in both a simulated and real environment to show the time efficiency,robustness,and effectiveness of the proposed method.Furthermore,the whole system is implemented in real applications.展开更多
We introduce a novel strategy of designing a chaotic coverage path planner for the mobile robot based on the Che- byshev map for achieving special missions. The designed chaotic path planner consists of a two-dimensio...We introduce a novel strategy of designing a chaotic coverage path planner for the mobile robot based on the Che- byshev map for achieving special missions. The designed chaotic path planner consists of a two-dimensional Chebyshev map which is constructed by two one-dimensional Chebyshev maps. The performance of the time sequences which are generated by the planner is improved by arcsine transformation to enhance the chaotic characteristics and uniform distribution. Then the coverage rate and randomness for achieving the special missions of the robot are enhanced. The chaotic Chebyshev system is mapped into the feasible region of the robot workplace by affine transformation. Then a universal algorithm of coverage path planning is designed for environments with obstacles. Simulation results show that the constructed chaotic path planner can avoid detection of the obstacles and the workplace boundaries, and runs safely in the feasible areas. The designed strategy is able to satisfy the requirements of randomness, coverage, and high efficiency for special missions.展开更多
文摘In the current era of intelligent technologies,comprehensive and precise regional coverage path planning is critical for tasks such as environmental monitoring,emergency rescue,and agricultural plant protection.Owing to their exceptional flexibility and rapid deployment capabilities,unmanned aerial vehicles(UAVs)have emerged as the ideal platforms for accomplishing these tasks.This study proposes a swarm A^(*)-guided Deep Q-Network(SADQN)algorithm to address the coverage path planning(CPP)problem for UAV swarms in complex environments.Firstly,to overcome the dependency of traditional modeling methods on regular terrain environments,this study proposes an improved cellular decomposition method for map discretization.Simultaneously,a distributed UAV swarm system architecture is adopted,which,through the integration of multi-scale maps,addresses the issues of redundant operations and flight conflicts inmulti-UAV cooperative coverage.Secondly,the heuristic mechanism of the A^(*)algorithmis combinedwith full-coverage path planning,and this approach is incorporated at the initial stage ofDeep Q-Network(DQN)algorithm training to provide effective guidance in action selection,thereby accelerating convergence.Additionally,a prioritized experience replay mechanism is introduced to further enhance the coverage performance of the algorithm.To evaluate the efficacy of the proposed algorithm,simulation experiments were conducted in several irregular environments and compared with several popular algorithms.Simulation results show that the SADQNalgorithmoutperforms othermethods,achieving performance comparable to that of the baseline prior algorithm,with an average coverage efficiency exceeding 2.6 and fewer turning maneuvers.In addition,the algorithm demonstrates excellent generalization ability,enabling it to adapt to different environments.
基金supported by the National Natural Science Foundation of China (61903036, 61822304)Shanghai Municipal Science and Technology Major Project (2021SHZDZX0100)。
文摘Collaborative coverage path planning(CCPP) refers to obtaining the shortest paths passing over all places except obstacles in a certain area or space. A multi-unmanned aerial vehicle(UAV) collaborative CCPP algorithm is proposed for the urban rescue search or military search in outdoor environment.Due to flexible control of small UAVs, it can be considered that all UAVs fly at the same altitude, that is, they perform search tasks on a two-dimensional plane. Based on the agents’ motion characteristics and environmental information, a mathematical model of CCPP problem is established. The minimum time for UAVs to complete the CCPP is the objective function, and complete coverage constraint, no-fly constraint, collision avoidance constraint, and communication constraint are considered. Four motion strategies and two communication strategies are designed. Then a distributed CCPP algorithm is designed based on hybrid strategies. Simulation results compared with patternbased genetic algorithm(PBGA) and random search method show that the proposed method has stronger real-time performance and better scalability and can complete the complete CCPP task more efficiently and stably.
基金funded by Project Number INML2104 under the Interdisci-Plinary Center of Smart Mobility and Logistics,KFUPM.
文摘Unmanned aerial vehicles(UAVs),commonly known as drones,have drawn significant consideration thanks to their agility,mobility,and flexibility features.They play a crucial role in modern reconnaissance,inspection,intelligence,and surveillance missions.Coverage path planning(CPP)which is one of the crucial aspects that determines an intelligent system’s quality seeks an optimal trajectory to fully cover the region of interest(ROI).However,the flight time of the UAV is limited due to a battery limitation and may not cover the whole region,especially in large region.Therefore,energy consumption is one of the most challenging issues that need to be optimized.In this paper,we propose an energy-efficient coverage path planning algorithm to solve the CPP problem.The objective is to generate a collision-free coverage path that minimizes the overall energy consumption and guarantees covering the whole region.To do so,the flight path is optimized and the number of turns is reduced to minimize the energy consumption.The proposed approach first decomposes the ROI into a set of cells depending on a UAV camera footprint.Then,the coverage path planning problem is formulated,where the exact solution is determined using the CPLEX solver.For small-scale problems,the CPLEX shows a better solution in a reasonable time.However,the CPLEX solver fails to generate the solution within a reasonable time for large-scale problems.Thus,to solve the model for large-scale problems,simulated annealing forCPP is developed.The results show that heuristic approaches yield a better solution for large-scale problems within amuch shorter execution time than the CPLEX solver.Finally,we compare the simulated annealing against the greedy algorithm.The results show that simulated annealing outperforms the greedy algorithm in generating better solution quality.
文摘It is difficult to solve complete coverage path planning directly in the obstructed area. Therefore, in this paper, we propose a method of complete coverage path planning with improved area division. Firstly, the boustrophedon cell decomposition method is used to partition the map into sub-regions. The complete coverage paths within each sub-region are obtained by the Boustrophedon back-and-forth motions, and the order of traversal of the sub-regions is then described as a generalised traveling salesman problem with pickup and delivery based on the relative positions of the vertices of each sub-region. An adaptive large neighbourhood algorithm is proposed to quickly obtain solution results in traversal order. The effectiveness of the improved algorithm on traversal cost reduction is verified in this paper through multiple sets of experiments. .
基金National Natural Science Foundation of China(Grant No.52472417)to provide fund for conducting experiments.
文摘Complex multi-area collaborative coverage path planning in dynamic environments poses a significant challenge for multi-fixed-wing UAVs(multi-UAV).This study establishes a comprehensive framework that incorporates UAV capabilities,terrain,complex areas,and mission dynamics.A novel dynamic collaborative path planning algorithm is introduced,designed to ensure complete coverage of designated areas.This algorithm meticulously optimizes the operation,entry,and transition paths for each UAV,while also establishing evaluation metrics to refine coverage sequences for each area.Additionally,a three-dimensional path is computed utilizing an altitude descent method,effectively integrating twodimensional coverage paths with altitude constraints.The efficacy of the proposed approach is validated through digital simulations and mixed-reality semi-physical experiments across a variety of dynamic scenarios,including both single-area and multi-area coverage by multi-UAV.Results show that the coverage paths generated by this method significantly reduce both computation time and path length,providing a reliable solution for dynamic multi-UAV mission planning in semi-physical environments.
基金Project supported by the National Natural Science Foundation of China(Nos.61473179,61602280,and 61573213)the Natural Science Foundation of Shandong Province,China(Nos.ZR2017MF047,ZR2015CM016,and ZR2014FM007)the Shandong University of Technology&Zibo City Integration Development Project,China(No.2018ZBXC295)。
文摘We propose a contraction transformation algorithm to plan a complete coverage trajectory for a mobile robot to ac-complish specific types of missions based on the Arnold dynamical system. First, we construct a chaotic mobile robot by com-bining the variable z of the Arnold equation and the kinematic equation of the robot. Second, we construct the candidate sets including the initial points with a relatively high coverage rate of the constructed mobile robot. Then the trajectory is contracted to the current position of the robot based on the designed contraction transformation strategy, to form a continuous complete cov-erage trajectory to execute the specific types of missions. Compared with the traditional method, the designed algorithm requires no obstacle avoidance to the boundary of the given workplace, possesses a high coverage rate, and keeps the chaotic characteristics of the produced coverage trajectory relatively unchanged, which enables the robot to accomplish special missions with features of completeness, randomness, or unpredictability.
基金The work was supported by University Grants Commission,India under the scheme NFOBC with grant no.F./201718/NF O201718OBCPON51035.The authors would like to thank the people of Namalavar Cashew Farmers Association,Puducherry for their inputs.
文摘A coverage path planning algorithm is proposed for discrete harvesting in cashew orchards.The main challenge in such an orchard is the collection of fruits and nuts lying on the floor.The manual collection of fruits and nuts is both time consuming and labour intensive.The scenario begs for automated collection of fruits and nuts.There are methods developed in research for continuous crop fields,but none for discrete coverage.The problem is visualized as a graph traversal problem and paths for autonomous maneuvering are generated.A novel Mahalanobis distance based partitioning approach for performing coverage is introduced.The proposed path planner was able to achieve a mean coverage of 52.78 percentage with a deviation of 18.95 percentage between the best and worst solutions.Optimization of the generated paths is achieved through a combination of local and global search techniques.This was implemented by combining a discrete invasive weed optimization technique with an improved 2-Opt operator.A case study is formulated for the fruit picking operations in the orchards of Puducherry.The performance of the proposed algorithm is benchmarked against existing methods and also with performance metrics such as convergence rate,convergence diversity and deviation ratio.The convergence rate was observed to be 99.97 percent and 97.83 percent for a dataset with 48 and 442 nodes respectively.The deviation ratio was 0.02 percent and 2.16 percent,with a convergence diversity of 1.18 percent and 30.14 percent for datasets with 48 and 442 nodes.The achieved solutions was on par with the global best solutions achieved so far for the test datasets.
基金Project supported by the National Natural Science Foundation of China(Nos.61973184 and 61473179)the Natural Science Foundation of Shandong Province,China(No.ZR2021MF072)。
文摘We propose a novel parameter value selection strategy for the Lüsystem to construct a chaotic robot to accomplish the complete coverage path planning(CCPP)task.The algorithm can meet the requirements of high randomness and coverage rate to perform specific types of missions.First,we roughly determine the value range of the parameter of the Lüsystem to meet the requirement of being a dissipative system.Second,we calculate the Lyapunov exponents to narrow the value range further.Next,we draw the phase planes of the system to approximately judge the topological distribution characteristics of its trajectories.Furthermore,we calculate the Pearson correlation coefficient of the variable for those good ones to judge its random characteristics.Finally,we construct a chaotic robot using variables with the determined parameter values and simulate and test the coverage rate to study the relationship between the coverage rate and the random characteristics of the variables.The above selection strategy gradually narrows the value range of the system parameter according to the randomness requirement of the coverage trajectory.Using the proposed strategy,proper variables can be chosen with a larger Lyapunov exponent to construct a chaotic robot with a higher coverage rate.Another chaotic system,the Lorenz system,is used to verify the feasibility and effectiveness of the designed strategy.The proposed strategy for enhancing the coverage rate of the mobile robot can improve the efficiency of accomplishing CCPP tasks under specific types of missions.
基金funded by the earmarked fund for CARS(CARS-27)supported by the Earmarked Fund for the Hebei Apple Innovation Team of the Modern Agro-industry Technology Research System(Grant No.HBCT2024150202).
文摘Path planning and task allocation are the key technologies of multi-machine collaboration.Current approaches focus on field operations,but actually orchard operations are also a promising area.In order to improve the efficiency of orchard mowing,a cooperative operation scheduling method was proposed for multiple mowing robots in the dwarf dense planting orchards.It aims to optimize the non-working time of the robot in the intra-plot paths and inter-plot routes.Firstly,a genetic algorithm with multi-mutation and improved circle algorithm(MC-GA)was proposed for path planning.Subsequently,an ant colony optimization algorithm with mixed operator(Mix-ACO)was proposed for task allocation.With regard to the shortage of robots,a local search algorithm was designed to reassign work routes.Simulation experiment results show that MC-GA can significantly reduce the total turning time and the number of reverses for the robot.Mix-ACO can effectively allocate tasks by generating multiple work routes and reduce the total transfer time for the robot fleet.When the number of work routes exceeds the number of mowing robots,the local search algorithm can reasonably reallocate multiple routes to robots,reducing the difference in task completion time of the robot fleet.Field experiment results indicate that compared with the reciprocating method,SADG,and GA,MC-GA can reduce fuel consumption rate by 1.55%-8.69%and operation time by 84-776 s.Compared with ACO,Mix-ACO can reduce the total transfer time by 130 s.The research results provide a more reasonable scheduling method for the cooperative operation of multiple mowing robots.
基金supported in part by the Research Grants Council of Hong Kong SAR(Nos.14209020,14206821)in part by the Hong Kong Region Centre for Logistics Robotics(HKCLR).
文摘Unmanned aerial vehicles(UAVs)are emerging as a powerful tool for inspections and repair works in large-scale and unstructured 3D infrastructures,but current approaches take a long time to cover the entire area.Planning using UAVs for inspections and repair works puts forward a requirement of improving time efficiency in large-scale and cluster environments.This paper presents a hierarchical multi-UAV cooperative framework for infrastructure inspection and reconstruction to balance the workload and reduce the overall task completion time.The proposed framework consists of two stages,the exploration stage and the exploitation stage,resolving the task in a sequential manner.At the exploration stage,the density map is developed to update global and local information for dynamic load-balanced area partition based on reconstructability and relative positions of UAVs,and the Voronoi-based planner is used to enable the UAVs to reach their best region.After obtaining the global map,viewpoints are generated and divided while taking into account the battery capacity of each UAV.Finally,a shortest path planning method is used to minimize the total traveling cost of these viewpoints for obtaining a high-quality reconstruction.Several experiments are conducted in both a simulated and real environment to show the time efficiency,robustness,and effectiveness of the proposed method.Furthermore,the whole system is implemented in real applications.
基金Project supported by thc National Natural Science Foundation of China (Nos. 61473179, 61573213, and 61233014), the Natural Sci- ence Foundation of Shandong Province, China (Nos. ZR2014FM007 and ZR2015CM016), and the Key Research and Development Project of Shandong Province, China (No. 2016GGX101027)
文摘We introduce a novel strategy of designing a chaotic coverage path planner for the mobile robot based on the Che- byshev map for achieving special missions. The designed chaotic path planner consists of a two-dimensional Chebyshev map which is constructed by two one-dimensional Chebyshev maps. The performance of the time sequences which are generated by the planner is improved by arcsine transformation to enhance the chaotic characteristics and uniform distribution. Then the coverage rate and randomness for achieving the special missions of the robot are enhanced. The chaotic Chebyshev system is mapped into the feasible region of the robot workplace by affine transformation. Then a universal algorithm of coverage path planning is designed for environments with obstacles. Simulation results show that the constructed chaotic path planner can avoid detection of the obstacles and the workplace boundaries, and runs safely in the feasible areas. The designed strategy is able to satisfy the requirements of randomness, coverage, and high efficiency for special missions.