Covariance functions have been proposed as an alternative to model longitudinal data in animal breeding because of their various merits in comparison to the classical analytical methods.In practical estimation,differe...Covariance functions have been proposed as an alternative to model longitudinal data in animal breeding because of their various merits in comparison to the classical analytical methods.In practical estimation,different models and polynomial orders fitted can influence the estimates of covariance functions and thus genetic parameters.The objective of this study was to select model for estimation of covariance functions for body weights of Angora goats at 7 time points.Covariance functions were estimated by fitting 6 random regression models with birth year,birth month,sex,age of dam,birth type,and relative birth date as fixed effects.Random effects involved were direct and maternal additive genetic,and animal and maternal permanent environmental effects with different orders of fit.Selection of model and orders of fit were carried out by likelihood ratio test and 4 types of information criteria.The results showed that model with 6 orders of polynomial fit for direct additive genetic and animal permanent environmental effects and 4 and 5 orders for maternal genetic and permanent environmental effects,respectively,were preferable for estimation of covariance functions.Models with and without maternal effects influenced the estimates of covariance functions greatly.Maternal permanent environmental effect does not explain the variation of all permanent environments,well suggesting different sources of permanent environmental effects also has large influence on covariance function estimates.展开更多
The covariant density functional theory(CDFT)and five-dimensional collective Hamiltonian(5DCH)are used to analyze the experimental deformation parameters and moments of inertia(MoIs)of 12 triaxial nuclei as extracted ...The covariant density functional theory(CDFT)and five-dimensional collective Hamiltonian(5DCH)are used to analyze the experimental deformation parameters and moments of inertia(MoIs)of 12 triaxial nuclei as extracted by Allmond and Wood[J.M.Allmond and J.L.Wood,Phys.Lett.B 767,226(2017)].We find that the CDFT MoIs are generally smaller than the experimental values but exhibit qualitative consistency with the irrotational flow and experimental data for the relative MoIs,indicating that the intermediate axis exhibites the largest MoI.Additionally,it is found that the pairing interaction collapse could result in nuclei behaving as a rigid-body flow,as exhibited in the^(186-192)Os case.Furthermore,by incorporating enhanced CDFT MoIs(factor of f≈1.55)into the 5DCH,the experimental low-lying energy spectra and deformation parameters are reproduced successfully.Compared with both CDFT and the triaxial rotor model,the 5DCH demonstrates superior agreement with the experimental deformation parameters and low-lying energy spectra,respectively,emphasizing the importance of considering shape fluctuations.展开更多
The octupole deformation and collectivity in octupole double-magic nucleus 144Ba are investigated using the Cranking covariant density functional theory in a three-dimensional lattice space.The reduced B(E3)transition...The octupole deformation and collectivity in octupole double-magic nucleus 144Ba are investigated using the Cranking covariant density functional theory in a three-dimensional lattice space.The reduced B(E3)transition probability is implemented for the first time in semiclassical approximation based on the microscopically calculated electric octupole moments.The available data,including the I-ωrelation and electric transitional probabilities B(E2)and B(E3)are well reproduced.Furthermore,it is shown that the ground state of 144Ba exhibits axial octupole and quadrupole deformations that persist up to high spins(I≈24h).展开更多
In this study,a microscopic method for calculating the nuclear level density(NLD)based on the covariant density functional theory(CDFT)is developed.The particle-hole state density is calculated by a combinatorial meth...In this study,a microscopic method for calculating the nuclear level density(NLD)based on the covariant density functional theory(CDFT)is developed.The particle-hole state density is calculated by a combinatorial method using single-particle level schemes obtained from the CDFT,and the level densities are then obtained by considering collective effects such as vibration and rotation.Our results are compared with those of other NLD models,including phenomenological,microstatisti-cal and nonrelativistic Hartree–Fock–Bogoliubov combinatorial models.This comparison suggests that the general trends among these models are essentially the same,except for some deviations among the different NLD models.In addition,the NLDs obtained using the CDFT combinatorial method with normalization are compared with experimental data,including the observed cumulative number of levels at low excitation energies and the measured NLDs.The CDFT combinatorial method yields results that are in reasonable agreement with the existing experimental data.展开更多
The self-consistent tilted axis cranking covariant density functional theory based on the point-coupling interaction is applied to investigate the tilted axis rotation in ^57 Mn. The observed data for band C are repro...The self-consistent tilted axis cranking covariant density functional theory based on the point-coupling interaction is applied to investigate the tilted axis rotation in ^57 Mn. The observed data for band C are reproduced well with the assigned configuration eonfig 1. The shears mechanism for magnetic rotation is examined by investigating microscopically the orientation of angular momentum and the corresponding contributions. It is found that config 1 and config 3 correspond to a rotation of high-K character. Config 2 corresponds to a rotation of magnetic character. However, due to the presence of electromagnetic transition B(M1) and B(E2), collective rotation plays an essential role in the competition with magnetic rotation.展开更多
The ground-state properties,especially the magnetic moments,of odd-A aluminum isotopes have been studied and well reproduced in covariant density functional theory after considering the rotational coupling.The present...The ground-state properties,especially the magnetic moments,of odd-A aluminum isotopes have been studied and well reproduced in covariant density functional theory after considering the rotational coupling.The present calculations support the rotational structure in the ground state of odd-A aluminum isotopes,i.e.the ground state 5/2^+is built on the intrinsic state 5/2[202].In addition,the contribution from the time-odd fields is also discussed.展开更多
Spatial optimization as part of spatial modeling has been facilitated significantly by integration with GIS techniques. However, for certain research topics, applying standard GIS techniques may create problems which ...Spatial optimization as part of spatial modeling has been facilitated significantly by integration with GIS techniques. However, for certain research topics, applying standard GIS techniques may create problems which require attention. This paper serves as a cautionary note to demonstrate two problems associated with applying GIS in spatial optimization, using a capacitated p-median facility location optimization problem as an example. The first problem involves errors in interpolating spatial variations of travel costs from using kriging, a common set of techniques for raster files. The second problem is inaccuracy in routing performed on a graph directly created from polyline shapefiles, a common vector file type. While revealing these problems, the paper also suggests remedies. Specifically, interpolation errors can be eliminated by using agent-based spatial modeling while the inaccuracy in routing can be improved through altering the graph topology by splitting the long edges of the shapefile. These issues suggest the need for caution in applying GIS in spatial optimization study.展开更多
We report a comprehensive study on low-lying parity doublet states of ^(224)Rn by mixing both quadrupole-and octupoleshaped configurations in multireference covariant density functional theory,in which broken symmetri...We report a comprehensive study on low-lying parity doublet states of ^(224)Rn by mixing both quadrupole-and octupoleshaped configurations in multireference covariant density functional theory,in which broken symmetries in configurations are restored using projection techniques.The low-lying energy spectrum is reasonably reproduced when the shape fluctuations in both the quadrupole and octupole shapes are considered.Electric octupole transition strength in ^(224)Rn is found to be B(E3;3_(1)^(-)→0_(1)^(+))=43 W.u.,comparable to that in ^(224)Ra,whose data are 42(3)W.u..Our results indicate that ^(224)Rn shares similar low-energy structure with ^(224)Ra despite the excitation energy of first 3^(−)state of the former nucleus is higher than that of the latter.This study suggests ^(224)Rn is a candidate for the search for permanent electric dipole moment.展开更多
Growth of commercial forestry is highly dependent on the availability of fast-growing planting materials. Consequently, the efficient utilization of fastgrowing plantations can greatly impact productivity. The objecti...Growth of commercial forestry is highly dependent on the availability of fast-growing planting materials. Consequently, the efficient utilization of fastgrowing plantations can greatly impact productivity. The objectives of this study were to evaluate variations in the growth potential of two clones and to estimate the average stem radial growth advantage of a fast-growing clone using data obtained from Sappi landholdings in eastern South Africa and a mixed modelling approach that permits the incorporation of covariance structure into the statistical model. During the first 2 years of growth, the stem radius of nine trees each of two clones was measured using dendrometer attached to the tree. A second-degree fractional polynomial model was chosen to show the functional relationship between stem radius and tree age. Growth of the two hybrid clones differed significantly. The Eucalyptus grandis×Eucalyptus urophylla clone grew faster than the E. grandis×camaldulensis clone, indicating better genetic potential for rapid growth and yield. This study can be considered as starting point to further compare the potential for rapid growth of several hybrid clones using the longitudinal data modelling approach.展开更多
Research of the practical 4-D integrated geodesy(IG) and strain analysis is presented in this paper.The practical model and basic observation equation are established by using IG and dynamic adjustment.Furthermore,the...Research of the practical 4-D integrated geodesy(IG) and strain analysis is presented in this paper.The practical model and basic observation equation are established by using IG and dynamic adjustment.Furthermore,the observation equations about gravity vector,zenith distance,azimuth angle,difference are derived and determination of local gravity field covariance solved.The 3-D strain formular is derived and the strain parameters calculated from it.The improvement of the OPERA software of Landan and Hem etc,FRG has been done to get a new software in Fortran Language which implements in MASSCOMP computer.Using the software,the integrated adjustment of two term observation data of triangle chain, triangle net,gravity,level,astronomic observation and strain analysis are established.The result is satisfactory.展开更多
Spatio-temporal models are valuable tools for disease mapping and understanding the geographical distribution of diseases and temporal dynamics. Spatio-temporal models have been proven empirically to be very complex a...Spatio-temporal models are valuable tools for disease mapping and understanding the geographical distribution of diseases and temporal dynamics. Spatio-temporal models have been proven empirically to be very complex and this complexity has led many to oversimply and model the spatial and temporal dependencies independently. Unlike common practice, this study formulated a new spatio-temporal model in a Bayesian hierarchical framework that accounts for spatial and temporal dependencies jointly. The spatial and temporal dependencies were dynamically modelled via the matern exponential covariance function. The temporal aspect was captured by the parameters of the exponential with a first-order autoregressive structure. Inferences about the parameters were obtained via Markov Chain Monte Carlo (MCMC) techniques and the spatio-temporal maps were obtained by mapping stable posterior means from the specific location and time from the best model that includes the significant risk factors. The model formulated was fitted to both simulation data and Kenya meningitis incidence data from 2013 to 2019 along with two covariates;Gross County Product (GCP) and average rainfall. The study found that both average rainfall and GCP had a significant positive association with meningitis occurrence. Also, regarding geographical distribution, the spatio-temporal maps showed that meningitis is not evenly distributed across the country as some counties reported a high number of cases compared with other counties.展开更多
Based on the covariant density functional theory,by employing the core–quasiparticle coupling(CQC)model,the nuclear level density of odd-A nuclei at the saddle point is achieved.The total level density is calculated ...Based on the covariant density functional theory,by employing the core–quasiparticle coupling(CQC)model,the nuclear level density of odd-A nuclei at the saddle point is achieved.The total level density is calculated via the convolution of the intrinsic level density and the collective level density.The intrinsic level densities are obtained in the finite-temperature covariant density functional theory,which takes into account the nuclear deformation and pairing self-consistently.For saddle points on the free energy surface in the(β_(2),γ)plane,the entropy and the associated intrinsic level density are compared with those of the global minima.By introducing a quasiparticle to the two neighboring even–even core nuclei,whose properties are determined by the five-dimensional collective Hamiltonian model,the collective levels of the odd-A nuclei are obtained via the CQC model.The total level densities of the^(234-240)U agree well with the available experimental data and Hilaire’s result.Furthermore,the ratio of the total level densities at the saddle points to those at the global minima and the ratio of the total level densities to the intrinsic level densities are discussed separately.展开更多
In the framework of the Thomas-Fermi approximation,we systematically study the EOSs and microscopic structures of neutron star matter in a vast density range with n_(b)≈10^(-10)-2 fm^(-3),where various covariant dens...In the framework of the Thomas-Fermi approximation,we systematically study the EOSs and microscopic structures of neutron star matter in a vast density range with n_(b)≈10^(-10)-2 fm^(-3),where various covariant density functionals are adopted,i.e.,those with nonlinear self couplings(NL3,PK1,TM1,GM1,MTVTC)and density-dependent couplings(DD-LZ1,DDME-X,PKDD,DDME2,DD2,TW99).It is found that the EOSs generally coincide with each other at nb■10^(-4)fm^(-3)and 0.1 fm^(-3)■n_(b)■0.3 fm^(-3),while in other density regions they are sensitive to the effective interactions between nucleons.By adopting functionals with a larger slope of symmetry energy L,the curvature parameter K_(sym)and neutron drip density generally increases,while the droplet size,proton number of nucleus,core-crust transition density,and onset density of non-spherical nuclei,decrease.All functionals predict neutron stars with maximum masses exceeding the two-solar-mass limit,while those of DD2,DD-LZ1,DD-ME2,and DDME-X predict optimum neutron star radii according to the observational constraints.Nevertheless,the corresponding skewness coefficients J are much larger than expected,while only the functionals MTVTC and TW99 meet the start-of-art constraints on J.More accurate measurements on the radius of PSR J0740+6620 and the maximum mass of neutron stars are thus essential to identify the functional that satisfies all constraints from nuclear physics and astrophysical observations.Approximate linear correlations between neutron stars’radii at M=1.4M⊙and 2M⊙,the slope L and curvature parameter K_(sym)of symmetry energy are observed as well,which are mainly attributed to the curvature-slope correlations in the functionals adopted here.The results presented here are applicable for investigations of the structures and evolutions of compact stars in a unified manner.展开更多
Based on the systematic studies for low-lying states of the odd-A^(49-57)Mn isotopes,the groundstates inversion and the rotational properties of a ground-state-based sequence are revealed and discussed.The energy leve...Based on the systematic studies for low-lying states of the odd-A^(49-57)Mn isotopes,the groundstates inversion and the rotational properties of a ground-state-based sequence are revealed and discussed.The energy levels of low-lying states and electromagnetic moments in odd-A^(49-57)Mn isotopes have been well reproduced in shell-model calculations,and the above phenomena could be understood with obviously different occupation numbers in proton orbitals such asπf_(7/2)andπp_(3/2),which changes similarly with the obtained quadrupole deformation in covariant density functional theory(CDFT).After considering the coupling of collective rotation and intrinsic single-particle motion,the available experimental magnetic moments in53Mn and adjacent nuclei can be well explained with CDFT.The present calculations suggest that the 5/2^(-)and 7/2^(-)states in53Mn are formed byπ5/2^(-)[312]andπ7/2^(-)[303]respectively.Together with the behavior of levels,this provides proofs for the level sequences of low-lying states in53Mn distinct from the K^(π)=5/2^(-)rotational band in^(49)Cr and other odd-A Mn isotopes.展开更多
A triaxially deformed relativistic Hartree–Bogoliubov theory in the Woods–Saxon basis is developed with the aim of treating the triaxial deformation,pairing correlations and continuum in a unified way.In order to co...A triaxially deformed relativistic Hartree–Bogoliubov theory in the Woods–Saxon basis is developed with the aim of treating the triaxial deformation,pairing correlations and continuum in a unified way.In order to consider the triaxial deformation,the deformed potentials are expanded in terms of spherical harmonic functions in the coordinate space.In order to take the pairing correlations into account and treat the continuum properly,by using the Dirac Woods–Saxon basis,which has correct asymptotic behavior,the relativistic Hartree–Bogoliubov equation with triaxial deformation is solved.The formalism of triaxially deformed relativistic Hartree–Bogoliubov theory in Woods–Saxon basis is presented.Taking an axially deformed nucleus24Ne and a triaxially deformed nucleus76Ge as examples,the numerical checks are performed.A weakly bound nucleus112Ge is taken as an example to carry out the necessary converge checks for the numerical parameters.In addition,the ground-state properties of even–even germanium isotopes are investigated.The evolutions of two-neutron separation energy,deformation,root-mean-square radii and density distribution with mass number are analyzed.The comparison between the calculations from the relativistic Hartree–Bogoliubov theory based on harmonic-oscillator basis and the triaxially deformed relativistic Hartree–Bogoliubov theory in Woods–Saxon basis is performed.It is found that the neutron drip line is extended from114Ge to118Ge in the triaxially deformed relativistic Hartree–Bogoliubov theory in Woods–Saxon basis.展开更多
Pronounced changes of nuclear charge radii provide a stringent benchmark on the theoretical models and play a vital role in recognizing various nuclear phenomena.In this work,the systematic evolutions of nuclear charg...Pronounced changes of nuclear charge radii provide a stringent benchmark on the theoretical models and play a vital role in recognizing various nuclear phenomena.In this work,the systematic evolutions of nuclear charge radii along even Z=84-120 isotopic chains are first investigated by the recently developed new ansatz under the covariant density functional.The calculated results show that the shell closure effects of nuclear charge radii appear remarkably at the neutron numbers N=126 and 184.Interestingly,the arch-like shapes of charge radii between these two strong neutron-closed shells are naturally observed.Across the N=184 shell closure,the abrupt increase in charge radii is still evidently emerged.In addition,the rapid raise of nuclear charge radii from the neutron numbers N=138 to N=144 is disclosed clearly in superheavy regions due to the enhanced shape deformation.展开更多
Massless quark pair production in SU(2) gauge chromoelectric field is investigated by solving the Wigner function with back reaction. The temporal evolution of specific field and its current are obtained self consiste...Massless quark pair production in SU(2) gauge chromoelectric field is investigated by solving the Wigner function with back reaction. The temporal evolution of specific field and its current are obtained self consistently. For the quark distribution function, both its time and momentum dependence are studied. In particular, some interesting phenomena are found, for example, the more abundant symmetry or/and antisymmetry characteristics, the existence of the attractive basin structure and the existence of the momentum "gap" in the quark distribution and so on. All the phenomena are associated with the quark-gluon plasma oscillation, which due to the back reaction effect. The study and analysis qualitatively about the components of the Wigner function are expected to be helpful to deepen the understanding of the QCD vacuum.展开更多
The α-cluster structures for 12^C and 16^O are investigated in the framework of the covariant density functional theory, where the pairing correlation is treated with a particle number conserving shell-model-like app...The α-cluster structures for 12^C and 16^O are investigated in the framework of the covariant density functional theory, where the pairing correlation is treated with a particle number conserving shell-model-like approach. The ground states of 12^C and 160 have been calculated and the density distributions demonstrate an equilateral triangle 3α clustering for 12^C and a regular tetrahedron 4α clustering for 16^O The existence of linear nα chain structure of both 12^C and 16^O is revealed at high quadrupole deformation.展开更多
Nuclear magnetic moment is an important physical variable and serves as a useful tool for the stringent test of nuclear models. For the past decades, the covariant density functional theory and its extension have been...Nuclear magnetic moment is an important physical variable and serves as a useful tool for the stringent test of nuclear models. For the past decades, the covariant density functional theory and its extension have been proved to be successful in describing the nuclear ground-states and excited states properties. However, a long-standing problem is its failure to predict magnetic moments. This article reviews the recent progress in the description of the nuclear magnetic moments within the covariant density functional theory. In particular, the magnetic moments of spherical odd-A nuclei with doubly closed shell core plus or minus one nucleon and deformed odd-A nuclei.展开更多
We calculate the three-dimensional potential energy surface(PES)for the fission of the compound nucleus^(236)U using covariant density functional theory with constraints on the axial quadrupole and octupole deformatio...We calculate the three-dimensional potential energy surface(PES)for the fission of the compound nucleus^(236)U using covariant density functional theory with constraints on the axial quadrupole and octupole deformations(β_(2),β_(3))coexistence of the elongated and compact fission modes is predicted for comes shallow across a large range of quadrupole and octupole deformations for small scission line in the(β_(2),β_(3))plane extends to a shallow band,leading to fluctuations of several to ten MeV in the estimated total kinetic energies and of several to approximately ten nucleons in the fragment masses.展开更多
基金funded by the Young Academic Leaders Supporting Project in Institutions of Higher Education of Shanxi Province,China
文摘Covariance functions have been proposed as an alternative to model longitudinal data in animal breeding because of their various merits in comparison to the classical analytical methods.In practical estimation,different models and polynomial orders fitted can influence the estimates of covariance functions and thus genetic parameters.The objective of this study was to select model for estimation of covariance functions for body weights of Angora goats at 7 time points.Covariance functions were estimated by fitting 6 random regression models with birth year,birth month,sex,age of dam,birth type,and relative birth date as fixed effects.Random effects involved were direct and maternal additive genetic,and animal and maternal permanent environmental effects with different orders of fit.Selection of model and orders of fit were carried out by likelihood ratio test and 4 types of information criteria.The results showed that model with 6 orders of polynomial fit for direct additive genetic and animal permanent environmental effects and 4 and 5 orders for maternal genetic and permanent environmental effects,respectively,were preferable for estimation of covariance functions.Models with and without maternal effects influenced the estimates of covariance functions greatly.Maternal permanent environmental effect does not explain the variation of all permanent environments,well suggesting different sources of permanent environmental effects also has large influence on covariance function estimates.
基金supported by the National Natural Science Foundation of China(No.12205103)。
文摘The covariant density functional theory(CDFT)and five-dimensional collective Hamiltonian(5DCH)are used to analyze the experimental deformation parameters and moments of inertia(MoIs)of 12 triaxial nuclei as extracted by Allmond and Wood[J.M.Allmond and J.L.Wood,Phys.Lett.B 767,226(2017)].We find that the CDFT MoIs are generally smaller than the experimental values but exhibit qualitative consistency with the irrotational flow and experimental data for the relative MoIs,indicating that the intermediate axis exhibites the largest MoI.Additionally,it is found that the pairing interaction collapse could result in nuclei behaving as a rigid-body flow,as exhibited in the^(186-192)Os case.Furthermore,by incorporating enhanced CDFT MoIs(factor of f≈1.55)into the 5DCH,the experimental low-lying energy spectra and deformation parameters are reproduced successfully.Compared with both CDFT and the triaxial rotor model,the 5DCH demonstrates superior agreement with the experimental deformation parameters and low-lying energy spectra,respectively,emphasizing the importance of considering shape fluctuations.
基金supported by the National Natural Science Foundation of China(NSFC)(No.12205097)the Fundamental Research Funds for the Central Universities(No.2024MS071)。
文摘The octupole deformation and collectivity in octupole double-magic nucleus 144Ba are investigated using the Cranking covariant density functional theory in a three-dimensional lattice space.The reduced B(E3)transition probability is implemented for the first time in semiclassical approximation based on the microscopically calculated electric octupole moments.The available data,including the I-ωrelation and electric transitional probabilities B(E2)and B(E3)are well reproduced.Furthermore,it is shown that the ground state of 144Ba exhibits axial octupole and quadrupole deformations that persist up to high spins(I≈24h).
基金supported by the Natural Science Foundation of Jilin Province(No.20220101017JC)National Natural Science Foundation of China(No.11675063)Key Laboratory of Nuclear Data Foundation(JCKY2020201C157).
文摘In this study,a microscopic method for calculating the nuclear level density(NLD)based on the covariant density functional theory(CDFT)is developed.The particle-hole state density is calculated by a combinatorial method using single-particle level schemes obtained from the CDFT,and the level densities are then obtained by considering collective effects such as vibration and rotation.Our results are compared with those of other NLD models,including phenomenological,microstatisti-cal and nonrelativistic Hartree–Fock–Bogoliubov combinatorial models.This comparison suggests that the general trends among these models are essentially the same,except for some deviations among the different NLD models.In addition,the NLDs obtained using the CDFT combinatorial method with normalization are compared with experimental data,including the observed cumulative number of levels at low excitation energies and the measured NLDs.The CDFT combinatorial method yields results that are in reasonable agreement with the existing experimental data.
基金Supported by the National Natural Science Foundation of China under Grant No 11461141002the Open Project Program of State Key Laboratory of Theoretical Physics of Institute of Theoretical Physics of Chinese Academy of Sciences under Grant No Y4KF041CJ1
文摘The self-consistent tilted axis cranking covariant density functional theory based on the point-coupling interaction is applied to investigate the tilted axis rotation in ^57 Mn. The observed data for band C are reproduced well with the assigned configuration eonfig 1. The shears mechanism for magnetic rotation is examined by investigating microscopically the orientation of angular momentum and the corresponding contributions. It is found that config 1 and config 3 correspond to a rotation of high-K character. Config 2 corresponds to a rotation of magnetic character. However, due to the presence of electromagnetic transition B(M1) and B(E2), collective rotation plays an essential role in the competition with magnetic rotation.
基金supported by the National Natural Science Foundation of China under Grants No.11675063,No.11205068,No.11475072,and No.11847310。
文摘The ground-state properties,especially the magnetic moments,of odd-A aluminum isotopes have been studied and well reproduced in covariant density functional theory after considering the rotational coupling.The present calculations support the rotational structure in the ground state of odd-A aluminum isotopes,i.e.the ground state 5/2^+is built on the intrinsic state 5/2[202].In addition,the contribution from the time-odd fields is also discussed.
文摘Spatial optimization as part of spatial modeling has been facilitated significantly by integration with GIS techniques. However, for certain research topics, applying standard GIS techniques may create problems which require attention. This paper serves as a cautionary note to demonstrate two problems associated with applying GIS in spatial optimization, using a capacitated p-median facility location optimization problem as an example. The first problem involves errors in interpolating spatial variations of travel costs from using kriging, a common set of techniques for raster files. The second problem is inaccuracy in routing performed on a graph directly created from polyline shapefiles, a common vector file type. While revealing these problems, the paper also suggests remedies. Specifically, interpolation errors can be eliminated by using agent-based spatial modeling while the inaccuracy in routing can be improved through altering the graph topology by splitting the long edges of the shapefile. These issues suggest the need for caution in applying GIS in spatial optimization study.
基金supported by the National Natural Science Foundation of China (Nos. 12465020, 12005802, and 12005109)the Jiangxi Provincial Natural Science Foundation (20202BAB211008)+3 种基金the Jiangxi Normal University (JXNU) Initial Research Foundation Grant to Doctor (12019504)the Young Talents Program under JXNU (12019870)the PhD Foundation of Chongqing Normal University (No. 23XLB010)the Science and Technology Research Program of Chongqing Municipal Education Commission (No. KJQN202300509)
文摘We report a comprehensive study on low-lying parity doublet states of ^(224)Rn by mixing both quadrupole-and octupoleshaped configurations in multireference covariant density functional theory,in which broken symmetries in configurations are restored using projection techniques.The low-lying energy spectrum is reasonably reproduced when the shape fluctuations in both the quadrupole and octupole shapes are considered.Electric octupole transition strength in ^(224)Rn is found to be B(E3;3_(1)^(-)→0_(1)^(+))=43 W.u.,comparable to that in ^(224)Ra,whose data are 42(3)W.u..Our results indicate that ^(224)Rn shares similar low-energy structure with ^(224)Ra despite the excitation energy of first 3^(−)state of the former nucleus is higher than that of the latter.This study suggests ^(224)Rn is a candidate for the search for permanent electric dipole moment.
文摘Growth of commercial forestry is highly dependent on the availability of fast-growing planting materials. Consequently, the efficient utilization of fastgrowing plantations can greatly impact productivity. The objectives of this study were to evaluate variations in the growth potential of two clones and to estimate the average stem radial growth advantage of a fast-growing clone using data obtained from Sappi landholdings in eastern South Africa and a mixed modelling approach that permits the incorporation of covariance structure into the statistical model. During the first 2 years of growth, the stem radius of nine trees each of two clones was measured using dendrometer attached to the tree. A second-degree fractional polynomial model was chosen to show the functional relationship between stem radius and tree age. Growth of the two hybrid clones differed significantly. The Eucalyptus grandis×Eucalyptus urophylla clone grew faster than the E. grandis×camaldulensis clone, indicating better genetic potential for rapid growth and yield. This study can be considered as starting point to further compare the potential for rapid growth of several hybrid clones using the longitudinal data modelling approach.
文摘Research of the practical 4-D integrated geodesy(IG) and strain analysis is presented in this paper.The practical model and basic observation equation are established by using IG and dynamic adjustment.Furthermore,the observation equations about gravity vector,zenith distance,azimuth angle,difference are derived and determination of local gravity field covariance solved.The 3-D strain formular is derived and the strain parameters calculated from it.The improvement of the OPERA software of Landan and Hem etc,FRG has been done to get a new software in Fortran Language which implements in MASSCOMP computer.Using the software,the integrated adjustment of two term observation data of triangle chain, triangle net,gravity,level,astronomic observation and strain analysis are established.The result is satisfactory.
文摘Spatio-temporal models are valuable tools for disease mapping and understanding the geographical distribution of diseases and temporal dynamics. Spatio-temporal models have been proven empirically to be very complex and this complexity has led many to oversimply and model the spatial and temporal dependencies independently. Unlike common practice, this study formulated a new spatio-temporal model in a Bayesian hierarchical framework that accounts for spatial and temporal dependencies jointly. The spatial and temporal dependencies were dynamically modelled via the matern exponential covariance function. The temporal aspect was captured by the parameters of the exponential with a first-order autoregressive structure. Inferences about the parameters were obtained via Markov Chain Monte Carlo (MCMC) techniques and the spatio-temporal maps were obtained by mapping stable posterior means from the specific location and time from the best model that includes the significant risk factors. The model formulated was fitted to both simulation data and Kenya meningitis incidence data from 2013 to 2019 along with two covariates;Gross County Product (GCP) and average rainfall. The study found that both average rainfall and GCP had a significant positive association with meningitis occurrence. Also, regarding geographical distribution, the spatio-temporal maps showed that meningitis is not evenly distributed across the country as some counties reported a high number of cases compared with other counties.
基金supported by the China Institute of Atomic Energy(No.401Y-FW-GKXJ-21-1496)the Natural Science Foundation of Henan Province(No.202300410480 and 202300410479)+1 种基金the Open Project of Guangxi Key Laboratory of Nuclear Physics and Nuclear Technology(No.NLK2021-01)the National Natural Science Foundation of China(No.U2032141).
文摘Based on the covariant density functional theory,by employing the core–quasiparticle coupling(CQC)model,the nuclear level density of odd-A nuclei at the saddle point is achieved.The total level density is calculated via the convolution of the intrinsic level density and the collective level density.The intrinsic level densities are obtained in the finite-temperature covariant density functional theory,which takes into account the nuclear deformation and pairing self-consistently.For saddle points on the free energy surface in the(β_(2),γ)plane,the entropy and the associated intrinsic level density are compared with those of the global minima.By introducing a quasiparticle to the two neighboring even–even core nuclei,whose properties are determined by the five-dimensional collective Hamiltonian model,the collective levels of the odd-A nuclei are obtained via the CQC model.The total level densities of the^(234-240)U agree well with the available experimental data and Hilaire’s result.Furthermore,the ratio of the total level densities at the saddle points to those at the global minima and the ratio of the total level densities to the intrinsic level densities are discussed separately.
基金supported by National SKA Program of China No.2020SKA0120300National Natural Science Foundation of China(Grant No.11875052,No.11873040,No.11705163,and No.11525524)+3 种基金the science research grants from the China Manned Space Project(No.CMS-CSST-2021-B11)the Youth Innovation Fund of Xiamen(No.3502Z20206061)the Fundamental Research Funds for the Central Universities(Grant No.lzujbky-2021-sp36)the National Key R&D Program of China No.2018YFA0404402
文摘In the framework of the Thomas-Fermi approximation,we systematically study the EOSs and microscopic structures of neutron star matter in a vast density range with n_(b)≈10^(-10)-2 fm^(-3),where various covariant density functionals are adopted,i.e.,those with nonlinear self couplings(NL3,PK1,TM1,GM1,MTVTC)and density-dependent couplings(DD-LZ1,DDME-X,PKDD,DDME2,DD2,TW99).It is found that the EOSs generally coincide with each other at nb■10^(-4)fm^(-3)and 0.1 fm^(-3)■n_(b)■0.3 fm^(-3),while in other density regions they are sensitive to the effective interactions between nucleons.By adopting functionals with a larger slope of symmetry energy L,the curvature parameter K_(sym)and neutron drip density generally increases,while the droplet size,proton number of nucleus,core-crust transition density,and onset density of non-spherical nuclei,decrease.All functionals predict neutron stars with maximum masses exceeding the two-solar-mass limit,while those of DD2,DD-LZ1,DD-ME2,and DDME-X predict optimum neutron star radii according to the observational constraints.Nevertheless,the corresponding skewness coefficients J are much larger than expected,while only the functionals MTVTC and TW99 meet the start-of-art constraints on J.More accurate measurements on the radius of PSR J0740+6620 and the maximum mass of neutron stars are thus essential to identify the functional that satisfies all constraints from nuclear physics and astrophysical observations.Approximate linear correlations between neutron stars’radii at M=1.4M⊙and 2M⊙,the slope L and curvature parameter K_(sym)of symmetry energy are observed as well,which are mainly attributed to the curvature-slope correlations in the functionals adopted here.The results presented here are applicable for investigations of the structures and evolutions of compact stars in a unified manner.
基金the Natural Science Foundation of Jilin Province(Grant No.20220101017JC)National Natural Science Foundation of China(Grant Nos.11675063,11205068 and U1832139)+1 种基金National Basic Science Data Center‘Medical Physicas Data Base’(NO.NBSDC-DB-23)the Key Laboratory of Nuclear Data foundation(JCKY2020201C157)
文摘Based on the systematic studies for low-lying states of the odd-A^(49-57)Mn isotopes,the groundstates inversion and the rotational properties of a ground-state-based sequence are revealed and discussed.The energy levels of low-lying states and electromagnetic moments in odd-A^(49-57)Mn isotopes have been well reproduced in shell-model calculations,and the above phenomena could be understood with obviously different occupation numbers in proton orbitals such asπf_(7/2)andπp_(3/2),which changes similarly with the obtained quadrupole deformation in covariant density functional theory(CDFT).After considering the coupling of collective rotation and intrinsic single-particle motion,the available experimental magnetic moments in53Mn and adjacent nuclei can be well explained with CDFT.The present calculations suggest that the 5/2^(-)and 7/2^(-)states in53Mn are formed byπ5/2^(-)[312]andπ7/2^(-)[303]respectively.Together with the behavior of levels,this provides proofs for the level sequences of low-lying states in53Mn distinct from the K^(π)=5/2^(-)rotational band in^(49)Cr and other odd-A Mn isotopes.
基金the Sichuan Normal University for financial support(No.341813001)。
文摘A triaxially deformed relativistic Hartree–Bogoliubov theory in the Woods–Saxon basis is developed with the aim of treating the triaxial deformation,pairing correlations and continuum in a unified way.In order to consider the triaxial deformation,the deformed potentials are expanded in terms of spherical harmonic functions in the coordinate space.In order to take the pairing correlations into account and treat the continuum properly,by using the Dirac Woods–Saxon basis,which has correct asymptotic behavior,the relativistic Hartree–Bogoliubov equation with triaxial deformation is solved.The formalism of triaxially deformed relativistic Hartree–Bogoliubov theory in Woods–Saxon basis is presented.Taking an axially deformed nucleus24Ne and a triaxially deformed nucleus76Ge as examples,the numerical checks are performed.A weakly bound nucleus112Ge is taken as an example to carry out the necessary converge checks for the numerical parameters.In addition,the ground-state properties of even–even germanium isotopes are investigated.The evolutions of two-neutron separation energy,deformation,root-mean-square radii and density distribution with mass number are analyzed.The comparison between the calculations from the relativistic Hartree–Bogoliubov theory based on harmonic-oscillator basis and the triaxially deformed relativistic Hartree–Bogoliubov theory in Woods–Saxon basis is performed.It is found that the neutron drip line is extended from114Ge to118Ge in the triaxially deformed relativistic Hartree–Bogoliubov theory in Woods–Saxon basis.
基金funded by the Key Laboratory of High Precision Nuclear Spectroscopy,Institute of Modern Physics,Chinese Academy of Sciencessupported partly by the National Natural Science Foundation of China under Grants No.12135004,No.11635003,No.11961141004 and No.12047513+1 种基金the support of the National Natural Science Foundation of China under Grants No.11975096the Fundamental Research Funds for the Central Universities(2020NTST06)。
文摘Pronounced changes of nuclear charge radii provide a stringent benchmark on the theoretical models and play a vital role in recognizing various nuclear phenomena.In this work,the systematic evolutions of nuclear charge radii along even Z=84-120 isotopic chains are first investigated by the recently developed new ansatz under the covariant density functional.The calculated results show that the shell closure effects of nuclear charge radii appear remarkably at the neutron numbers N=126 and 184.Interestingly,the arch-like shapes of charge radii between these two strong neutron-closed shells are naturally observed.Across the N=184 shell closure,the abrupt increase in charge radii is still evidently emerged.In addition,the rapid raise of nuclear charge radii from the neutron numbers N=138 to N=144 is disclosed clearly in superheavy regions due to the enhanced shape deformation.
基金Supported by the National Natural Science Foundation of China under Grant No.11475026
文摘Massless quark pair production in SU(2) gauge chromoelectric field is investigated by solving the Wigner function with back reaction. The temporal evolution of specific field and its current are obtained self consistently. For the quark distribution function, both its time and momentum dependence are studied. In particular, some interesting phenomena are found, for example, the more abundant symmetry or/and antisymmetry characteristics, the existence of the attractive basin structure and the existence of the momentum "gap" in the quark distribution and so on. All the phenomena are associated with the quark-gluon plasma oscillation, which due to the back reaction effect. The study and analysis qualitatively about the components of the Wigner function are expected to be helpful to deepen the understanding of the QCD vacuum.
基金Supported by Major State Basic Research Development (973) Program (2007CB815000)NSFC (11175002,11105005)Research Fund for the Doctoral Program of Higher Education (20110001110087)
文摘The α-cluster structures for 12^C and 16^O are investigated in the framework of the covariant density functional theory, where the pairing correlation is treated with a particle number conserving shell-model-like approach. The ground states of 12^C and 160 have been calculated and the density distributions demonstrate an equilateral triangle 3α clustering for 12^C and a regular tetrahedron 4α clustering for 16^O The existence of linear nα chain structure of both 12^C and 16^O is revealed at high quadrupole deformation.
文摘Nuclear magnetic moment is an important physical variable and serves as a useful tool for the stringent test of nuclear models. For the past decades, the covariant density functional theory and its extension have been proved to be successful in describing the nuclear ground-states and excited states properties. However, a long-standing problem is its failure to predict magnetic moments. This article reviews the recent progress in the description of the nuclear magnetic moments within the covariant density functional theory. In particular, the magnetic moments of spherical odd-A nuclei with doubly closed shell core plus or minus one nucleon and deformed odd-A nuclei.
基金Supported by the National Natural Science Foundation of China(11875225,11790325,11790320)the Special Fund from the China Nuclear Data Center+1 种基金the Fundamental Research Funds for the Central Universitiesthe Fok Ying-Tong Education Foundation。
文摘We calculate the three-dimensional potential energy surface(PES)for the fission of the compound nucleus^(236)U using covariant density functional theory with constraints on the axial quadrupole and octupole deformations(β_(2),β_(3))coexistence of the elongated and compact fission modes is predicted for comes shallow across a large range of quadrupole and octupole deformations for small scission line in the(β_(2),β_(3))plane extends to a shallow band,leading to fluctuations of several to ten MeV in the estimated total kinetic energies and of several to approximately ten nucleons in the fragment masses.