期刊文献+
共找到852篇文章
< 1 2 43 >
每页显示 20 50 100
Bond engineering:weakening Ru-O covalency for efficient and stable water oxidation in acidic solutions 被引量:2
1
作者 Yifan Yang Jingtong Guo +4 位作者 Lixiong Xu Chenyue Li Rongqian Ning Jun Ma Shuo Geng 《Journal of Energy Chemistry》 2025年第3期1-9,共9页
The persistent stability of ruthenium dioxide(RuO_(2))in acidic oxygen evolution reactions(OER)is compromised by the involvement of lattice oxygen(LO)and metal dissolution during the OER process.Heteroatom doping has ... The persistent stability of ruthenium dioxide(RuO_(2))in acidic oxygen evolution reactions(OER)is compromised by the involvement of lattice oxygen(LO)and metal dissolution during the OER process.Heteroatom doping has been recognized as a viable strategy to foster the stability of RuO_(2)for acidic OER applications.This study presented an ion that does not readily gain or lose electrons,Ba^(2+),into RuO_(2)(Ba-RuO_(2))nanosheet(NS)catalyst that increased the number of exposed active sites,achieving a current density of 10 mA/cm^(2)with an overpotential of only 229 mV and sustaining this output for over 250 h.According to density functional theory(DFT)and X-ray absorption spectroscopy,Ba doping resulted in a longer Ru-O bond length,which in turn diminished the covalency of the bond.This alteration curtailed the involvement of LO and the dissolution of ruthenium(Ru),thereby markedly improving the durability of the catalyst over extended periods.Additionally,attenuated total reflectance-surface enhanced infrared absorption spectroscopy analysis substantiated that the OER mechanism shifted from a LO-mediated pathway to an adsorbate evolution pathway due to Ba doping,thereby circumventing Ru over-oxidation and further enhancing the stability of RuO_(2).Furthermore,DFT findings uncovered that Ba doping optimizes the adsorption energy of intermediates,thus enhancing the OER activity in acidic environments.This study offers a potent strategy to guide future developments on Ru-based oxide catalysts'stability in an acidic environment. 展开更多
关键词 Oxygen evolution reaction in acid Bond covalency Rutheniumoxide Ba doping
在线阅读 下载PDF
Amorphous-rich RuMnO_(x)aerogel with weakened Ru–O covalency for efficient acidic water oxidation 被引量:1
2
作者 Tao Zhao Yunzhen Jia +7 位作者 Qiang Fang Runxin Du Genyan Hao Wenqing Sun Guang Liu Dazhong Zhong Jinping Li Qiang Zhao 《Journal of Energy Chemistry》 2025年第5期414-421,共8页
Ruthenium dioxide(RuO_(2))is one of the most promising acidic oxygen evolution reaction(OER)catalysts to replace the expensive and prevalent iridium(Ir)-based materials.However,the lattice oxygen oxidation induced Ru ... Ruthenium dioxide(RuO_(2))is one of the most promising acidic oxygen evolution reaction(OER)catalysts to replace the expensive and prevalent iridium(Ir)-based materials.However,the lattice oxygen oxidation induced Ru dissolution during OER compromises the activity and stability.Amorphous materials have been identified as a viable strategy to promote the stability of RuO_(2)in acidic OER applications.This study reported a nanoporous amorphous-rich RuMnO_(x)(A-RuMnO_(x))aerogel for efficient and stable acidic OER.Compared with highly crystalline RuMnO_(x),the weakened Ru–O covalency of A-RuMnO_(x)by forming amorphous structure is favorable to inhibiting the oxidation of lattice oxygen.Meanwhile,this also optimizes the electronic structure of Ru sites from overoxidation and reduces the reaction energy barrier of the rate-determining step.As a result,A-RuMnO_(x)aerogel exhibits an ultra-low overpotential of 145 mV at 10 mA cm^(-2)and durability exceeding 100 h,as well as high mass activity up to 153 mA mg^(-1)_(Ru)at 1.5 V vs.reversible hydrogen electrode(RHE).This work provides valuable guidance for preparing highly active and stable Ru-based catalysts for acidic OER. 展开更多
关键词 ELECTROCATALYST A-RuMnO_(x)aerogel Amorphous structure covalency Acidic oxygen evolution reaction
在线阅读 下载PDF
f-p-d coupling-induced bonding covalency boosts C-C coupling in electrocatalytic CO_(2)reduction over Er-O-Cu sites
3
作者 Maoyin Wang Yuhang Huang +8 位作者 Lu Song Ruilin Wei Shuya Hao Zhengzheng Liu Cejun Hu Bin Li Ximeng Lv Pei Yuan Gengfeng Zheng 《Journal of Energy Chemistry》 2025年第9期239-245,I0008,共8页
The copper-based electrocatalysts feature attractive potentials of converting CO_(2)into multi-carbon(C_(2+))products,while the instability of Cu-O often induces the reduction of Cu^(+)/Cu^(0) catalytic sites at the c... The copper-based electrocatalysts feature attractive potentials of converting CO_(2)into multi-carbon(C_(2+))products,while the instability of Cu-O often induces the reduction of Cu^(+)/Cu^(0) catalytic sites at the cathode and refrains the capability of stable electrolysis especially at high powers.In this work,we developed an Erbium(Er)oxide-modified Cu(Er-O-Cu)catalyst with enhanced covalency of Cu-O and more stable active sites.The f-p-d coupling strengthens the covalency of Cu-O,and the stability of Cu^(+)sites under electroreduction condition is critical for promoting the C-C coupling and improving the C_(2+)product selectivity.As a result,the Er-O-Cu sites exhibited a high Faradaic efficiency of C_(2+)products(FEC_(2+))of 86%at 2200 mA cm^(-2),and a peak partial current density of|j_(C2+)|of 1900 mA cm^(-2),comparable to the best reported values for the CO_(2)-to-C_(2+)electroreduction.The CO_(2)electrolysis by the Er-O-Cu sites was further scaled up to 100 cm^(2)to achieve high-power(~200 W)electrolysis with ethylene production rate of 16 mL min^(-1). 展开更多
关键词 CO_(2)electroreduction Multi-carbon products f-p-d coupling Electronic regulation Bonding covalency
在线阅读 下载PDF
Double Covalency Factors and DoubleξModel in Study on Optical and Magnetic Properties of Diluted Magnetic Semiconductors ZnX∶Co~ 2+
4
作者 施思齐 雷敏生 欧阳楚英 《Journal of Semiconductors》 EI CAS CSCD 北大核心 2002年第9期897-901,共5页
The optical absorption spectra of the covalent crystals ZnX(X=S,Se) doped with Co 2+ are studied using the double covalency factors,which considers the anisotropic distortion of e g and t 2g orbits for d el... The optical absorption spectra of the covalent crystals ZnX(X=S,Se) doped with Co 2+ are studied using the double covalency factors,which considers the anisotropic distortion of e g and t 2g orbits for d electron.When the paramagnetic g factor is calculated,the contributions of the spin orbit coupling from the ligand ions are taken into account besides that from the central ion,which is the double ξ model.The calculated results indicate that the theoretical values coincide with the experimental values very well.This suggests that the method presented in this paper could be more valid to some strongly covalent crystals. 展开更多
关键词 diluted magnetic semiconductors double covalency factors double spin orbit coupling
在线阅读 下载PDF
Defective high-entropy rocksalt oxide with enhanced metal‒oxygen covalency for electrocatalytic oxygen evolution 被引量:7
5
作者 Fangming Liu Meng Yu +3 位作者 Xiang Chen Jinhan Li Huanhuan Liu Fangyi Cheng 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 2022年第1期122-129,共8页
High‐entropy materials are emerging electrocatalysts by integrating five or more elements into one single crystallographic phase to optimize the electronic structures and geometric environments.Here,a rocksalt‐type ... High‐entropy materials are emerging electrocatalysts by integrating five or more elements into one single crystallographic phase to optimize the electronic structures and geometric environments.Here,a rocksalt‐type high‐entropy oxide Mg_(0.2)Co_(0.2)Ni_(0.2)Cu_(0.2)Zn_(0.2)O(HEO)is developed as an electrocatalyst towards the oxygen evolution reaction(OER).The obtained HEO features abundant cation and oxygen vacancies originating from the lattice mismatch of neighboring metal ions,together with enlarged Co/Ni‒O covalency due to the introduction of less electronegative Mg and Zn.As a result,the HEO exhibits superior intrinsic OER activities,delivering a turnover frequency(TOF)15 and 84 folds that of CoO and NiO at 1.65 V,respectively.This study provides a mechanistic understanding of the enhanced OER on HEO and demonstrates the potential of high‐entropy strategy in developing efficient oxygen electrocatalysts by elaborately incorporating low‐cost elements with lower electronegativity. 展开更多
关键词 High-entropy material Rocksalt oxide Oxygen evolution reaction Electrocatalyst Defect Metal-oxygen covalency
在线阅读 下载PDF
The Influence of Bond Valence on Bond Covalency in RMn_2O_5 (R=La, Pr, Nd, Sin, Eu) 被引量:1
6
作者 Zhi Jian WU Si Yuan ZHANG(Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022) 《Chinese Chemical Letters》 SCIE CAS CSCD 1999年第1期91-94,共4页
The relationship between bond valence and bond covalency in RMn2O5 (R = La, Pr, Nd.Sm, Eu) has been investigated by a semiempirical method. This method is the generalization of thedielectric description theory of Phil... The relationship between bond valence and bond covalency in RMn2O5 (R = La, Pr, Nd.Sm, Eu) has been investigated by a semiempirical method. This method is the generalization of thedielectric description theory of Phillips. Van Vechten, Levine and Tanaka scheme. The resultsindicate that larger valences usually result in higher bond covalencies, in good agreement with thepoint that the excess charge in the bonding region is the origin of formation of bond covalency.Other factors, such as oxidation state of elements, only make a small contribution to bondcovalency. 展开更多
关键词 Bond valence bond covalency semiempirical method RMn_2O_5
在线阅读 下载PDF
Ultrathin Metal Silicate Hydroxide Nanosheets with Moderate Metal-Oxygen Covalency Enables Efficient Oxygen Evolution 被引量:1
7
作者 Jiexin Zhu Shikun Li +7 位作者 Zechao Zhuang Shan Gao Xufeng Hong Xuelei Pan Ruohan Yu Liang Zhou Lyudmila V.Moskaleva Liqiang Mai 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2022年第1期231-237,共7页
Exploring efficient,cost-effective,and durable electrocatalysts for electrochemical oxygen evolution reaction(OER)is pivotal for the large-scale application of water electrolysis.Recent advance has demonstrated that t... Exploring efficient,cost-effective,and durable electrocatalysts for electrochemical oxygen evolution reaction(OER)is pivotal for the large-scale application of water electrolysis.Recent advance has demonstrated that the activity of electrocatalysts exhibits a strong dependence on the surface electronic structure.Herein,a series of ultrathin metal silicate hydroxide nanosheets(UMSHNs)M_(3)Si_(2)O_(5)(OH)_(4)(M=Fe,Co,and Ni)synthesized without surfactant are introduced as highly active OER electrocatalysts.Cobalt silicate hydroxide nanosheets show an optimal OER activity with overpotentials of 287 and 358 m V at 1 and 10 m A cm^(-2),respectively.Combining experimental and theoretical studies,it is found that the OER activity of UMSHNs is dominated by the metal-oxygen covalency(MOC).High OER activity can be achieved by having a moderate MOC as reflected by aσ^(*)-orbital(e_(g))filling near unity and moderate[3d]/[2p]ratio.Moreover,the UMSHNs exhibit favorable chemical stability under oxidation potential.This contribution provides a scientific guidance for further development of active metal silicate hydroxide catalysts. 展开更多
关键词 electrocatalysis metal silicate hydroxide metal-oxygen covalency oxygen evolution reaction ultrathin nanosheet
在线阅读 下载PDF
Influence of Polarizability and Covalency on ^(151)Eu Mossbauer Isomer Shifts
8
《Journal of Rare Earths》 SCIE EI CAS CSCD 2000年第4期288-288,共1页
关键词 EU Influence of Polarizability and covalency on Mossbauer Isomer Shifts
在线阅读 下载PDF
Modulating Ru-O bond covalency via Ga-doping for enhanced oxygen evolution reaction in acid
9
作者 Zhongliang Liu Heng Liu +6 位作者 Kai Zhou Miaomiao Liu Tianrui Xue Yongjun Shen Hao Li Huihui Li Chunzhong Li 《Science China Chemistry》 2025年第11期5606-5614,共9页
The increasing demand for green hydrogen production requires the development of advanced ruthenium(Ru)-based oxide catalysts for the anodic oxygen evolution reaction(OER).Here,we report the development of a Ga-doped R... The increasing demand for green hydrogen production requires the development of advanced ruthenium(Ru)-based oxide catalysts for the anodic oxygen evolution reaction(OER).Here,we report the development of a Ga-doped RuO_(2)catalyst(GaRuO_(2))that demonstrates enhanced OER performance attributed to modulated Ru-O bond covalency.The fully occupied 3d orbital of Ga stabilizes its oxidation state during OER,while its atomic radius,similar to Ru,helps maintain the initial crystal lattice structure upon doping.In-situ characterization,kinetic analysis and theoretical calculations reveal that the weakened Ru-O bond covalency lowers the energy barriers for *OH and *OOH formation,thus contributing to an enhanced OER performance.The resultant Ga-RuO_(2)achieves a current density of 10 mA cm^(-2) at a low overpotential of 203 mV and demonstrates durable operation for 500 h in acid.This work provides valuable insights into the electronic structure engineering of Ru-based catalysts for practical water electrolysis applications. 展开更多
关键词 oxygen evolution reaction metal-oxygen covalency proton exchange membrane water electrolysis water oxidation
原文传递
Manipulating the metal–oxygen covalency through diminishing d-p band center difference for rechargeable zinc-air batteries
10
作者 De-Xuan Huang Jian-Wei Zhao +1 位作者 Xue-Lei Hu Tong Liu 《Rare Metals》 2025年第9期6140-6151,共12页
Transition metal oxides have garnered significant attention as electrocatalysts for the oxygen reduction reaction(ORR)and the oxygen evolution reaction(OER).However,their sluggish reaction kinetics and poor stability ... Transition metal oxides have garnered significant attention as electrocatalysts for the oxygen reduction reaction(ORR)and the oxygen evolution reaction(OER).However,their sluggish reaction kinetics and poor stability hinder commercial applications.Herein,we report the synthesis of a bimetallic cobalt manganese oxide,Co_(0.99)Mn_(2.01)O_(4)(CMO),synthesized via a hydrothermal technique,which serves as a highly efficient bifunctional ORR/OER electrocatalyst owing to its impressive halfwave potential of 0.767 V and low overpotential of 1.677 V at 10 mA cm^(-2).Theoretical calculations revealed that the d-band centers of Co 3d and Mn 3d in CMO,located at tetrahedral and octahedral sites,are positioned near the Fermi level,facilitating the adsorption of electrocatalytic intermediates.Furthermore,the distance between the Co 3d and O 2p band centers in CMO is smaller than that in Co_(3)O_(4),and the distance between the Mn 3d and O 2p band centers in CMO is shorter than that in Mn_(2)O_(3),indicating that the Co–O and Mn–O bonds in CMO exhibit greater covalency,significantly enhancing ORR/OER activity.Notably,CMO serves as an advanced air electrode material for rechargeable zinc-air batteries(ZABs),demonstrating improved charge–discharge performance with a low voltage gap of 0.87 V at 5 mA cm^(-2),high peak power density of 124 mW cm^(-2),and excellent cycle stability of over 540 h at 5 mA cm^(-2).This superior ORR/OER activity,combined with the simple material combination,makes CMO a promising catalyst for rechargeable ZABs. 展开更多
关键词 Bimetallic cobalt manganese oxide d-band center Metal-oxygen covalent bond Rechargeable zinc-air batteries
原文传递
Boosting cationic and anionic redox activity of Li-rich layered oxide cathodes via Li/Ni disordered regulation
11
作者 Zewen Liu Zhen Wu +7 位作者 Hao Wang Xudong Zhang Yuanzhen Chen Yongning Liu Shengwu Guo Shenghua Chen Yanli Nan Yan Liu 《Journal of Energy Chemistry》 2025年第1期533-543,共11页
Lithium-rich layered oxides (LLOs) are increasingly recognized as promising cathode materials for nextgeneration high-energy-density lithium-ion batteries (LIBs).However,they suffer from voltage decay and low initial ... Lithium-rich layered oxides (LLOs) are increasingly recognized as promising cathode materials for nextgeneration high-energy-density lithium-ion batteries (LIBs).However,they suffer from voltage decay and low initial Coulombic efficiency (ICE) due to severe structural degradation caused by irreversible O release.Herein,we introduce a three-in-one strategy of increasing Ni and Mn content,along with Li/Ni disordering and TM–O covalency regulation to boost cationic and anionic redox activity simultaneously and thus enhance the electrochemical activity of LLOs.The target material,Li_(1.2)Ni_(0.168)Mn_(0.558)Co_(0.074)O_(2)(L1),exhibits an improved ICE of 87.2%and specific capacity of 293.2 mA h g^(-1)and minimal voltage decay of less than 0.53 m V cycle-1over 300 cycles at 1C,compared to Li_(1.2)Ni_(0.13)Mn_(0.54)Co_(0.13)O_(2)(Ls)(274.4 mA h g^(-1)for initial capacity,73.8%for ICE and voltage decay of 0.84 mV/cycle over 300 cycles at 1C).Theoretical calculations reveal that the density of states (DOS) area near the Fermi energy level for L1 is larger than that of Ls,indicating higher anionic and cationic redox reactivity than Ls.Moreover,L1 exhibits increased O-vacancy formation energy due to higher Li/Ni disordering of 4.76%(quantified by X-ray diffraction Rietveld refinement) and enhanced TM–O covalency,making lattice O release more difficult and thus improving electrochemical stability.The increased Li/Ni disordering also leads to more Ni^(2+)presence in the Li layer,which acts as a pillar during Li+de-embedding,improving structural stability.This research not only presents a viable approach to designing low-Co LLOs with enhanced capacity and ICE but also contributes significantly to the fundamental understanding of structural regulation in high-performance LIB cathodes. 展开更多
关键词 Low-Co Li-rich layered oxides Li/Ni disordering TM-O covalency Cationic and anionic redox activity
在线阅读 下载PDF
Strengthen metal-oxygen covalency of CoFe-layered double hydroxide for efficient mild oxygen evolution 被引量:3
12
作者 Dazhong Zhong Tan Li +6 位作者 Dong Wang Lina Li Jiancheng Wang Genyan Hao Guang Liu Qiang Zhao Jinping Li 《Nano Research》 SCIE EI CSCD 2022年第1期162-169,共8页
Oxygen evolution reaction(OER)is crucial for hydrogen production as well as other energy storage technologies.CoFe-layered double hydroxide(CoFe-OH)has been widely considered as one of the most efficient electrocataly... Oxygen evolution reaction(OER)is crucial for hydrogen production as well as other energy storage technologies.CoFe-layered double hydroxide(CoFe-OH)has been widely considered as one of the most efficient electrocatalysts for OER in basic aqueous solution.However,it still suffers from low activity in neutral electrolyte.This paper describes partially oxidized CoFe-OH(PO-CoFe-OH)with enhanced covalency of M-O bonds and displays enhanced OER performance under mild condition.Mechanism studies reveal the suitably enhanced M-O covalency in PO-CoFe-OH shifts the OER mechanism to lattice oxygen oxidation mechanism and also promotes the rate-limiting deprotonation,providing superior OER performance.It just requires the overpotentials of 186 and 365 mV to drive the current density densities of 1 and 10 mA·cm^(-2) in 0.1 M KHCO_(3) aqueous solution(pH=8.3),respectively.It provides a new process for rational design of efficient catalysts for water oxidation in mild conditions. 展开更多
关键词 lattice oxygen oxidation metal-oxygen covalency neutral oxygen evolution reaction
原文传递
Covalency triggers high catalytic activity of amorphous molybdenum oxides for oxidative desulfurization 被引量:1
13
作者 Juncong Zou Yan Lin Chunping Yang 《Science China Chemistry》 SCIE EI CAS CSCD 2023年第4期1211-1220,共10页
Oxidative desulfurization(ODS)is a promising technology to produce clean fuel with requiring superior catalysts to lower kinetic barriers.Although most ODS catalysts are based on crystalline transition-metal oxides(TM... Oxidative desulfurization(ODS)is a promising technology to produce clean fuel with requiring superior catalysts to lower kinetic barriers.Although most ODS catalysts are based on crystalline transition-metal oxides(TMOs),extraordinary activity also can be achieved with amorphous TMOs.However,the origin of the remarkable catalytic activity of the amorphous TMOs remains greatly ambiguous.Here,we found the crucial role of Mo–O covalency in ruling the intrinsic catalytic activity of amorphous molybdenum oxides(MoO_(x)).Experimental and theoretical analysis indicated that the nonequivalent connectivity in the amorphous structure strongly enhanced Mo–O covalency,thereby increasing the content of electrophilic oxygen and nucleophilic molybdenum to favor the MoO_(x)–H_(2)O_(2) interaction.With the boosted Mo–O covalency to improve the flexibility of the charge state,the amorphous MoO_(x)-based composite catalyst(PE-MoO_(x)/S-0.05)exhibited outstanding catalytic activity for ODS of fuel oil.The turnover frequency(TOF)value of the catalyst(18.63 h^(-1))was almost an order of magnitude higher than that of most reported crystalline MoO_(x)/molecular sieve composite catalysts.The in-depth understanding of the origin of the amorphous TMOs activity for ODS provides a valuable reference for developing ODS catalysts. 展开更多
关键词 AMORPHOUS molybdenum oxide oxidative desulfurization covalency
原文传递
Superelastic and ultralight covalent organic framework composite aerogels modified with different functional groups for ultrafast adsorbing organic pollutants in water 被引量:1
14
作者 Shiyan Ai Yaning Xu +3 位作者 Hui Zhou Ziwei Cui Tiantian Wu Dan Tian 《Chinese Chemical Letters》 2025年第10期478-487,共10页
Covalent organic frameworks(COFs)have great potential as adsorbents due to their customizable functionality,low density and high porosity.However,COFs powder exists with poor processing and recycling performance.Moreo... Covalent organic frameworks(COFs)have great potential as adsorbents due to their customizable functionality,low density and high porosity.However,COFs powder exists with poor processing and recycling performance.Moreover,due to the accumulation of COFs nanoparticles,it is not conducive to the full utilization of their surface functional groups.Currently,the strategy of COFs assembling into aerogel can be a good solution to this problem.Herein,we successfully synthesize composite aerogels(CSR)by in-situ self-assembly of two-dimensional COFs and graphene based on crosslinking of sodium alginate.Sodium alginate in the composite improves the mechanical properties of the aerogel,and graphene provides a template for the in-situ growth of COFs.Impressively,CSR aerogels with different COFs and sizes can be prepared by changing the moiety of the ligand and modulating the addition amount of COFs.The prepared CSR aerogels exhibit porous,low density,good processability and good mechanical properties.Among them,the density of CSR-N-1.6 is only 5 mg/cm3,which is the lowest density among the reported COF aerogels so far.Due to these remarkable properties,CSR aerogels perform excellent adsorption and recycling properties for the efficient and rapid removal of organic pollutants(organic dyes and antibiotics)from polluted water.In addition,it is also possible to visually recognize the presence of antibiotics by fluorescence detection.This work not only provides a new strategy for synthesizing COF aerogels,but also accelerates the practical application of COF aerogels and contributes to environmental remediation. 展开更多
关键词 Covalent organic frameworks GRAPHENE AEROGELS ADSORPTION Sewage treatment
原文传递
Radiation reduction modification of sp^(2) carbon-conjugated covalent organic frameworks for enhanced photocatalytic chromium(Ⅵ) removal 被引量:1
15
作者 Shouchao Zhong Yue Wang +6 位作者 Mingshu Xie Yiqian Wu Jiuqiang Li Jing Peng Liyong Yuan Maolin Zhai Weiqun Shi 《Chinese Chemical Letters》 2025年第5期277-282,共6页
A sp^(2) carbon-conjugated covalent organic framework (BDATN) was modified through γ-ray radiation reduction and subsequent acidification with hydrochloric acid to yield a novel functional COF (named rBDATN-HCl) for ... A sp^(2) carbon-conjugated covalent organic framework (BDATN) was modified through γ-ray radiation reduction and subsequent acidification with hydrochloric acid to yield a novel functional COF (named rBDATN-HCl) for Cr(Ⅵ) removal.The morphology and structure of rBDATN-HCl were analyzed and identified by SEM,FTIR,XRD and solid-state13C NMR.It is found that the active functional groups,such as hydroxyl and amide,were introduced into BDATN after radiation reduction and acidification.The prepared rBDATN-HCl demonstrates a photocatalytic reduction removal rate of Cr(Ⅵ) above 99%after 60min of illumination with a solid-liquid ratio of 0.5 mg/mL,showing outstanding performance,which is attributed to the increase of dispersibility and adsorption sites of r BDATN-HCl.In comparison to the cBDATN-HCl synthesized with chemical reduction,rBDATN-HCl exhibits a better photoreduction performance for Cr(Ⅵ),demonstrating the advantages of radiation preparation of rBDATN-HCl.It is expected that more functionalized sp^(2) carbon-conjugated COFs could be obtained by this radiation-induced reduction strategy. 展开更多
关键词 Covalent organic framework Gamma radiation Photocatalytic reduction CHROMIUM Water purification
原文传递
In situ preparation of zincophilic covalent-organic frameworks with low surface work function and high rigidity to stabilize zinc metal anodes 被引量:1
16
作者 Yunyu Zhao Kaiyong Feng Yingjian Yu 《Journal of Energy Chemistry》 2025年第3期524-533,共10页
Zinc-ion batteries(ZIBs)are inexpensive and safe,but side reactions on the Zn anode and Zn dendrite growth hinder their practical applications.In this study,1,3,5-triformylphloroglycerol(Tp)and various diamine monomer... Zinc-ion batteries(ZIBs)are inexpensive and safe,but side reactions on the Zn anode and Zn dendrite growth hinder their practical applications.In this study,1,3,5-triformylphloroglycerol(Tp)and various diamine monomers(p-phenylenediamine(Pa),benzidine(BD),and 4,4"-diamino-p-terphenyl(DATP))were used to synthesize a series of two-dimensional covalent-organic frameworks(COFs).The resulting COFs were named TpPa,TpBD,and TpDATP,respectively,and they showed uniform zincophilic sites,different pore sizes,and high Young's moduli on the Zn anode.Among them,TpPa and TpBD showed lower surface work functions and higher ion transfer numbers,which were conducive to uniform galvanizing/stripping zinc and inhibited dendrite growth.Theoretical calculations showed that TpPa and TpBD had wider negative potential region and greater adsorption capacity for Zn2+than TpDATP,providing more electron donor sites to coordinate with Zn^(2+).Symmetric cells protected by TpPa and TpBD stably cycled for more than 2300 h,whereas TpDATP@Zn and the bare zinc symmetric cells failed after around 150 and200 h.The full cells containing TpPa and TpBD modification layers also showed excellent cycling capacity at 1 A/g.This study provides comprehensive insights into the construction of highly reversible Zn anodes via COF modification layers for advanced rechargeable ZIBs. 展开更多
关键词 Zn ion batteries Covalent organic framework DENDRITE Low surface work function High rigidity
在线阅读 下载PDF
Pyridine-nitrogen conjugated covalent organic frameworks for high-efficiency gas-solid photocatalytic reduction of CO_(2)to CO 被引量:1
17
作者 Haicheng Jiang Chi Cao +10 位作者 Wei Liu Hao Zhang Qianyu Li Siyuan Zhu Xiaoning Li Jinshuo Li Jinfa Chang Wei Hu Zihao Xing Xiaoqin Zou Guangshan Zhu 《Journal of Energy Chemistry》 2025年第5期127-135,共9页
The light-driven CO_(2)reduction reaction(CO_(2)RR)to CO is a very effective way to address global warming.To avoid competition with water photolysis,metal-free gas-solid CO_(2)RR catalysts should be investigated.Cova... The light-driven CO_(2)reduction reaction(CO_(2)RR)to CO is a very effective way to address global warming.To avoid competition with water photolysis,metal-free gas-solid CO_(2)RR catalysts should be investigated.Covalent organic frameworks(COFs)offer a promising approach for CO_(2)transformation but lack high efficiency and selectivity in the absence of metals.Here,we have incorporated a pyridine nitrogen component into the imine-COF conjugated structure(Tp Pym).This innovative system has set a record of producing a CO yield of 1565μmol g^(-1)within 6 h.The soft X-ray absorption fine structure measurement proves that Tp Pym has both better conjugation and electron cloud enrichment.The electronic structure distribution delays the charge-carrier recombination,as evidenced by femtosecond transient absorption spectroscopy.The energy band diagram and theoretical calculation show that the conduction-band potential of Tp Pym is lower and the reduction reaction of CO_(2)to CO is more likely to occur. 展开更多
关键词 Light-driven CO_(2)reduction Gas-solid reaction Conjugated pyridine nitrogen Covalent organic framework CO_(2)catalysis to CO
在线阅读 下载PDF
Constructing Donor–Acceptor‑Linked COFs Electrolytes to Regulate Electron Density and Accelerate the Li^(+)Migration in Quasi‑Solid‑State Battery
18
作者 Genfu Zhao Hang Ma +5 位作者 Conghui Zhang Yongxin Yang Shuyuan Yu Haiye Zhu Yongjiang Sun Hong Guo 《Nano-Micro Letters》 SCIE EI CAS 2025年第1期456-471,共16页
Regulation the electronic density of solid-state electrolyte by donor–acceptor(D–A)system can achieve highly-selective Li^(+)transportation and conduction in solid-state Li metal batteries.This study reports a high-... Regulation the electronic density of solid-state electrolyte by donor–acceptor(D–A)system can achieve highly-selective Li^(+)transportation and conduction in solid-state Li metal batteries.This study reports a high-performance solid-state electrolyte thorough D–A-linked covalent organic frameworks(COFs)based on intramolecular charge transfer interactions.Unlike other reported COFbased solid-state electrolyte,the developed concept with D–A-linked COFs not only achieves electronic modulation to promote highly-selective Li^(+)migration and inhibit Li dendrite,but also offers a crucial opportunity to understand the role of electronic density in solid-state Li metal batteries.The introduced strong electronegativity F-based ligand in COF electrolyte results in highlyselective Li^(+)(transference number 0.83),high ionic conductivity(6.7×10^(-4)S cm^(−1)),excellent cyclic ability(1000 h)in Li metal symmetric cell and high-capacity retention in Li/LiFePO_(4)cell(90.8%for 300 cycles at 5C)than substituted C-and N-based ligands.This is ascribed to outstanding D–A interaction between donor porphyrin and acceptor F atoms,which effectively expedites electron transferring from porphyrin to F-based ligand and enhances Li^(+)kinetics.Consequently,we anticipate that this work creates insight into the strategy for accelerating Li^(+)conduction in high-performance solid-state Li metal batteries through D–A system. 展开更多
关键词 Electronic modulation engineering Donor-acceptor-linked covalent organic frameworks Quasi-solid-state Li metal battery
在线阅读 下载PDF
Studies of Iron-Sulfur Covalency in the Model System and Proteins
19
作者 秦秀娟 谌岩 高发明 《Chinese Journal of Chemistry》 SCIE CAS CSCD 2005年第9期1203-1206,共4页
It was found that the highly covalent nature of the metal-ligand interactions in the Fe-S cluster clearly played an important role in determining the reactivity of the sites. A semi-empirical model, based on the Phill... It was found that the highly covalent nature of the metal-ligand interactions in the Fe-S cluster clearly played an important role in determining the reactivity of the sites. A semi-empirical model, based on the Phillips theory of bonding was developed for quantitative explanation of covalency in Fe-S cluster, showing that Mossbauer spectroscopy and electronic absorption spectroscopy provided the direct experimental probe of covalency of Fe-S4 clusters. 展开更多
关键词 Mossbauer spectroscopy iron-sulfur cluster covalency
原文传递
Recyclable and Self-healable Polydimethylsiloxane Elastomers Based on Knoevenagel Condensation
20
作者 Yao-Wei Zhu Tong-Tong Man +5 位作者 Ming-Ming Zhao Jia-Yi Chen Yu Yan Xiao-Nong Zhang Li Chen Chun-Sheng Xiao 《Chinese Journal of Polymer Science》 2025年第1期53-60,I0007,共9页
Elastomers are widely used in various fields owing to their excellent tensile properties.Recyclable and self-healing properties are key to extending the service life of elastomers.Accumulating evidence indicates that ... Elastomers are widely used in various fields owing to their excellent tensile properties.Recyclable and self-healing properties are key to extending the service life of elastomers.Accumulating evidence indicates that dynamic covalent chemistry has emerged as a powerful tool for constructing recyclable and self-healing materials.In this work,we demonstrate the preparation of a recyclable and self-healable polydimethylsiloxane(PDMS)elastomer based on the Knoevenagel condensation(KC)reaction.This PDMS elastomer was prepared by the KC reaction catalyzed by 4-dimethylaminopyridine(DMAP).The obtained PDMS elastomer exhibited an elongation at break of 266%,a tensile strength of 0.57 MPa,and a good thermal stability(Td=357℃).In addition,because of the presence of dynamic C=C bonds formed by the KC reaction and low glass transition temperature(Tg=-117℃).This PDMS exhibited good self-healing and recycling properties at room temperature and could be reprocessed by hot pressing.In addition,the PDMS elastomer exhibits good application prospects in the fields of adhesives and flexible electronic devices. 展开更多
关键词 Dynamic covalent chemistry ELASTOMER Knoevenagel condensation reaction POLYDIMETHYLSILOXANE RECYCLABLE SELF-HEALING
原文传递
上一页 1 2 43 下一页 到第
使用帮助 返回顶部