On the basis of the traditional mechanical model of a grinding wheel rotor and the mechanical-electric coupling model with ideal sinusoidal supply, taking high-frequency converting current of inverter power switches i...On the basis of the traditional mechanical model of a grinding wheel rotor and the mechanical-electric coupling model with ideal sinusoidal supply, taking high-frequency converting current of inverter power switches into further consideration, a modified mechanical-electric coupling model is created. The created model consists of an inverter, a motorized spindle, a grinding wheel and grinding loads. Some typical non-stationary processes of the grinding system with two different supplies, including the starting, the speed rising and the break in grinding loads, are compared by making use of the created model. One supply is an ideal sinusoidal voltage source, the other is an inverter. The theoretical analysis of the high-order harmonic is also compared with the experimental result. The material strategy of suppressing high-order harmonic mechanical-electric coupling vibration by optimizing inverter operating parameters is proposed.展开更多
Glide symmetry,which is one kind of higher symmetry,is introduced in a special type of plasmonic metamaterial,the transmission lines(TLs)of spoof surface plasmon polaritons(SSPPs),in order to control the dispersion ch...Glide symmetry,which is one kind of higher symmetry,is introduced in a special type of plasmonic metamaterial,the transmission lines(TLs)of spoof surface plasmon polaritons(SSPPs),in order to control the dispersion characteristics and modal fields of the SSPPs.We show that the glide-symmetric TL presents merged pass bands and mode degeneracy,which lead to broad working bandwidth and extremely low coupling between neighboring TLs.Dual-conductor SSPP TLs with and without glide symmetry are arranged in parallel as two channels with very deep subwavelength separation(e.g.,λ0∕100 at 5 GHz)for the application of integrated circuits and systems.Mutual coupling between the hybrid channels is analyzed using coupled mode theory and characterized in terms of scattering parameters and near-field distributions.We demonstrate theoretically and experimentally that the hybrid TL array obtains significantly more suppressed crosstalk than the uniform array of two nonglide symmetric TLs.Hence,it is concluded that the glide symmetry can be adopted to flexibly design the propagation of SSPPs and benefit the development of highly compact plasmonic circuits.展开更多
基金National Hi-tech Research and Development Program of China(863 Program,No.2008AA04Z116)and Natural Science Foundation of Hunan Province,China.
文摘On the basis of the traditional mechanical model of a grinding wheel rotor and the mechanical-electric coupling model with ideal sinusoidal supply, taking high-frequency converting current of inverter power switches into further consideration, a modified mechanical-electric coupling model is created. The created model consists of an inverter, a motorized spindle, a grinding wheel and grinding loads. Some typical non-stationary processes of the grinding system with two different supplies, including the starting, the speed rising and the break in grinding loads, are compared by making use of the created model. One supply is an ideal sinusoidal voltage source, the other is an inverter. The theoretical analysis of the high-order harmonic is also compared with the experimental result. The material strategy of suppressing high-order harmonic mechanical-electric coupling vibration by optimizing inverter operating parameters is proposed.
基金This work was supported in part from the National Natural Science Foundation of China under Grant Nos.61631007 and 61971134,in part from the 111 Project under Grant No.111-2-05in part from the Fundamental Research Funds for the Central Universities under Grant No.2242020R40079.Xiao Tian Yan and Wenxuan Tang contributed equally to this work.
文摘Glide symmetry,which is one kind of higher symmetry,is introduced in a special type of plasmonic metamaterial,the transmission lines(TLs)of spoof surface plasmon polaritons(SSPPs),in order to control the dispersion characteristics and modal fields of the SSPPs.We show that the glide-symmetric TL presents merged pass bands and mode degeneracy,which lead to broad working bandwidth and extremely low coupling between neighboring TLs.Dual-conductor SSPP TLs with and without glide symmetry are arranged in parallel as two channels with very deep subwavelength separation(e.g.,λ0∕100 at 5 GHz)for the application of integrated circuits and systems.Mutual coupling between the hybrid channels is analyzed using coupled mode theory and characterized in terms of scattering parameters and near-field distributions.We demonstrate theoretically and experimentally that the hybrid TL array obtains significantly more suppressed crosstalk than the uniform array of two nonglide symmetric TLs.Hence,it is concluded that the glide symmetry can be adopted to flexibly design the propagation of SSPPs and benefit the development of highly compact plasmonic circuits.