In this study, we propose an algorithm selection method based on coupling strength for the partitioned analysis ofstructure-piezoelectric-circuit coupling, which includes two types of coupling or inverse and direct pi...In this study, we propose an algorithm selection method based on coupling strength for the partitioned analysis ofstructure-piezoelectric-circuit coupling, which includes two types of coupling or inverse and direct piezoelectriccoupling and direct piezoelectric and circuit coupling. In the proposed method, implicit and explicit formulationsare used for strong and weak coupling, respectively. Three feasible partitioned algorithms are generated, namely(1) a strongly coupled algorithm that uses a fully implicit formulation for both types of coupling, (2) a weaklycoupled algorithm that uses a fully explicit formulation for both types of coupling, and (3) a partially stronglycoupled and partially weakly coupled algorithm that uses an implicit formulation and an explicit formulation forthe two types of coupling, respectively.Numerical examples using a piezoelectric energy harvester,which is a typicalstructure-piezoelectric-circuit coupling problem, demonstrate that the proposed method selects the most costeffectivealgorithm.展开更多
We investigate how firing activity of globally coupled neural network depends on the coupling strength C and system size N. Network elements are described by space-clamped FitzHugh- Nagumo (SCFHN) neurons with the v...We investigate how firing activity of globally coupled neural network depends on the coupling strength C and system size N. Network elements are described by space-clamped FitzHugh- Nagumo (SCFHN) neurons with the values of parameters at which no firing activity occurs. It is found that for a given appropriate coupling strength, there is an intermediate range of system size where the firing activity of globally coupled SCFHN neural network is induced and enhanced. On the other hand, for a given intermediate system size level, there exists an optimal value of coupling strength such that the intensity of firing activity reaches its maximum. These phenomena imply that the coupling strength and system size play a vital role in firing activity of neural network.展开更多
We experimentally demonstrate the relation of Raman coupling strength with the external bias magnetic field in degenerate Fermi gas of 40K atoms. Two Raman lasers couple two Zeeman energy levels, whose energy splittin...We experimentally demonstrate the relation of Raman coupling strength with the external bias magnetic field in degenerate Fermi gas of 40K atoms. Two Raman lasers couple two Zeeman energy levels, whose energy splitting depends on the external bias magnetic field. The Raman coupling strength is determined by measuring the Rabi oscillation frequency. The characteristics of the Rabi oscillation is to be damped after several periods due to Fermi atoms in different momentum states oscillating with different Rabi frequencies. The experimental results show that the Raman coupling strength will decrease as the external bias magnetic field increases, which is in good agreement with the theoretical prediction.展开更多
In this paper, we propose a novel approach for simultaneously identifying unknown parameters and synchronizing time-delayed complex community networks with nonidentical nodes. Based on the LaSalle's invariance princi...In this paper, we propose a novel approach for simultaneously identifying unknown parameters and synchronizing time-delayed complex community networks with nonidentical nodes. Based on the LaSalle's invariance principle, a cri- teflon is established by constructing an effective control identification scheme and adjusting automatically the adaptive coupling strength. The proposed control law is applied to a complex community network which is periodically synchro- nized with different chaotic states. Numerical simulations are conducted to demonstrate the feasibility of the proposed method.展开更多
The shot noise properties in boron devices are investigated with a tight-binding model and the non-equilibrium Green's function. It is found that the shot noise and Fano factors can be tuned by changing the structure...The shot noise properties in boron devices are investigated with a tight-binding model and the non-equilibrium Green's function. It is found that the shot noise and Fano factors can be tuned by changing the structures, the size, and the coupling strength. The shot noise is suppressed momentarily as we switch on the bias voltage, and the electron correlation is significant. The Fano factors are more sensitive to the ribbon width than to the ribbon length in the full coupling context. In the weak-coupling context, the Fano factors are almost invariant with the increase of length and width over a wide bias range.展开更多
Effects of time-periodic coupling strength (TPCS) on spiral waves dynamics are studied by numerical computations and mathematical analyses. We find that meandering or drifting spirals waves, which are not observed f...Effects of time-periodic coupling strength (TPCS) on spiral waves dynamics are studied by numerical computations and mathematical analyses. We find that meandering or drifting spirals waves, which are not observed for the case of constant coupling strength, can be induced by TPCS. In particular, a transition between outward petal and inward petal meandering spirals is observed when the period of TPCS is varied. These two types of meandering spirals are separated by a drifting spiral, which can be induced by TPCS when the period of TPCS is very close to that of rigidly rotating spiral. Similar results can be obtained if the coupling strength is modulated by a rectangle wave. Furthermore, a kinetic model for spiral movement suggested by Diet al., [Phys. Rev. E 85 (2012) 046216] is applied for explaining the above findings. The theoretical results are in good qualitative agreement with numerical simulations.展开更多
In this work,we experimentally investigated the thermal stability of the interlayer exchange coupling field(Hex)and strength(-Jiec)in synthetic antiferromagnetic(SAF)structure of[Pt(0.6)/Co(0.6)]_(2)/Ru(tRu)/[Co(0.6)/...In this work,we experimentally investigated the thermal stability of the interlayer exchange coupling field(Hex)and strength(-Jiec)in synthetic antiferromagnetic(SAF)structure of[Pt(0.6)/Co(0.6)]_(2)/Ru(tRu)/[Co(0.6)/Pt(0.6)]_(4)multilayers with perpendicular anisotropy.Depending on the thickness of the spacing ruthenium(Ru)layer,the observed interlayer exchange coupling can be either ferromagnetic or antiferromagnetic.The Hexwere studied by measuring the magnetization hysteresis loops in the temperature range from 100 K to 700 K as well as the theoretical calculation of the-Jiec.It is found that the interlayer coupling in the multilayers is very sensitive to the thickness of Ru and temperature.The Hexexhibits either a linear or a non-linear dependence on the temperature for different thickness of Ru.Furthermore,our SAF multilayers show a high thermal stability even up to 600 K(H_(ex)=3.19 kOe,-J_(iec)=1.97 erg/cm^(2) for t_(Ru)=0.6 nm,the unit 1 Oe=79.5775 A·m^(-1)),which was higher than the previous studies.展开更多
We perform a scanning tunneling microscopy and spectroscopy study on the electronic structures of √3×√3- silicene on Ag(111). It is found that the coupling strength of √3×√3-silicene with the Ag-(111...We perform a scanning tunneling microscopy and spectroscopy study on the electronic structures of √3×√3- silicene on Ag(111). It is found that the coupling strength of √3×√3-silicene with the Ag-(111) substrate is variable in different regions, giving rise to notable effects in experiments. This evidence of decoupling or variable interaction of silicene with the substrate is helpful to in-depth understanding of the structure and clectronic properties of silieene.展开更多
We report a theoretical analysis of magnon–magnon coupling in a noncollinear magnetic sandwiched structure with interlayer exchange interaction,which consists of two ferromagnetic layers with perpendicular and in-pla...We report a theoretical analysis of magnon–magnon coupling in a noncollinear magnetic sandwiched structure with interlayer exchange interaction,which consists of two ferromagnetic layers with perpendicular and in-plane magnetic anisotropy,respectively.Based on the Landau–Lifshitz equation,the spin wave dispersion is derived,and then the frequency gap is observed due to the magnon–magnon coupling effect induced by symmetry breaking.The influence of saturation magnetization,exchange coupling interaction,perpendicular magnetic anisotropy,and wave vector on the coupling strength is studied in detail.We find that the coupling strength is strongly dependent on the saturation magnetization and a small saturation magnetization can lead to strong coupling strength.By selecting the appropriate magnetic materials,the ultra-strong coupling regime can be achieved.The precession information in time domain is solved and the alternating change of the precession components in two ferromagnetic layers implies the exchange of energy and information.展开更多
We study the effect of time-periodic coupling strength on the spiking coherence of Newman-Watts networks of Hodgkin-Huxley(HH) neurons with non-Gaussian noise.It is found that the spiking can exhibit coherence resonan...We study the effect of time-periodic coupling strength on the spiking coherence of Newman-Watts networks of Hodgkin-Huxley(HH) neurons with non-Gaussian noise.It is found that the spiking can exhibit coherence resonance(CR) when the extent of deviation of non-Gaussian noise from Gaussian noise and the amplitude of the coupling strength are varied.In particular,coherence bi-resonance(CBR) is observed when the frequency of the coupling strength is varied,and the CBR is always observed when the frequency is equal to,or a multiple of,the spiking period,manifesting as the locking between the frequencies of the spiking and the coupling strength.The results show that a time-periodic coupling strength may play a more constructive and efficient role in enhancing the spiking coherence of the neuronal networks than a constant coupling strength.These findings provide insight into the role of time-periodic coupling strength for enhancing the time precision of information processing in neuronal networks.展开更多
A climate network of six climate indices of the North Pacific air-sea system is constructed during the period of 1948-2009. In order to find out the inherent relationship between the intrinsic mechanism of climate ind...A climate network of six climate indices of the North Pacific air-sea system is constructed during the period of 1948-2009. In order to find out the inherent relationship between the intrinsic mechanism of climate index network and the important climate shift, the synchronization behaviour and the coupling behaviour of these indices are investigated. Results indicate that climate network synchronization happened around the beginning of the 1960s, in the middle of the 1970s and at the beginnings of the 1990s and the 2000s separately. These synchronization states were always followed by the decrease of the coupling coefficient. Each synchronization of the network was well associated with the abrupt phase or trend changes of annually accumulated abnormal values of North Pacific sea-surface temperature and 500-hPa height, among which the one that happened in the middle of the 1970s is the most noticeable climate shift. We can also obtain this mysterious shift from the first mode of the empirical orthogonal function of six indices. That is to say, abrupt climate shift in North Pacific air-sea system is not only shown by the phase or trend changes of climate indices, but also might be indicated by the synchronizing and the coupling of climate indices. Furthermore, at the turning point of 1975, there are also abrupt correlation changes in the yearly mode of spatial degree distribution of the sea surface temperature and 500-hPa height in the region of the North Pacific, which further proves the probability of climate index synchronization and coupling shift in air sea systems.展开更多
This paper studies the stochastic synchronization problem for time-varying complex dynamical networks. This model is totally different from some existing network models. Based on the Lyapunov stability theory, inequal...This paper studies the stochastic synchronization problem for time-varying complex dynamical networks. This model is totally different from some existing network models. Based on the Lyapunov stability theory, inequality techniques, and the properties of the Weiner process, some controllers and adaptive laws are designed to ensure achieving stochastic synchronization of a complex dynamical network model. A sufficient synchronization condition is given to ensure that the proposed network model is mean-square stable. Theoretical analysis and numerical simulation fully verify the main results.展开更多
Parkinson’s disease(PD)is characterized by pathological spontaneous beta oscillations(13 Hz-35 Hz)often observed in basal ganglia(BG)composed of subthalamic nucleus(STN)and globus pallidus(GPe)populations.From the vi...Parkinson’s disease(PD)is characterized by pathological spontaneous beta oscillations(13 Hz-35 Hz)often observed in basal ganglia(BG)composed of subthalamic nucleus(STN)and globus pallidus(GPe)populations.From the viewpoint of dynamics,the spontaneous oscillations are related to limit cycle oscillations in a nonlinear system;here we employ the bifurcation analysis method to elucidate the generating mechanism of the pathological spontaneous beta oscillations underlined by coupling strengths and intrinsic properties of the STN-GPe circuit model.The results reveal that the increase of inter-coupling strength between STN and GPe populations induces the beta oscillations to be generated spontaneously,and causes the oscillation frequency to decrease.However,the increase of intra-coupling(self-feedback)strength of GPe can prevent the model from generating the oscillations,and dramatically increase the oscillation frequency.We further provide a theoretical explanation for the role played by the inter-coupling strength of GPe population in the generation and regulation of the oscillations.Furthermore,our study reveals that the intra-coupling strength of the GPe population provides a switching mechanism on the generation of the abnormal beta oscillations:for small value of the intra-coupling strength,STN population plays a dominant role in inducing the beta oscillations;while for its large value,the GPe population mainly determines the generation of this oscillation.展开更多
The mammals can not only entrain to the natural 24-h light–dark cycle, but also to the artificial cycle with non 24-h period through the main clock named suprachiasmatic nucleus in the brain. The range of the periods...The mammals can not only entrain to the natural 24-h light–dark cycle, but also to the artificial cycle with non 24-h period through the main clock named suprachiasmatic nucleus in the brain. The range of the periods of the artificial cycles which the suprachiasmatic nucleus(SCN) can entrain, is called entrainment range reflecting the flexibility of the SCN. The SCN can be divided into two groups of neurons functionally, based on the different sensitivities to the light information. In the present study, we examined whether the entrainment range is affected by this difference in the sensitivity by a Poincaré model. We found that the relationship of the entrainment range to the difference depends on the coupling between two groups. When the coupling strength is much smaller than the light intensity, the relationship is parabolic-like, and the maximum of the entrainment range is obtained with no difference of the sensitivity. When the coupling strength is much larger than the light intensity, the relationship is monotonically changed, and the maximum of the entrainment range is obtained when the difference is the largest. Our finding may provide an explanation for the exitance of the difference in the sensitivity to light-information as well as shed light on how to increase the flexibility of the SCN represented by widening the entrainment range.展开更多
In this paper, by referring to the concept of coupled memristors (MRs) and considering the flux coupling connection, the constitutive relations for describing the coupled memcapacitors (MCs) are theoretically dedu...In this paper, by referring to the concept of coupled memristors (MRs) and considering the flux coupling connection, the constitutive relations for describing the coupled memcapacitors (MCs) are theoretically deduced. The dynamic behaviors of dual coupled MCs in serial and parallel connections are analyzed in terms of identical or opposite polarities for the first time. Based on the derived constitutive relations of the two coupled MCs, the modified relaxation oscillators (ROs) are obtained with the purpose of achieving controllable oscillation frequency and duty cycle. In consideration of different parameter configurations, the experimental investigation is carried out by using practical off-the-shelf circuit components to verify the correction of the theoretical calculation with numerical simulation of the coupled MCs and its application in ROs.展开更多
We investigate the pairwise entanglement and global entanglement in a generalized Jaynes-Cummings model, which can be used to realize Greenberger-Horne-Zeilinger (GHZ) entangled state (Zheng S B 2001 Phys. Rev. Let...We investigate the pairwise entanglement and global entanglement in a generalized Jaynes-Cummings model, which can be used to realize Greenberger-Horne-Zeilinger (GHZ) entangled state (Zheng S B 2001 Phys. Rev. Lett. 87 230404). Our results show that the W-type entangled states cannot be generated based on the model. The dependences of entanglement on Rabi frequency λ and dipole-dipole coupling strength Ω are given. It is found that there exists the quantum phase transition when λ= Ω. For typical experimental data, the critical temperature for pairwise entanglement is on the order of 10^-6 K. Based on these results, two strategies that overcome decoherence are proposed.展开更多
The feasibility of using different generations recycled coarse aggregate(RCA) on structural concrete was fully evaluated by studying the performance of the recycled coarse aggregates and their corresponding concrete...The feasibility of using different generations recycled coarse aggregate(RCA) on structural concrete was fully evaluated by studying the performance of the recycled coarse aggregates and their corresponding concretes, the different generations of RCA were recycled by following the repeated mode of ‘concrete-waste concrete-coarse aggregate-concrete'. Moreover, the focus was on ‘three generations' of repeated RCAs, the RCA was produced by crushing and regenerating the artificial accelerated degraded concrete, the process was designed to follow the nature degradation of the concrete with a coupling action of accelerated carbonation and bending load. The properties of x-generation(x=1, 2 or 3) of repeated RCA were systematically investigated and the compressive and splitting tensile strengths of relating structural concretes(with 70% replacement of x-generation of RCA) were studied accordingly. The results show a competent compressive and splitting tensile strength of 30 MPa at 28 th day of structural concretes with all generations of repeated RAC. And the gradual degraded performance of the repeated RCAs was observed with an increased numbers of repetition(1〉2〉3 generations), the overall performances of all repeated RCAs fulfill the Class Ⅲ according to Chinese Standards GB25177-2010. Our gained insight demonstrates a feasibility of using at least 3 generations of repeated RCA for the production of normal structural concrete.展开更多
Experimental design and response surface methodology(RSM) were used to optimize the modification of conditions for glass surface grafting with acrylamide(AM) monomer for preparation of a glass fiber reinforced pol...Experimental design and response surface methodology(RSM) were used to optimize the modification of conditions for glass surface grafting with acrylamide(AM) monomer for preparation of a glass fiber reinforced poly(vinylidene fluoride)(PVDF) composite membrane(GFRP-CM). The factors considered for experimental design were the UV(ultraviolet)-irradiation time, the concentrations of the initiator and solvent, and the kinds and concentrations of the silane coupling agent. The optimum operating conditions determined were UV-irradiation time of 25 min, an initiator concentration of 0–0.25 wt.%,solvent of N-Dimethylacetamide(DMAC), and silane coupling agent KH570 with a concentration of 7 wt.%. The obtained optimal parameters were located in the valid region and the experimental confirmation tests conducted showed good accordance between predicted and experimental values. Under these optimal conditions, the water absorption of the grafted modified glass fiber was improved from 13.6% to 23%; the tensile strength was enhanced and the peeling strength of the glass fiber reinforced PVDF composite membrane was improved by 23.7% and 32.6% with an AM concentration at 1 wt.% and 2 wt.%. The surface composition and microstructure of AM grafted glass fiber were studied via several techniques including Field Emission Scanning Electron Microscopy(FESEM), Fourier transform infrared spectroscopy-attenuated total reflectance(FTIR-ATR) and energy dispersive X-ray spectroscopy(EDX). The analysis of the EDX and FTIR-ATR results confirmed that the AM was grafted to the glass fiber successfully by detecting and proving the existence of nitrogen atoms in the GFRP-CM.展开更多
Interlayer excitons(IXs) formed in transition metal dichalcogenides(TMDs)/two-dimensional(2 D) perovskite heterostructures are emerging as new platforms in the research of excitons. Compared with IXs in TMD van der Wa...Interlayer excitons(IXs) formed in transition metal dichalcogenides(TMDs)/two-dimensional(2 D) perovskite heterostructures are emerging as new platforms in the research of excitons. Compared with IXs in TMD van der Waals heterostructures, IXs can be robustly formed in TMDs/2 D perovskite heterostructures regardless of the twist angle and thermal annealing process. Efficient control of interlayer coupling is essential for realizing their functionalities and enhancing their performances. Nevertheless, the study on the control of interlayer coupling strength between TMD and 2 D perovskites is elusive. Therefore, we realize the control of interlayer coupling between monolayer WSe_(2) and(iso-BA)_(2)PbI_(4) with SiO_(2) pillars in situ. An abnormal 10-nm blue shift and 2.5 times photoluminescence intensity enhancement were observed for heterostructures on the pillar, which was contrary to the red shift observed in TMD heterobilayers. We attributed the abnormal blue shift to the enhanced interlayer coupling arising from the reduced gap between constituent layers. In addition, IXs became more dominant over intralayer excitons with enhanced coupling. The interlayer coupling could be further engineered by tuning the height(h) and diameter(d)of pillars. In particular, an additional triplet IX showed up for the pillar with an h/d ratio of 0.6 due to the symmetry breaking of monolayer WSe_(2). The symmetry breaking also induced an anisotropic response of IXs. Our study is beneficial for tuning and enhancing the performance of IX-based devices, exciton localization and quantum emitters.展开更多
For three-dimensional(3D)mono-layer molecular thin-film lubrication,the elasticity of the substrate affects the tribological behaviors of a thin fluid film confined by two solid substrates.To account for the elastic e...For three-dimensional(3D)mono-layer molecular thin-film lubrication,the elasticity of the substrate affects the tribological behaviors of a thin fluid film confined by two solid substrates.To account for the elastic effects,this study establishes a multi-scale method that combines an atomistic description of the near region with a coarse-grained description of the far region of the solid substrate to simulate the thin-film lubrication.It is demonstrated that for a given temperature range and film-substrate coupling strength,the multi-scale method is in excellent agreement with the fully atomistic simulation.This study reveals that the elastic response of the substrate can be effectively rendered in the hybrid scheme.In the application of the multi-scale method to investigate the tribological properties of the multi-layer molecular thin-film lubrication,it is determined that the systematic static friction coefficient monotonously decreases as the molecular layer thickness in the fluid film increases.In comparison to the mono-layer molecular thin-film lubrication,the multi-layer molecular thin-film lubrication plays a role in reducing the friction and wear of the system.展开更多
基金the Japan Society for the Promotion of Science,KAKENHI Grant Nos.20H04199 and 23H00475.
文摘In this study, we propose an algorithm selection method based on coupling strength for the partitioned analysis ofstructure-piezoelectric-circuit coupling, which includes two types of coupling or inverse and direct piezoelectriccoupling and direct piezoelectric and circuit coupling. In the proposed method, implicit and explicit formulationsare used for strong and weak coupling, respectively. Three feasible partitioned algorithms are generated, namely(1) a strongly coupled algorithm that uses a fully implicit formulation for both types of coupling, (2) a weaklycoupled algorithm that uses a fully explicit formulation for both types of coupling, and (3) a partially stronglycoupled and partially weakly coupled algorithm that uses an implicit formulation and an explicit formulation forthe two types of coupling, respectively.Numerical examples using a piezoelectric energy harvester,which is a typicalstructure-piezoelectric-circuit coupling problem, demonstrate that the proposed method selects the most costeffectivealgorithm.
基金National Natural Science Foundation of China under Grant Nos.70571017 and 10647001Natural Science Foundation of Guangxi Province under Grant No,0728042
文摘We investigate how firing activity of globally coupled neural network depends on the coupling strength C and system size N. Network elements are described by space-clamped FitzHugh- Nagumo (SCFHN) neurons with the values of parameters at which no firing activity occurs. It is found that for a given appropriate coupling strength, there is an intermediate range of system size where the firing activity of globally coupled SCFHN neural network is induced and enhanced. On the other hand, for a given intermediate system size level, there exists an optimal value of coupling strength such that the intensity of firing activity reaches its maximum. These phenomena imply that the coupling strength and system size play a vital role in firing activity of neural network.
基金Supported by the National Basic Research Program of China under Grant No 2011CB921601the National Natural Science Foundation of China under Grant Nos 11234008,11361161002 and 11222430the Program for Sanjin Scholars of Shanxi Province
文摘We experimentally demonstrate the relation of Raman coupling strength with the external bias magnetic field in degenerate Fermi gas of 40K atoms. Two Raman lasers couple two Zeeman energy levels, whose energy splitting depends on the external bias magnetic field. The Raman coupling strength is determined by measuring the Rabi oscillation frequency. The characteristics of the Rabi oscillation is to be damped after several periods due to Fermi atoms in different momentum states oscillating with different Rabi frequencies. The experimental results show that the Raman coupling strength will decrease as the external bias magnetic field increases, which is in good agreement with the theoretical prediction.
基金Project supported by the Key Program of the National Natural Science of China(Grant No.11232009)the Shanghai Leading Academic Discipline Project,China(Grant No.S30106)
文摘In this paper, we propose a novel approach for simultaneously identifying unknown parameters and synchronizing time-delayed complex community networks with nonidentical nodes. Based on the LaSalle's invariance principle, a cri- teflon is established by constructing an effective control identification scheme and adjusting automatically the adaptive coupling strength. The proposed control law is applied to a complex community network which is periodically synchro- nized with different chaotic states. Numerical simulations are conducted to demonstrate the feasibility of the proposed method.
基金Project supported by the National Basic Research Program of China(Grants Nos.2011CB921602 and 2011CB606405)the National Natural Science Foundation of China(Grant Nos.91221205 and 11174168)
文摘The shot noise properties in boron devices are investigated with a tight-binding model and the non-equilibrium Green's function. It is found that the shot noise and Fano factors can be tuned by changing the structures, the size, and the coupling strength. The shot noise is suppressed momentarily as we switch on the bias voltage, and the electron correlation is significant. The Fano factors are more sensitive to the ribbon width than to the ribbon length in the full coupling context. In the weak-coupling context, the Fano factors are almost invariant with the increase of length and width over a wide bias range.
基金Supported by the National Natural Science Foundation of China under Grant No.21103002the Natural Science Foundation of Education Bureau of Anhui Province under Grant No.KJ2010A129
文摘Effects of time-periodic coupling strength (TPCS) on spiral waves dynamics are studied by numerical computations and mathematical analyses. We find that meandering or drifting spirals waves, which are not observed for the case of constant coupling strength, can be induced by TPCS. In particular, a transition between outward petal and inward petal meandering spirals is observed when the period of TPCS is varied. These two types of meandering spirals are separated by a drifting spiral, which can be induced by TPCS when the period of TPCS is very close to that of rigidly rotating spiral. Similar results can be obtained if the coupling strength is modulated by a rectangle wave. Furthermore, a kinetic model for spiral movement suggested by Diet al., [Phys. Rev. E 85 (2012) 046216] is applied for explaining the above findings. The theoretical results are in good qualitative agreement with numerical simulations.
基金Project supported by the National Natural Science Foundation of China(Grant No.11704191)the Jiangsu Specially-Appointed Professor,the Natural Science Foundation of Jiangsu Province of China(Grant No.BK20171026)the Six-Talent Peaks Project in Jiangsu Province,China(Grant No.XYDXX-038)
文摘In this work,we experimentally investigated the thermal stability of the interlayer exchange coupling field(Hex)and strength(-Jiec)in synthetic antiferromagnetic(SAF)structure of[Pt(0.6)/Co(0.6)]_(2)/Ru(tRu)/[Co(0.6)/Pt(0.6)]_(4)multilayers with perpendicular anisotropy.Depending on the thickness of the spacing ruthenium(Ru)layer,the observed interlayer exchange coupling can be either ferromagnetic or antiferromagnetic.The Hexwere studied by measuring the magnetization hysteresis loops in the temperature range from 100 K to 700 K as well as the theoretical calculation of the-Jiec.It is found that the interlayer coupling in the multilayers is very sensitive to the thickness of Ru and temperature.The Hexexhibits either a linear or a non-linear dependence on the temperature for different thickness of Ru.Furthermore,our SAF multilayers show a high thermal stability even up to 600 K(H_(ex)=3.19 kOe,-J_(iec)=1.97 erg/cm^(2) for t_(Ru)=0.6 nm,the unit 1 Oe=79.5775 A·m^(-1)),which was higher than the previous studies.
基金Supported by the National Basic Research Program of China under Grant Nos 2012CB921703 and 2013CB921702the National Natural Science Foundation of China under Grant Nos 11334011 and 91121003the Strategic Priority Research Program of the Chinese Academy of Sciences under Grant No XDB07000000
文摘We perform a scanning tunneling microscopy and spectroscopy study on the electronic structures of √3×√3- silicene on Ag(111). It is found that the coupling strength of √3×√3-silicene with the Ag-(111) substrate is variable in different regions, giving rise to notable effects in experiments. This evidence of decoupling or variable interaction of silicene with the substrate is helpful to in-depth understanding of the structure and clectronic properties of silieene.
基金supported by the National Natural Science Foundation of China(Grant No.52201290)the Natural Science Foundation of Gansu Province(Grant No.24JRRA402)the 9th Research Institute of China Electronics Technology Group Corporation’s open projects(Grant No.2024SK-001-4).
文摘We report a theoretical analysis of magnon–magnon coupling in a noncollinear magnetic sandwiched structure with interlayer exchange interaction,which consists of two ferromagnetic layers with perpendicular and in-plane magnetic anisotropy,respectively.Based on the Landau–Lifshitz equation,the spin wave dispersion is derived,and then the frequency gap is observed due to the magnon–magnon coupling effect induced by symmetry breaking.The influence of saturation magnetization,exchange coupling interaction,perpendicular magnetic anisotropy,and wave vector on the coupling strength is studied in detail.We find that the coupling strength is strongly dependent on the saturation magnetization and a small saturation magnetization can lead to strong coupling strength.By selecting the appropriate magnetic materials,the ultra-strong coupling regime can be achieved.The precession information in time domain is solved and the alternating change of the precession components in two ferromagnetic layers implies the exchange of energy and information.
基金supported by the Natural Science Foundation of Shandong Province of China (ZR2009AM016)
文摘We study the effect of time-periodic coupling strength on the spiking coherence of Newman-Watts networks of Hodgkin-Huxley(HH) neurons with non-Gaussian noise.It is found that the spiking can exhibit coherence resonance(CR) when the extent of deviation of non-Gaussian noise from Gaussian noise and the amplitude of the coupling strength are varied.In particular,coherence bi-resonance(CBR) is observed when the frequency of the coupling strength is varied,and the CBR is always observed when the frequency is equal to,or a multiple of,the spiking period,manifesting as the locking between the frequencies of the spiking and the coupling strength.The results show that a time-periodic coupling strength may play a more constructive and efficient role in enhancing the spiking coherence of the neuronal networks than a constant coupling strength.These findings provide insight into the role of time-periodic coupling strength for enhancing the time precision of information processing in neuronal networks.
基金supported by the Special Scientific Research Project for Public Interest,China (Grant Nos.GYHY201006021 and GYHY201106016)the National Natural Science Foundation of China (Grant Nos.40930952 and 40875040)
文摘A climate network of six climate indices of the North Pacific air-sea system is constructed during the period of 1948-2009. In order to find out the inherent relationship between the intrinsic mechanism of climate index network and the important climate shift, the synchronization behaviour and the coupling behaviour of these indices are investigated. Results indicate that climate network synchronization happened around the beginning of the 1960s, in the middle of the 1970s and at the beginnings of the 1990s and the 2000s separately. These synchronization states were always followed by the decrease of the coupling coefficient. Each synchronization of the network was well associated with the abrupt phase or trend changes of annually accumulated abnormal values of North Pacific sea-surface temperature and 500-hPa height, among which the one that happened in the middle of the 1970s is the most noticeable climate shift. We can also obtain this mysterious shift from the first mode of the empirical orthogonal function of six indices. That is to say, abrupt climate shift in North Pacific air-sea system is not only shown by the phase or trend changes of climate indices, but also might be indicated by the synchronizing and the coupling of climate indices. Furthermore, at the turning point of 1975, there are also abrupt correlation changes in the yearly mode of spatial degree distribution of the sea surface temperature and 500-hPa height in the region of the North Pacific, which further proves the probability of climate index synchronization and coupling shift in air sea systems.
基金supported by the National Natural Science Foundation of China (Grant No.60974139)the Fundamental Research Funds for the Central Universities (Grant No.72103676)
文摘This paper studies the stochastic synchronization problem for time-varying complex dynamical networks. This model is totally different from some existing network models. Based on the Lyapunov stability theory, inequality techniques, and the properties of the Weiner process, some controllers and adaptive laws are designed to ensure achieving stochastic synchronization of a complex dynamical network model. A sufficient synchronization condition is given to ensure that the proposed network model is mean-square stable. Theoretical analysis and numerical simulation fully verify the main results.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61473208 and 61876132)the Tianjin Research Program of Application Foundation and Advanced Technology,China(Grant No.15JCYBJC47700).
文摘Parkinson’s disease(PD)is characterized by pathological spontaneous beta oscillations(13 Hz-35 Hz)often observed in basal ganglia(BG)composed of subthalamic nucleus(STN)and globus pallidus(GPe)populations.From the viewpoint of dynamics,the spontaneous oscillations are related to limit cycle oscillations in a nonlinear system;here we employ the bifurcation analysis method to elucidate the generating mechanism of the pathological spontaneous beta oscillations underlined by coupling strengths and intrinsic properties of the STN-GPe circuit model.The results reveal that the increase of inter-coupling strength between STN and GPe populations induces the beta oscillations to be generated spontaneously,and causes the oscillation frequency to decrease.However,the increase of intra-coupling(self-feedback)strength of GPe can prevent the model from generating the oscillations,and dramatically increase the oscillation frequency.We further provide a theoretical explanation for the role played by the inter-coupling strength of GPe population in the generation and regulation of the oscillations.Furthermore,our study reveals that the intra-coupling strength of the GPe population provides a switching mechanism on the generation of the abnormal beta oscillations:for small value of the intra-coupling strength,STN population plays a dominant role in inducing the beta oscillations;while for its large value,the GPe population mainly determines the generation of this oscillation.
基金National Natural Science Foundation of China(Grant Nos.11875042 and 11505114)the Innovation Foundation of Shanghai Aerospace Science and Technology,China(Grant No.SAST2018-22)the Course of Scientific Research Project of Shanghai University for Science and Technology(Grant No.13002100).
文摘The mammals can not only entrain to the natural 24-h light–dark cycle, but also to the artificial cycle with non 24-h period through the main clock named suprachiasmatic nucleus in the brain. The range of the periods of the artificial cycles which the suprachiasmatic nucleus(SCN) can entrain, is called entrainment range reflecting the flexibility of the SCN. The SCN can be divided into two groups of neurons functionally, based on the different sensitivities to the light information. In the present study, we examined whether the entrainment range is affected by this difference in the sensitivity by a Poincaré model. We found that the relationship of the entrainment range to the difference depends on the coupling between two groups. When the coupling strength is much smaller than the light intensity, the relationship is parabolic-like, and the maximum of the entrainment range is obtained with no difference of the sensitivity. When the coupling strength is much larger than the light intensity, the relationship is monotonically changed, and the maximum of the entrainment range is obtained when the difference is the largest. Our finding may provide an explanation for the exitance of the difference in the sensitivity to light-information as well as shed light on how to increase the flexibility of the SCN represented by widening the entrainment range.
基金Project supported by the Fundamental Research Funds for China Central Universities(Grant No.2015XKMS028)
文摘In this paper, by referring to the concept of coupled memristors (MRs) and considering the flux coupling connection, the constitutive relations for describing the coupled memcapacitors (MCs) are theoretically deduced. The dynamic behaviors of dual coupled MCs in serial and parallel connections are analyzed in terms of identical or opposite polarities for the first time. Based on the derived constitutive relations of the two coupled MCs, the modified relaxation oscillators (ROs) are obtained with the purpose of achieving controllable oscillation frequency and duty cycle. In consideration of different parameter configurations, the experimental investigation is carried out by using practical off-the-shelf circuit components to verify the correction of the theoretical calculation with numerical simulation of the coupled MCs and its application in ROs.
基金Project supported by the National Nature Science Foundation of China (Grant No 10604053).
文摘We investigate the pairwise entanglement and global entanglement in a generalized Jaynes-Cummings model, which can be used to realize Greenberger-Horne-Zeilinger (GHZ) entangled state (Zheng S B 2001 Phys. Rev. Lett. 87 230404). Our results show that the W-type entangled states cannot be generated based on the model. The dependences of entanglement on Rabi frequency λ and dipole-dipole coupling strength Ω are given. It is found that there exists the quantum phase transition when λ= Ω. For typical experimental data, the critical temperature for pairwise entanglement is on the order of 10^-6 K. Based on these results, two strategies that overcome decoherence are proposed.
基金Funded by the National Natural Science Foundation of China(No.51278073)Prospective Joint Research Project of Jiangsu Province(Nos.BY2013024-17,BY2014037-30,and BY2015027-23)
文摘The feasibility of using different generations recycled coarse aggregate(RCA) on structural concrete was fully evaluated by studying the performance of the recycled coarse aggregates and their corresponding concretes, the different generations of RCA were recycled by following the repeated mode of ‘concrete-waste concrete-coarse aggregate-concrete'. Moreover, the focus was on ‘three generations' of repeated RCAs, the RCA was produced by crushing and regenerating the artificial accelerated degraded concrete, the process was designed to follow the nature degradation of the concrete with a coupling action of accelerated carbonation and bending load. The properties of x-generation(x=1, 2 or 3) of repeated RCA were systematically investigated and the compressive and splitting tensile strengths of relating structural concretes(with 70% replacement of x-generation of RCA) were studied accordingly. The results show a competent compressive and splitting tensile strength of 30 MPa at 28 th day of structural concretes with all generations of repeated RAC. And the gradual degraded performance of the repeated RCAs was observed with an increased numbers of repetition(1〉2〉3 generations), the overall performances of all repeated RCAs fulfill the Class Ⅲ according to Chinese Standards GB25177-2010. Our gained insight demonstrates a feasibility of using at least 3 generations of repeated RCA for the production of normal structural concrete.
基金supported by the financial support of the National Natural Science Foundation of China (No. 51278483)the Institute of Chinese Academy of Sciences in cooperation projects (No. ZNGZ2011023)the Daqi Technology of Beijing Co. Ltd. (No. 04F0261601)
文摘Experimental design and response surface methodology(RSM) were used to optimize the modification of conditions for glass surface grafting with acrylamide(AM) monomer for preparation of a glass fiber reinforced poly(vinylidene fluoride)(PVDF) composite membrane(GFRP-CM). The factors considered for experimental design were the UV(ultraviolet)-irradiation time, the concentrations of the initiator and solvent, and the kinds and concentrations of the silane coupling agent. The optimum operating conditions determined were UV-irradiation time of 25 min, an initiator concentration of 0–0.25 wt.%,solvent of N-Dimethylacetamide(DMAC), and silane coupling agent KH570 with a concentration of 7 wt.%. The obtained optimal parameters were located in the valid region and the experimental confirmation tests conducted showed good accordance between predicted and experimental values. Under these optimal conditions, the water absorption of the grafted modified glass fiber was improved from 13.6% to 23%; the tensile strength was enhanced and the peeling strength of the glass fiber reinforced PVDF composite membrane was improved by 23.7% and 32.6% with an AM concentration at 1 wt.% and 2 wt.%. The surface composition and microstructure of AM grafted glass fiber were studied via several techniques including Field Emission Scanning Electron Microscopy(FESEM), Fourier transform infrared spectroscopy-attenuated total reflectance(FTIR-ATR) and energy dispersive X-ray spectroscopy(EDX). The analysis of the EDX and FTIR-ATR results confirmed that the AM was grafted to the glass fiber successfully by detecting and proving the existence of nitrogen atoms in the GFRP-CM.
基金supported by the National Key Research and Development Program of China (2018YFA0704403)the National Natural Science Foundation of China (62005091 and 62074064)+1 种基金Hubei Provincial Natural Science Foundation (2020CFB194)Huazhong University of Science and Technology (HUST) grant (2019kfy XJJS046)。
文摘Interlayer excitons(IXs) formed in transition metal dichalcogenides(TMDs)/two-dimensional(2 D) perovskite heterostructures are emerging as new platforms in the research of excitons. Compared with IXs in TMD van der Waals heterostructures, IXs can be robustly formed in TMDs/2 D perovskite heterostructures regardless of the twist angle and thermal annealing process. Efficient control of interlayer coupling is essential for realizing their functionalities and enhancing their performances. Nevertheless, the study on the control of interlayer coupling strength between TMD and 2 D perovskites is elusive. Therefore, we realize the control of interlayer coupling between monolayer WSe_(2) and(iso-BA)_(2)PbI_(4) with SiO_(2) pillars in situ. An abnormal 10-nm blue shift and 2.5 times photoluminescence intensity enhancement were observed for heterostructures on the pillar, which was contrary to the red shift observed in TMD heterobilayers. We attributed the abnormal blue shift to the enhanced interlayer coupling arising from the reduced gap between constituent layers. In addition, IXs became more dominant over intralayer excitons with enhanced coupling. The interlayer coupling could be further engineered by tuning the height(h) and diameter(d)of pillars. In particular, an additional triplet IX showed up for the pillar with an h/d ratio of 0.6 due to the symmetry breaking of monolayer WSe_(2). The symmetry breaking also induced an anisotropic response of IXs. Our study is beneficial for tuning and enhancing the performance of IX-based devices, exciton localization and quantum emitters.
基金This research is supported by the National Natural Science Foundation of China(Grants Nos.11172310 and 11472284)the Chinese Academy of Sciences(CAS)Strategic Priority Research Program(XDB22040403).
文摘For three-dimensional(3D)mono-layer molecular thin-film lubrication,the elasticity of the substrate affects the tribological behaviors of a thin fluid film confined by two solid substrates.To account for the elastic effects,this study establishes a multi-scale method that combines an atomistic description of the near region with a coarse-grained description of the far region of the solid substrate to simulate the thin-film lubrication.It is demonstrated that for a given temperature range and film-substrate coupling strength,the multi-scale method is in excellent agreement with the fully atomistic simulation.This study reveals that the elastic response of the substrate can be effectively rendered in the hybrid scheme.In the application of the multi-scale method to investigate the tribological properties of the multi-layer molecular thin-film lubrication,it is determined that the systematic static friction coefficient monotonously decreases as the molecular layer thickness in the fluid film increases.In comparison to the mono-layer molecular thin-film lubrication,the multi-layer molecular thin-film lubrication plays a role in reducing the friction and wear of the system.