Photoelectrocatalysis(PEC)is extensively applied in diverse redox reactions.However,the traditional oxygen evolution reaction(OER)occurring at the(photo)anode is hindered by high thermodynamic demands and sluggish kin...Photoelectrocatalysis(PEC)is extensively applied in diverse redox reactions.However,the traditional oxygen evolution reaction(OER)occurring at the(photo)anode is hindered by high thermodynamic demands and sluggish kinetics,resulting in excessive energy consumption and limited economic value of the O2 produced,thereby impeding the practical application of PEC reactions.To overcome these limitations,advanced anodic-cathodic coupling systems,as an emerging energy conversion technology,have garnered significant research interest.These systems substitute OER with lower potential,valuable oxidation reactions,significantly enhancing energy conversion efficiency,yielding high-value chemicals,while reducing energy consumption and environmental pollution.More importantly,by designing and optimizing photoelectrodes to generate sufficient photovoltage under illumination,meeting the thermodynamic and kinetic potential requirements of the reactions,and by tuning the voltage to match the current densities of the cathode and anode,coupling reactions can be achieved under bias-free conditions.In this review,we provide an overview of the mechanisms of PEC coupling reactions and summarize photoelectrode catalysts along with their synthesis methods.We further explore advanced catalyst modification strategies and highlight the latest development in advanced PEC coupling systems,including photocathodic CO_(2)reduction,nitrate reduction,oxygen reduction,enzyme activation,coupled with photoanodic organic oxidation,biomass oxidation,and pollutant degradation.Additionally,advanced in situ characterization techniques for elucidating reaction mechanisms are discussed.Finally,we propose the challenges in catalyst design,reaction systems,and large-scale applications,while offering future perspectives for PEC coupling system.This work underscores the tremendous potential of PEC coupling systems in energy conversion and environmental remediation,and provides valuable insights for the future design of such coupling systems.展开更多
Binaphthalene-core phosphepine compounds with axial chirality belong to an important class of organocatalysts and ligands used in catalytic asymmetric synthesis.However,the number and application of these compounds ha...Binaphthalene-core phosphepine compounds with axial chirality belong to an important class of organocatalysts and ligands used in catalytic asymmetric synthesis.However,the number and application of these compounds have been limited due to the lack of efficient synthetic methods currently available to researchers.Herein,a simple and efficient palladium-catalyzed C—P cross-coupling reaction of enantiopure(R)-1 with a variety of aryl and heteroaryl halides is reported.The reaction provides access to a series of chiral binaphthalene-core phosphepine compounds using Pd(OAc)2/dippf as a catalyst,which allows most products to be formed in moderate to high yields(40%~92%)with excellent ee values(90%~99%ee).展开更多
To achieve the resource utilization of solid waste phosphogypsum(PG)and tackle the problem of utilizing potassium feldspar(PF),a coupled synergistic process between PG and PF is proposed in this paper.The study invest...To achieve the resource utilization of solid waste phosphogypsum(PG)and tackle the problem of utilizing potassium feldspar(PF),a coupled synergistic process between PG and PF is proposed in this paper.The study investigates the features of P and F in PG,and explores the decomposition of PF using hydrofluoric acid(HF)in the sulfuric acid system for K leaching and leaching of P and F in PG.The impact factors such as sulfuric acid concentration,reaction temperature,reaction time,material ratio(PG/PF),liquid–solid ratio,PF particle size,and PF calcination temperature on the leaching of P and K is systematically investigated in this paper.The results show that under optimal conditions,the leaching rate of K and P reach more than 93%and 96%,respectively.Kinetics study using shrinking core model(SCM)indicates two significant stages with internal diffusion predominantly controlling the leaching of K.The apparent activation energies of these two stages are 11.92 kJ·mol^(-1)and 11.55 kJ·mol^(-1),respectively.展开更多
Palladium(Pd)‐based catalysts are essential to drive high‐performance Suzuki coupling reactions,which are powerful tools for the synthesis of functional organic compounds.Herein,we developed a solution‐rapid‐annea...Palladium(Pd)‐based catalysts are essential to drive high‐performance Suzuki coupling reactions,which are powerful tools for the synthesis of functional organic compounds.Herein,we developed a solution‐rapid‐annealing process to stabilize nitrogen‐mesoporous carbon supported Pd single‐atom/cluster(Pd/NMC)material,which provided a catalyst with superior performance for Suzuki coupling reactions.In comparison with commercial palladium/carbon(Pd/C)catalysts,the Pd/NMC catalyst exhibited significantly boosted activity(100%selectivity and 95%yield)and excellent stability(almost no decay in activity after 10 reuse cycles)for the Suzuki coupling reactions of chlorobenzenes,together with superior yield and excellent selectivity in the fields of the board scope of the reactants.Moreover,our newly developed rapid annealing process of precursor solutions is applied as a generalized method to stabilize metal clusters(e.g.Pd,Pt,Ru),opening new possibilities in the construction of efficient highly dispersed metal atom and sub‐nanometer cluster catalysts with high performance.展开更多
Due to the increasing demand for the sustainability of modern organic chemistry, the development of green and powerful methods for C-C and C-B bond formation is highly desired. Among them, the transition-metal-free co...Due to the increasing demand for the sustainability of modern organic chemistry, the development of green and powerful methods for C-C and C-B bond formation is highly desired. Among them, the transition-metal-free coupling reactions of gem–diborylalkanes emerge as one valuable tool for organic chemists in the last decade. The review covers selected representative examples. A comparison of these reactions with transition-metal-catalyzed reactions is provided. The recent example of α-boryl radical formation from gem–diborylalkanes is also briefly discussed.展开更多
Polyanilines(PANIs) can be easily prepared from the available and cheap anilines via the oxidative polymerization reactions. Owing to the coordination of nitrogen in the material with metals, PANIs are widely used as ...Polyanilines(PANIs) can be easily prepared from the available and cheap anilines via the oxidative polymerization reactions. Owing to the coordination of nitrogen in the material with metals, PANIs are widely used as the support of nano metal catalysts. In comparison with inorganic supports, the nano metals on PANIs were firmly anchored via the coordination bond so that they are not easily to lose during the reaction process. Moreover, since PANIs are versatile materials and their chemical features can be adjusted by introducing functional groups onto the monomers, the catalytic activities of the prepared catalysts are tunable. During the past decade, PANIs-supported nano metal catalysts have been widely applied in a variety of coupling reactions. This review aims to summarize the recent advances and give a perspective.展开更多
The system,Pd(OAc)_2/imidazolium salts(L_2),was found as an efficient catalyst in the Heck coupling reaction of olefins with aryl halides and Suzuki reactions of various aryl halides with aryl boronic acids under ...The system,Pd(OAc)_2/imidazolium salts(L_2),was found as an efficient catalyst in the Heck coupling reaction of olefins with aryl halides and Suzuki reactions of various aryl halides with aryl boronic acids under aerobic condition.This catalytic system demonstrates great tolerance to a wide range of groups on all substrates of aryl halides,alkenes and aryl boronic acids.展开更多
CuI/ethylene diamine/K2CO3/dioxane is shown to be a useful system for the cross coupling reactions of various aryl iodides and bromides with aryl and alkyl alkynes. Compared to the conventional Sonogashira reactions, ...CuI/ethylene diamine/K2CO3/dioxane is shown to be a useful system for the cross coupling reactions of various aryl iodides and bromides with aryl and alkyl alkynes. Compared to the conventional Sonogashira reactions, the new procedure is free of palladium and phosphines.展开更多
Sm/TiCl4 system could well integrate the high reactivity of samarium(Ⅱ) and high deoxygenation capacity of low valent titanium within one system. In this paper, the intermolecular and intramolecular reductive coupl...Sm/TiCl4 system could well integrate the high reactivity of samarium(Ⅱ) and high deoxygenation capacity of low valent titanium within one system. In this paper, the intermolecular and intramolecular reductive coupling reactions of ketones with esters mediated by metallic samarium (Sm) and a catalytic amount of titanium tetrachloride (TiCl4) were successfully developed. A series of substituted ketones and cyclic β-keto-esters were prepared in moderate to good yields under reflux and neutral conditions.展开更多
Pinacol coupling reactions catalyzed by active zinc revealed high activity and extensive suitability. The efficiency of the reaction was improved apparently owing to decreasing reductive potential of zinc. In addition...Pinacol coupling reactions catalyzed by active zinc revealed high activity and extensive suitability. The efficiency of the reaction was improved apparently owing to decreasing reductive potential of zinc. In addition, the results indicated that the zinc activity has a direct relation to the coupling reactivity compared to untreated zinc or other general active zinc.展开更多
The chemistry of acetaldehyde (CH3CHO) adsorbed on the anatase TiO2(001)-(1×4) surface has been investigated by temperature-programmed desorption (TPD) method. Our experimental results provide the direct evidence...The chemistry of acetaldehyde (CH3CHO) adsorbed on the anatase TiO2(001)-(1×4) surface has been investigated by temperature-programmed desorption (TPD) method. Our experimental results provide the direct evidence that the perfect lattice sites on the anatase TiO2(001)-(1×4) surface are quite inert for the reaction of CH3CHO, but the reduced defect sites on the surface are active for the thermally driven reductive carbon-carbon coupling reactions of CH3CHO to produce 2-butanone and butene. We propose that the coupling reactions of CH3CHO on the anatase TiO2(001)-(1×4) surface should undergo through the adsorption of paired CH3CHO molecules at the reduced defect sites, since the existing reduced Ti pairs provide the suitable adsorption sites.展开更多
The formation of C–C bonds is a crucial aspect of organic synthesis.Synthesists'long-term objective is to identify novel catalysts to optimize reaction systems based on traditional transition metal catalysis.This...The formation of C–C bonds is a crucial aspect of organic synthesis.Synthesists'long-term objective is to identify novel catalysts to optimize reaction systems based on traditional transition metal catalysis.This study explores the synthesis and catalytic potential of palladium-installed covalent metal-organic frameworks(CMOFs)based on copper cyclic trinuclear units(Cu-CTUs).By incorporating palladium ions into the imine-based framework JNM-7 through a straightforward immersion method,we achieved a notable enhancement in catalytic activity for critical C–C coupling reactions,including C–H arylation and Sonogashira cross-coupling.The resulting JNM-7-Pd demonstrated remarkable stability and recyclability,maintaining its efficiency over at least three cycles without any decline in efficiency.展开更多
By using a newly developed 4-hydroxy picolinohydrazide as the ligand,Cu-catalyzed coupling of(hetero)aryl chlorides with sodium aryl sulfonates proceeded smoothly at 130℃to give a series of biarylsulfones in 53%~96%y...By using a newly developed 4-hydroxy picolinohydrazide as the ligand,Cu-catalyzed coupling of(hetero)aryl chlorides with sodium aryl sulfonates proceeded smoothly at 130℃to give a series of biarylsulfones in 53%~96%yields.This represents the first metal-catalyzed coupling reaction of(hetero)aryl chlorides with sodium aryl sulfonates.Aryl and heteroaryl chlorides bearing either electron-donating or electron-withdrawing groups were applicable for this coupling reaction.展开更多
The direct deoxygenative homo-coupling of benzyl alcohols holds great promise to build up bibenzyl motifs in organic synthesis,yet it remains a grand challenge in selectivity and activity control.Herein,we first disco...The direct deoxygenative homo-coupling of benzyl alcohols holds great promise to build up bibenzyl motifs in organic synthesis,yet it remains a grand challenge in selectivity and activity control.Herein,we first discovered that iron carbide catalysts displayed high efficiency and selectivity in the catalytic deoxygenative homo-coupling of benzyl alcohols into bibenzyls using H_(2)as the reductant.Ir-promoted Fe0@Fe_(5)C_(2)gave the best performance among the investigated catalysts,and a broad scope of substrates with diverse functional groups could be smoothly converted into bibenzyls,with the yield up to 85%.In addition,in the presence of alkenes,three-component coupling reactions between alcohols and alkenes were also for the first time achieved to construct more complex multi-ring molecules.The radical-trapping experiment and FTIR measurements revealed the radical nature of the reaction and the significantly promoted C–O bond activation after carbonization,respectively.This work will provide guidelines for the rational design of efficient and selective catalysts for the alcohol-involved carbon-carbon coupling reactions.展开更多
Electrochemical C–N coupling has generated intense research interest as a promising approach to reduce carbon and nitrogen emissions and store excess renewable electricity in valuable chemicals(e.g.,urea,amides,and a...Electrochemical C–N coupling has generated intense research interest as a promising approach to reduce carbon and nitrogen emissions and store excess renewable electricity in valuable chemicals(e.g.,urea,amides,and amines).In this review,we discuss the emerging trends in electrocatalytic C–N coupling reactions using CO_(2) and inorganic nitrogenous species(i.e.,dinitrogen(N_(2))),nitrate(NO_(2)^(-)),nitrite(NO_(3)^(-)),and ammonia(NH_(3))as raw materials.The related reaction mechanisms and potential design principles for advanced electrocatalysts are outlined.In addition,the effects of different reactors,including H-cells,membrane-based flow reactors,and membrane electrode assembly electrolyzers,on the coupling reactions are emphasized.Finally,the current challenges and future opportunities in this field are described.We aim to provide an up-to-date overview of the electrochemical C–N coupling system to advance progress toward its practical application.展开更多
Porous polymer supported palladium catalyst for cross coupling reactions with high activity has been successfully prepared by coordination of Pd 2+ species with Schiff bases functionalized porous polymer. The catalyst...Porous polymer supported palladium catalyst for cross coupling reactions with high activity has been successfully prepared by coordination of Pd 2+ species with Schiff bases functionalized porous polymer. The catalyst has been systemically investi-gated by a series of characterizations such as TEM, N 2 adsorption, NMR, IR, XPS, etc. TEM and N 2 isotherms show that the sample maintains the nanoporous structure after the modification and coordination. XPS results show that chemical state of palladium species in the catalyst is mainly +2. More importantly, the catalyst shows very high activities and excellent recycla-bility in a series of coupling reactions including Suzuki, Sonogashira, and Heck reactions. Hot filtration and poison of catalysts experiments have also been performed and the results indicate that soluble active species (mainly Pd(0) species) in-situ gener-ated from the catalyst under the reaction conditions are the active intermediates, which would redeposit to the supporter after the reactions.展开更多
Pyridin-2-ol-N-oxide was designed as an efficient ligand for the coupling reaction of aryl iodides,aryl bromides and aryl chlorides,respectively,with primary amines,cyclic secondary amines or N-containing heterocycles...Pyridin-2-ol-N-oxide was designed as an efficient ligand for the coupling reaction of aryl iodides,aryl bromides and aryl chlorides,respectively,with primary amines,cyclic secondary amines or N-containing heterocycles at room or moderate temperature.The catalytic system showed great functional groups tolerance and excellent selective reactivity.展开更多
The challenge for single-atom catalysts in various C-C cross coupling reaction exists in the development of solid supporting materials.It has been desired tofind a supporting material designed in molecular level to an...The challenge for single-atom catalysts in various C-C cross coupling reaction exists in the development of solid supporting materials.It has been desired tofind a supporting material designed in molecular level to anchor a single-atom catalyst and provide high degree of dispersion and substrate access in aqueous media.Here,we prepared discrete cages of metal-organic polyhedra anchoring single Pd atom(MOP-BPY(Pd))and successfully performed a Suzuki-Miyaura cross coupling reaction with various substrates in aqueous media.It was revealed that each tetrahedral cage of MOP-BPY(Pd)has 4.5 Pd atoms on average and retained its high degree of dispersion up to 3 months in water.The coupling efficiencies of the Suzuki-Miyaura cross coupling reaction exhibited more than 90.0%for various substrates we have tested in the aqueous media,which is superior to those of the molecular Pd complex and metal-organic framework(MOF)anchoring Pd atoms.Moreover,MOP-BPY(Pd)was successfully recovered and recycled without performance degradation.展开更多
A [Pd(1-tritylimidazole)2Cl2] complex was synthesized and characterized by IH and 13C NMR spectroscopy, elemental analysis, and X-ray crystallography. The X-ray analysis confirmed that the Pd(II) has a four-coordi...A [Pd(1-tritylimidazole)2Cl2] complex was synthesized and characterized by IH and 13C NMR spectroscopy, elemental analysis, and X-ray crystallography. The X-ray analysis confirmed that the Pd(II) has a four-coordinated square planar structure. The palladium complex was used to carry out Suzuki-Miyaura coupling reactions of aryl chlorides with a variety of phenylboronic acids in i-PrOH-H20 (1 : 1, V : V) at room temperature and Heck coupling reactions of aryl halides with methyl acrylate in DMF at 110℃. High yields of the cross-coupling products were obtained.展开更多
Electrocatalytic CO_(2) reduction reaction(CO_(2)RR)holds great promise in green energy conversion and storage.However,for current CO_(2) electrolyzers that rely on the oxygen evolution reaction,a large portion of the...Electrocatalytic CO_(2) reduction reaction(CO_(2)RR)holds great promise in green energy conversion and storage.However,for current CO_(2) electrolyzers that rely on the oxygen evolution reaction,a large portion of the input energy is"wasted"at the anode due to the high overpotential requirement and the recovery of low-value oxygen.To make efficient use of the electricity during electrolysis,coupling CO_(2)RR with anodic alternatives that have low energy demands and/or profitable returns with high-value products is then promising.Herein,we review the latest advances in paired systems for simultaneous CO_(2) reduction and anode valorization.We start with the cases integrating CO_(2)RR with concurrent alternative oxidation,such as inorganic oxidation using chloride,sulfide,ammonia and urea,and organic oxidation using alcohols,aldehydes and primary amines.The paired systems that couple CO_(2)RR with on-site oxidative upgrading of CO_(2)-reduced chemicals are also introduced.The coupling mechanism,electrochemical performance and economic viability of these co-electrolysis systems are discussed.Thereby,we then point out the mismatch issues between the cathodic and anodic reactions regrading catalyst ability,electrolyte solution and reactant supply that will challenge the applications of these paired electrolysis systems.Opportunities to address these issues are further proposed,providing some guidance for future research.展开更多
文摘Photoelectrocatalysis(PEC)is extensively applied in diverse redox reactions.However,the traditional oxygen evolution reaction(OER)occurring at the(photo)anode is hindered by high thermodynamic demands and sluggish kinetics,resulting in excessive energy consumption and limited economic value of the O2 produced,thereby impeding the practical application of PEC reactions.To overcome these limitations,advanced anodic-cathodic coupling systems,as an emerging energy conversion technology,have garnered significant research interest.These systems substitute OER with lower potential,valuable oxidation reactions,significantly enhancing energy conversion efficiency,yielding high-value chemicals,while reducing energy consumption and environmental pollution.More importantly,by designing and optimizing photoelectrodes to generate sufficient photovoltage under illumination,meeting the thermodynamic and kinetic potential requirements of the reactions,and by tuning the voltage to match the current densities of the cathode and anode,coupling reactions can be achieved under bias-free conditions.In this review,we provide an overview of the mechanisms of PEC coupling reactions and summarize photoelectrode catalysts along with their synthesis methods.We further explore advanced catalyst modification strategies and highlight the latest development in advanced PEC coupling systems,including photocathodic CO_(2)reduction,nitrate reduction,oxygen reduction,enzyme activation,coupled with photoanodic organic oxidation,biomass oxidation,and pollutant degradation.Additionally,advanced in situ characterization techniques for elucidating reaction mechanisms are discussed.Finally,we propose the challenges in catalyst design,reaction systems,and large-scale applications,while offering future perspectives for PEC coupling system.This work underscores the tremendous potential of PEC coupling systems in energy conversion and environmental remediation,and provides valuable insights for the future design of such coupling systems.
文摘Binaphthalene-core phosphepine compounds with axial chirality belong to an important class of organocatalysts and ligands used in catalytic asymmetric synthesis.However,the number and application of these compounds have been limited due to the lack of efficient synthetic methods currently available to researchers.Herein,a simple and efficient palladium-catalyzed C—P cross-coupling reaction of enantiopure(R)-1 with a variety of aryl and heteroaryl halides is reported.The reaction provides access to a series of chiral binaphthalene-core phosphepine compounds using Pd(OAc)2/dippf as a catalyst,which allows most products to be formed in moderate to high yields(40%~92%)with excellent ee values(90%~99%ee).
基金jointly supported by the National Key Research and Development Program of China (2019YFC1905800)the National Key Research & Development Program of China (2018YFC1903500)+4 种基金the commercial project by Beijing Zhong Dian Hua Yuan Environment Protection Technology Co., Ltd. (E01211200005)the Regional key projects of the science and technology service network program (STS program) of the Chinese Academy of Sciences (KFJ-STS-QYZD-153)the Ningbo Science and Technology Innovation Key Projects (2020Z099, 2022Z028)the Ningbo Municipal Commonweal Key Program (2019C10033)the support of Mineral Resources Analytical and Testing Center, Institute of Process Engineering, Chinese Academy of Science
文摘To achieve the resource utilization of solid waste phosphogypsum(PG)and tackle the problem of utilizing potassium feldspar(PF),a coupled synergistic process between PG and PF is proposed in this paper.The study investigates the features of P and F in PG,and explores the decomposition of PF using hydrofluoric acid(HF)in the sulfuric acid system for K leaching and leaching of P and F in PG.The impact factors such as sulfuric acid concentration,reaction temperature,reaction time,material ratio(PG/PF),liquid–solid ratio,PF particle size,and PF calcination temperature on the leaching of P and K is systematically investigated in this paper.The results show that under optimal conditions,the leaching rate of K and P reach more than 93%and 96%,respectively.Kinetics study using shrinking core model(SCM)indicates two significant stages with internal diffusion predominantly controlling the leaching of K.The apparent activation energies of these two stages are 11.92 kJ·mol^(-1)and 11.55 kJ·mol^(-1),respectively.
文摘Palladium(Pd)‐based catalysts are essential to drive high‐performance Suzuki coupling reactions,which are powerful tools for the synthesis of functional organic compounds.Herein,we developed a solution‐rapid‐annealing process to stabilize nitrogen‐mesoporous carbon supported Pd single‐atom/cluster(Pd/NMC)material,which provided a catalyst with superior performance for Suzuki coupling reactions.In comparison with commercial palladium/carbon(Pd/C)catalysts,the Pd/NMC catalyst exhibited significantly boosted activity(100%selectivity and 95%yield)and excellent stability(almost no decay in activity after 10 reuse cycles)for the Suzuki coupling reactions of chlorobenzenes,together with superior yield and excellent selectivity in the fields of the board scope of the reactants.Moreover,our newly developed rapid annealing process of precursor solutions is applied as a generalized method to stabilize metal clusters(e.g.Pd,Pt,Ru),opening new possibilities in the construction of efficient highly dispersed metal atom and sub‐nanometer cluster catalysts with high performance.
基金financial support from the National Natural Science Foundation of China (No. 22101261)。
文摘Due to the increasing demand for the sustainability of modern organic chemistry, the development of green and powerful methods for C-C and C-B bond formation is highly desired. Among them, the transition-metal-free coupling reactions of gem–diborylalkanes emerge as one valuable tool for organic chemists in the last decade. The review covers selected representative examples. A comparison of these reactions with transition-metal-catalyzed reactions is provided. The recent example of α-boryl radical formation from gem–diborylalkanes is also briefly discussed.
基金the financial support by the Open Fund Project of Hubei Key Laboratory of Radiation Chemistry and Functional Materials (No. 2021KF07)the Research and Development Fund Project of Hubei University of Science and Technology (Nos. 2021ZX13, H2019004)Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD)。
文摘Polyanilines(PANIs) can be easily prepared from the available and cheap anilines via the oxidative polymerization reactions. Owing to the coordination of nitrogen in the material with metals, PANIs are widely used as the support of nano metal catalysts. In comparison with inorganic supports, the nano metals on PANIs were firmly anchored via the coordination bond so that they are not easily to lose during the reaction process. Moreover, since PANIs are versatile materials and their chemical features can be adjusted by introducing functional groups onto the monomers, the catalytic activities of the prepared catalysts are tunable. During the past decade, PANIs-supported nano metal catalysts have been widely applied in a variety of coupling reactions. This review aims to summarize the recent advances and give a perspective.
基金the Research Council of University of Maragheh for financially support of this workM.B.thanks the Sharif University of Technology for funding of this work
文摘The system,Pd(OAc)_2/imidazolium salts(L_2),was found as an efficient catalyst in the Heck coupling reaction of olefins with aryl halides and Suzuki reactions of various aryl halides with aryl boronic acids under aerobic condition.This catalytic system demonstrates great tolerance to a wide range of groups on all substrates of aryl halides,alkenes and aryl boronic acids.
文摘CuI/ethylene diamine/K2CO3/dioxane is shown to be a useful system for the cross coupling reactions of various aryl iodides and bromides with aryl and alkyl alkynes. Compared to the conventional Sonogashira reactions, the new procedure is free of palladium and phosphines.
基金Project (No. 2004C21032) supported by the Key Technologies R &D Program of Zhejiang Province, China
文摘Sm/TiCl4 system could well integrate the high reactivity of samarium(Ⅱ) and high deoxygenation capacity of low valent titanium within one system. In this paper, the intermolecular and intramolecular reductive coupling reactions of ketones with esters mediated by metallic samarium (Sm) and a catalytic amount of titanium tetrachloride (TiCl4) were successfully developed. A series of substituted ketones and cyclic β-keto-esters were prepared in moderate to good yields under reflux and neutral conditions.
基金supported by the National Natural Science Foundation of China(No.20472079)
文摘Pinacol coupling reactions catalyzed by active zinc revealed high activity and extensive suitability. The efficiency of the reaction was improved apparently owing to decreasing reductive potential of zinc. In addition, the results indicated that the zinc activity has a direct relation to the coupling reactivity compared to untreated zinc or other general active zinc.
基金supported by the Ministry of Science and Technology of China (No.2016YFA0200603)the National Natural Science Foundation of China (No.91421313 and No.21573207)Anhui Initiative in Quantum Information Technologies (AHY090300)
文摘The chemistry of acetaldehyde (CH3CHO) adsorbed on the anatase TiO2(001)-(1×4) surface has been investigated by temperature-programmed desorption (TPD) method. Our experimental results provide the direct evidence that the perfect lattice sites on the anatase TiO2(001)-(1×4) surface are quite inert for the reaction of CH3CHO, but the reduced defect sites on the surface are active for the thermally driven reductive carbon-carbon coupling reactions of CH3CHO to produce 2-butanone and butene. We propose that the coupling reactions of CH3CHO on the anatase TiO2(001)-(1×4) surface should undergo through the adsorption of paired CH3CHO molecules at the reduced defect sites, since the existing reduced Ti pairs provide the suitable adsorption sites.
基金the financial support from the National Funded Postdoctoral Researcher Program of China(GZC20230969)the financial support from the Guangdong Basic and Applied Basic Research Foundation(2024A1515010897)+2 种基金supported by the National Natural Science Foundation of China(22371091,22431006,22150004)the Guangdong Major Project of Basic and Applied Research(2019B030302009)the China Postdoctoral Science Foundation(2024M751120)。
文摘The formation of C–C bonds is a crucial aspect of organic synthesis.Synthesists'long-term objective is to identify novel catalysts to optimize reaction systems based on traditional transition metal catalysis.This study explores the synthesis and catalytic potential of palladium-installed covalent metal-organic frameworks(CMOFs)based on copper cyclic trinuclear units(Cu-CTUs).By incorporating palladium ions into the imine-based framework JNM-7 through a straightforward immersion method,we achieved a notable enhancement in catalytic activity for critical C–C coupling reactions,including C–H arylation and Sonogashira cross-coupling.The resulting JNM-7-Pd demonstrated remarkable stability and recyclability,maintaining its efficiency over at least three cycles without any decline in efficiency.
文摘By using a newly developed 4-hydroxy picolinohydrazide as the ligand,Cu-catalyzed coupling of(hetero)aryl chlorides with sodium aryl sulfonates proceeded smoothly at 130℃to give a series of biarylsulfones in 53%~96%yields.This represents the first metal-catalyzed coupling reaction of(hetero)aryl chlorides with sodium aryl sulfonates.Aryl and heteroaryl chlorides bearing either electron-donating or electron-withdrawing groups were applicable for this coupling reaction.
文摘The direct deoxygenative homo-coupling of benzyl alcohols holds great promise to build up bibenzyl motifs in organic synthesis,yet it remains a grand challenge in selectivity and activity control.Herein,we first discovered that iron carbide catalysts displayed high efficiency and selectivity in the catalytic deoxygenative homo-coupling of benzyl alcohols into bibenzyls using H_(2)as the reductant.Ir-promoted Fe0@Fe_(5)C_(2)gave the best performance among the investigated catalysts,and a broad scope of substrates with diverse functional groups could be smoothly converted into bibenzyls,with the yield up to 85%.In addition,in the presence of alkenes,three-component coupling reactions between alcohols and alkenes were also for the first time achieved to construct more complex multi-ring molecules.The radical-trapping experiment and FTIR measurements revealed the radical nature of the reaction and the significantly promoted C–O bond activation after carbonization,respectively.This work will provide guidelines for the rational design of efficient and selective catalysts for the alcohol-involved carbon-carbon coupling reactions.
基金This work was financially supported in part by the National Key R&D Program of China(2020YFA0406103)NSFC(21725102,22122506,91961106,U1832156,22105192,22075267)+4 种基金Strategic Priority Research Program of the CAS(XDPB14)the Open Funding Project of National Key Laboratory of Human Factors Engineering(SYFD062010K)Anhui Provincial Natural Science Foundation(2008085J05)Youth Innovation Promotion Association of CAS(2019444)China Post-doctoral Science Foundation(2021M693065,2021TQ0322).
文摘Electrochemical C–N coupling has generated intense research interest as a promising approach to reduce carbon and nitrogen emissions and store excess renewable electricity in valuable chemicals(e.g.,urea,amides,and amines).In this review,we discuss the emerging trends in electrocatalytic C–N coupling reactions using CO_(2) and inorganic nitrogenous species(i.e.,dinitrogen(N_(2))),nitrate(NO_(2)^(-)),nitrite(NO_(3)^(-)),and ammonia(NH_(3))as raw materials.The related reaction mechanisms and potential design principles for advanced electrocatalysts are outlined.In addition,the effects of different reactors,including H-cells,membrane-based flow reactors,and membrane electrode assembly electrolyzers,on the coupling reactions are emphasized.Finally,the current challenges and future opportunities in this field are described.We aim to provide an up-to-date overview of the electrochemical C–N coupling system to advance progress toward its practical application.
基金supported by the National Natural Science Foundation of China (20973079 & 21003107)State Basic Research Project of China(2009CB623507)Fundamental Research Funds for the Central Universities (2010QNA3035)
文摘Porous polymer supported palladium catalyst for cross coupling reactions with high activity has been successfully prepared by coordination of Pd 2+ species with Schiff bases functionalized porous polymer. The catalyst has been systemically investi-gated by a series of characterizations such as TEM, N 2 adsorption, NMR, IR, XPS, etc. TEM and N 2 isotherms show that the sample maintains the nanoporous structure after the modification and coordination. XPS results show that chemical state of palladium species in the catalyst is mainly +2. More importantly, the catalyst shows very high activities and excellent recycla-bility in a series of coupling reactions including Suzuki, Sonogashira, and Heck reactions. Hot filtration and poison of catalysts experiments have also been performed and the results indicate that soluble active species (mainly Pd(0) species) in-situ gener-ated from the catalyst under the reaction conditions are the active intermediates, which would redeposit to the supporter after the reactions.
基金We gratefully acknowledge the National Natural Science Foundation(Nos.81172934,30973607,20972160 and 21172220)the National Basic Research Program of China(No.2009CB940900)the Special Foundation of President,and the Strategic Leading Science&Technology Programme of the Chinese Academy of Sciences for their financial support.
文摘Pyridin-2-ol-N-oxide was designed as an efficient ligand for the coupling reaction of aryl iodides,aryl bromides and aryl chlorides,respectively,with primary amines,cyclic secondary amines or N-containing heterocycles at room or moderate temperature.The catalytic system showed great functional groups tolerance and excellent selective reactivity.
基金the Basic Science Research Program(No.NRF-2019R1A2C4069764)by Convergent Technology R&D Program for Hum an Augm entation(No.2019M3C1B8077549)through the National Research Foundation of Korea(NRF)funded by Ministry of Science and ICT.
文摘The challenge for single-atom catalysts in various C-C cross coupling reaction exists in the development of solid supporting materials.It has been desired tofind a supporting material designed in molecular level to anchor a single-atom catalyst and provide high degree of dispersion and substrate access in aqueous media.Here,we prepared discrete cages of metal-organic polyhedra anchoring single Pd atom(MOP-BPY(Pd))and successfully performed a Suzuki-Miyaura cross coupling reaction with various substrates in aqueous media.It was revealed that each tetrahedral cage of MOP-BPY(Pd)has 4.5 Pd atoms on average and retained its high degree of dispersion up to 3 months in water.The coupling efficiencies of the Suzuki-Miyaura cross coupling reaction exhibited more than 90.0%for various substrates we have tested in the aqueous media,which is superior to those of the molecular Pd complex and metal-organic framework(MOF)anchoring Pd atoms.Moreover,MOP-BPY(Pd)was successfully recovered and recycled without performance degradation.
基金This work was supported by the National Natural Science Foundation of China (No. 21102102), the Natural Science Foundation of Tianjin (No. 16JCYBJC 19700), and the innovation team plan of the Tianjin Education Committee (No. TD 12-5037).
文摘A [Pd(1-tritylimidazole)2Cl2] complex was synthesized and characterized by IH and 13C NMR spectroscopy, elemental analysis, and X-ray crystallography. The X-ray analysis confirmed that the Pd(II) has a four-coordinated square planar structure. The palladium complex was used to carry out Suzuki-Miyaura coupling reactions of aryl chlorides with a variety of phenylboronic acids in i-PrOH-H20 (1 : 1, V : V) at room temperature and Heck coupling reactions of aryl halides with methyl acrylate in DMF at 110℃. High yields of the cross-coupling products were obtained.
基金financially supported by the National Natural Science Foundation of China(22002084,22072081)the China Postdoctoral Science Foundation(2020M683420)+1 种基金the Fundamental Research Funds for the Central Universities(GK202103111)the 111 Project(B21005)。
文摘Electrocatalytic CO_(2) reduction reaction(CO_(2)RR)holds great promise in green energy conversion and storage.However,for current CO_(2) electrolyzers that rely on the oxygen evolution reaction,a large portion of the input energy is"wasted"at the anode due to the high overpotential requirement and the recovery of low-value oxygen.To make efficient use of the electricity during electrolysis,coupling CO_(2)RR with anodic alternatives that have low energy demands and/or profitable returns with high-value products is then promising.Herein,we review the latest advances in paired systems for simultaneous CO_(2) reduction and anode valorization.We start with the cases integrating CO_(2)RR with concurrent alternative oxidation,such as inorganic oxidation using chloride,sulfide,ammonia and urea,and organic oxidation using alcohols,aldehydes and primary amines.The paired systems that couple CO_(2)RR with on-site oxidative upgrading of CO_(2)-reduced chemicals are also introduced.The coupling mechanism,electrochemical performance and economic viability of these co-electrolysis systems are discussed.Thereby,we then point out the mismatch issues between the cathodic and anodic reactions regrading catalyst ability,electrolyte solution and reactant supply that will challenge the applications of these paired electrolysis systems.Opportunities to address these issues are further proposed,providing some guidance for future research.