For the integrable couplings of Ablowitz-Kaup-Newell-Segur(ICAKNS) equations, N-fold Darboux transformation(DT) TN, which is a 4 × 4 matrix, is constructed in this paper. Each element of this matrix is expressed ...For the integrable couplings of Ablowitz-Kaup-Newell-Segur(ICAKNS) equations, N-fold Darboux transformation(DT) TN, which is a 4 × 4 matrix, is constructed in this paper. Each element of this matrix is expressed by a ratio of the(4N + 1)-order determinant and 4N-order determinant of eigenfunctions. By making use of these formulae,the determinant expressions of N-transformed new solutions p^([N ]), q^([N ]), r^([N ])and s^([N ])are generated by this N-fold DT.Furthermore, when the reduced conditions q =-p*and s =-r*are chosen, we obtain determinant representations of N-fold DT and N-transformed solutions for the integrable couplings of nonlinear Schr?dinger(ICNLS) equations.Starting from the zero seed solutions, one-soliton solutions are explicitly given as an example.展开更多
In order to more accurately and effectively consider the propagation process of solitons in electromagnetic pulse waves and make full use of wavelength division multiplexing,we study a class of high-order three-compon...In order to more accurately and effectively consider the propagation process of solitons in electromagnetic pulse waves and make full use of wavelength division multiplexing,we study a class of high-order three-component Hirota equations by the Riemann-Hilbert method.Under zero boundary conditions and given initial conditions q_(j)(x,0),the N-soliton solutions of the equations are obtained by constructing and solving Riemann-Hilbert problems based on matrix spectral problem.Specifically,we discuss the cases of N=1,2,analyze the dynamical properties of 1-soliton and 2-soliton solutions through numerical simulations,and summarize the effect of integrable perturbations and spectral parameters on soliton motion.展开更多
The Boussinesq equations,pivotal in the analysis of water wave dynamics,effectively model weakly nonlinear and long wave approximations.This study utilizes the complete discriminant system within a polynomial approach...The Boussinesq equations,pivotal in the analysis of water wave dynamics,effectively model weakly nonlinear and long wave approximations.This study utilizes the complete discriminant system within a polynomial approach to derive exact traveling wave solutions for the coupled Boussinesq equation.The solutions are articulated through soliton,trigonometric,rational,and Jacobi elliptic functions.Notably,the introduction of Jacobi elliptic function solutions for this model marks a pioneering advancement.Contour plots of the solutions obtained by assigning values to various parameters are generated and subsequently analyzed.The methodology proposed in this study offers a systematic means to tackle nonlinear partial differential equations in mathematical physics,thereby enhancing comprehension of the physical attributes and dynamics of water waves.展开更多
In this paper, we extend the mapping deformation method proposed by Lou. It is used to find new exacttravelling wave solutions of nonlinear partial differential equation or coupled nonlinear partial differential equat...In this paper, we extend the mapping deformation method proposed by Lou. It is used to find new exacttravelling wave solutions of nonlinear partial differential equation or coupled nonlinear partial differential equations(PDEs). Based on the idea of the homogeneous balance method, we construct the general mapping relation betweenthe solutions of the PDEs and those of the cubic nonlinear Klein-Gordon (NKG) equation. By using this relation andthe abundant solutions of the cubic NKG equation, many explicit and exact travelling wave solutions of three systemsof coupled PDEs, which contain solitary wave solutions, trigonometric function solutions, Jacobian elliptic functionsolutions, and rational solutions, are obtained.展开更多
The simple Lie point symmetry reduction procedure is used to obtain infinitely many symmetries to a new integrable system of coupled KdV equations. Using some symmetry subalgebra of the equations, five types of the si...The simple Lie point symmetry reduction procedure is used to obtain infinitely many symmetries to a new integrable system of coupled KdV equations. Using some symmetry subalgebra of the equations, five types of the significant similarity reductions are obtained by virtue of the Lie group approach, and obtain abundant solutions of the coupled KdV equations, such as the solitary wave solution, exponential solution, rational solution, polynomial solution, etc.展开更多
In the present paper, we established a traveling wave solution by using modified Kudryashov method for the space-time fractional nonlinear partial differential equations. The method is used to obtain the exact solutio...In the present paper, we established a traveling wave solution by using modified Kudryashov method for the space-time fractional nonlinear partial differential equations. The method is used to obtain the exact solutions for different types of the space-time fractional nonlinear partial differential equations such as, the space-time fractional coupled equal width wave equation(CEWE) and the space-time fractional coupled modified equal width wave equation(CMEW), which are the important soliton equations. Both equations are reduced to ordinary differential equations by the use of fractional complex transform and properties of modified Riemann–Liouville derivative. We plot the exact solutions for these equations at different time levels.展开更多
The energy preserving average vector field (AVF) method is applied to the coupled Schr6dinger-KdV equations. Two energy preserving schemes are constructed by using Fourier pseudospectral method in space direction di...The energy preserving average vector field (AVF) method is applied to the coupled Schr6dinger-KdV equations. Two energy preserving schemes are constructed by using Fourier pseudospectral method in space direction discretization. In order to accelerate our simulation, the split-step technique is used. The numerical experiments show that the non-splitting scheme and splitting scheme are both effective, and have excellent long time numerical behavior. The comparisons show that the splitting scheme is faster than the non-splitting scheme, but it is not as good as the non-splitting scheme in preserving the invariants.展开更多
Using the machinery of Lie group analysis,the nonlinear system of coupled Burgers-type equations is studied.Using the infinitesimal generators in the optimal system of subalgebra of the said Lie algebras,it leads to t...Using the machinery of Lie group analysis,the nonlinear system of coupled Burgers-type equations is studied.Using the infinitesimal generators in the optimal system of subalgebra of the said Lie algebras,it leads to two nonequivalent similarity transformations by using it we obtain two reductions in the form of system of nonlinear ordinary differential equations.The search for solutions of these systems by using the G'/G-method has yielded certain exact solutions expressed by rational functions,hyperbolic functions,and trigonometric functions.Some figures are given to show the properties of the solutions.展开更多
Kortweg-de Vries (KdV)-typed equations have been used to describe certain nonlinear phenomena in fluids and plasmas. Generalized complex coupled KdV (GCCKdV) equations are investigated in this paper. Through the d...Kortweg-de Vries (KdV)-typed equations have been used to describe certain nonlinear phenomena in fluids and plasmas. Generalized complex coupled KdV (GCCKdV) equations are investigated in this paper. Through the dependent variable transformations and symbolic computation, GCCKdV equations are transformed into their bilinear forms, based on which the one- and two-soliton solutions are obtained. Through the interactions of two solitons, the regular elastic collision are shown. When the wave numbers are complex, three kinds of solitonie collisions are presented: (i) two solitons merge and separate from each other periodically; (ii) two solitons exhibit the attraction and repulsion nearly twice, and finally separate from each other after such type of interaction; (iii) two solitons are ftuctuant in the central region of the collision. Propagation features of solitons are investigated with the effects of the coefficients in the GCCKdV equations considered. Velocity of soliton increase with the a increasing. Amplitude of v increase with the a increasing and decrease with the β increasing.展开更多
The coupled Korteweg-de Vries (CKdV) equation with self-consistent sources (CKdVESCS) and its Lax representation are derived. We present a generalized binary Darboux transformation (GBDT) with an arbitrary time-...The coupled Korteweg-de Vries (CKdV) equation with self-consistent sources (CKdVESCS) and its Lax representation are derived. We present a generalized binary Darboux transformation (GBDT) with an arbitrary time- dependent function for the CKdVESCS as well as the formula for the N-times repeated GBDT. This GBDT provides non-auto-Biicklund transformation between two CKdVESCSs with different degrees of sources and enables us to construct more generM solutions with N arbitrary t-dependent functions. We obtain positon, negaton, complexiton, and negaton- positon solutions of the CKdVESCS.展开更多
In this paper, we consider a system of coupled quasilinear viscoelastic equa- tions with nonlinear damping. We use the perturbed energy method to show the general decay rate estimates of energy of solutions, which ext...In this paper, we consider a system of coupled quasilinear viscoelastic equa- tions with nonlinear damping. We use the perturbed energy method to show the general decay rate estimates of energy of solutions, which extends some existing results concerning a general decay for a single equation to the case of system, and a nonlinear system of viscoelastic wave equations to a quasilinear system.展开更多
The searching exact solutions in the solitary wave form of non-linear partial differential equations (PDEs) play a significant role to understand the internal mechanism of complex physical phenomena. In this paper w...The searching exact solutions in the solitary wave form of non-linear partial differential equations (PDEs) play a significant role to understand the internal mechanism of complex physical phenomena. In this paper we employ the proposed modified extended mapping method for constructing the exact solitary wave and soliton solutions of coupled Klein-Gordon equations and the (2-1-1)-dimensional cubic Klein-Gordon (K-G) equation. The Klein-Gordon equations are relativistic version of Schr6dinger equations, which describe the relation of relativistic energy-momentum in the form of quantized version. We productively achieve exact solutions involving parameters such as dark and bright solitary waves, Kink solitary wave, anti-Kink solitary wave, periodic solitary waves, and hyperbolic functions in which several solutions are novel. We plot the three-dimensional surface of some obtained solutions in this study. It is recognized that the modified mapping technique presents a more prestigious mathematical tool for acquiring analytical solutions of PDEs arise in mathematical physics.展开更多
In the current work, we extend the local discontinuous Galerkin method to a more general application system. The Burgers and coupled Burgers equations are solved by the local discontinuous Galerkin method. Numerical e...In the current work, we extend the local discontinuous Galerkin method to a more general application system. The Burgers and coupled Burgers equations are solved by the local discontinuous Galerkin method. Numerical experiments are given to verify the efficiency and accuracy of our method. Moreover the numerical results show that the method can approximate sharp fronts accurately with minimal oscillation.展开更多
The coupled modified nonlinear Schrodinger equations are under investigation in this work. Starting from analyzing the spectral problem of the Lax pair, a Riemann-Hilbert problem for the coupled modified nonlinear Sch...The coupled modified nonlinear Schrodinger equations are under investigation in this work. Starting from analyzing the spectral problem of the Lax pair, a Riemann-Hilbert problem for the coupled modified nonlinear Schrodinger equations is formulated. And then, through solving the obtained Riemann-Hilbert problem under the conditions of irregularity and reflectionless case, N-soliton solutions for the equations are presented. Furthermore, the localized structures and dynamic behaviors of the one-soliton solution are shown graphically.展开更多
In this paper Lou's direct perturbation method is applied to the perturbed coupled nonlinear Schrodinger equations to obtain their asymptotical solutions, which include not only the zero-order solutions but also the ...In this paper Lou's direct perturbation method is applied to the perturbed coupled nonlinear Schrodinger equations to obtain their asymptotical solutions, which include not only the zero-order solutions but also the first-order modifications. Based on the asymptotical solutions, the effects of perturbations on soliton parameters and the collision between two solitons are then discussed in brief. Furthermore, we directly simulate the perturbed coupled nonlinear SchrSdinger equations by split-step Fourier method to check the validity of the direct perturbation method. It turns out that our analytical results are well supported by the numerical calculations.展开更多
An AOR(Accelerated Over-Relaxation)iterative method is suggested by introducing one more parameter than SOR(Successive Over-Relaxation)method for solving coupled Lyapunov matrix equations(CLMEs)that come from continuo...An AOR(Accelerated Over-Relaxation)iterative method is suggested by introducing one more parameter than SOR(Successive Over-Relaxation)method for solving coupled Lyapunov matrix equations(CLMEs)that come from continuous-time Markovian jump linear systems.The proposed algorithm improves the convergence rate,which can be seen from the given illustrative examples.The comprehensive theoretical analysis of convergence and optimal parameter needs further investigation.展开更多
In this paper, exact solutions are derived for four coupled complex nonlinear different equations by using simplified transformation method and algebraic equations.
The dissipative equilibrium dynamics studies the law of fluid motion under constraints in the contact interface of the coupling system. It needs to examine how con- straints act upon the fluid movement, while the flui...The dissipative equilibrium dynamics studies the law of fluid motion under constraints in the contact interface of the coupling system. It needs to examine how con- straints act upon the fluid movement, while the fluid movement reacts to the constraint field. It also needs to examine the coupling fluid field and media within the contact in- terface, and to use the multi-scale analysis to solve the regular and singular perturbation problems in micro-phenomena of laboratories and macro-phenomena of nature. This pa- per describes the field affected by the gravity constraints. Applying the multi-scale anal- ysis to the complex Fourier harmonic analysis, scale changes, and the introduction of new parameters, the complex three-dimensional coupling dynamic equations are transformed into a boundary layer problem in the one-dimensional complex space. Asymptotic analy- sis is carried out for inter and outer solutions to the perturbation characteristic function of the boundary layer equations in multi-field coupling. Examples are given for disturbance analysis in the flow field, showing the turning point from the index oscillation solution to the algebraic solution. With further analysis and calculation on nonlinear eigenfunctions of the contact interface dynamic problems by the eigenvalue relation, an asymptotic per- turbation solution is obtained. Finally, a boundary layer solution to multi-field coupling problems in the contact interface is obtained by asymptotic estimates of eigenvalues for the G-N mode in the large flow limit. Characteristic parameters in the final form of the eigenvalue relation are key factors of the dissipative dynamics in the contact interface.展开更多
In this paper, an extended method is proposed for constructing new forms of exact travelling wave solutions to nonlinear partial differential equations by making a more general transformation. For illustration, we app...In this paper, an extended method is proposed for constructing new forms of exact travelling wave solutions to nonlinear partial differential equations by making a more general transformation. For illustration, we apply the method to the asymmetric Nizhnik-Novikov-Vesselov equation and the coupled Drinfel'd-Sokolov-Wilson equation and successfully cover the previously known travelling wave solutions found by Chen's method .展开更多
On the tangent bundle TSN-1 of the unit sphere SN-l, this paper reduces the coupled Burgers equations to two Neumann systems by using the nonlinearization of the Lax pair, whose Liouville integrability is displayed in...On the tangent bundle TSN-1 of the unit sphere SN-l, this paper reduces the coupled Burgers equations to two Neumann systems by using the nonlinearization of the Lax pair, whose Liouville integrability is displayed in the scheme of the r-matrix technique. Based on the Lax matrix of the Neumann systems, the Abel-Jacobi coordinates are appropriately chosen to straighten out the restricted Neumann flows on the complex torus, from which the new finite-gap solutions expressed by Riemann theta functions for the coupled Burgers equations are given in view of the Jacobi inversion.展开更多
基金Supported by the National Natural Science Foundation of China under Grant Nos.61771174,11371326,11371361,11301454,and11271168Natural Science Fund for Colleges and Universities of Jiangsu Province of China under Grant No.17KJB110020General Research Project of Department of Education of Zhejiang Province(Y201636538)
文摘For the integrable couplings of Ablowitz-Kaup-Newell-Segur(ICAKNS) equations, N-fold Darboux transformation(DT) TN, which is a 4 × 4 matrix, is constructed in this paper. Each element of this matrix is expressed by a ratio of the(4N + 1)-order determinant and 4N-order determinant of eigenfunctions. By making use of these formulae,the determinant expressions of N-transformed new solutions p^([N ]), q^([N ]), r^([N ])and s^([N ])are generated by this N-fold DT.Furthermore, when the reduced conditions q =-p*and s =-r*are chosen, we obtain determinant representations of N-fold DT and N-transformed solutions for the integrable couplings of nonlinear Schr?dinger(ICNLS) equations.Starting from the zero seed solutions, one-soliton solutions are explicitly given as an example.
基金Project supported by Shaanxi Scholarship Council of China(Grant No.2021-030)the Youth Scientific Research Project of Shaanxi Province,China(Grant No.202103021223060)。
文摘In order to more accurately and effectively consider the propagation process of solitons in electromagnetic pulse waves and make full use of wavelength division multiplexing,we study a class of high-order three-component Hirota equations by the Riemann-Hilbert method.Under zero boundary conditions and given initial conditions q_(j)(x,0),the N-soliton solutions of the equations are obtained by constructing and solving Riemann-Hilbert problems based on matrix spectral problem.Specifically,we discuss the cases of N=1,2,analyze the dynamical properties of 1-soliton and 2-soliton solutions through numerical simulations,and summarize the effect of integrable perturbations and spectral parameters on soliton motion.
基金supported by the National Natural Science Foundation of China(Grant No.11925204).
文摘The Boussinesq equations,pivotal in the analysis of water wave dynamics,effectively model weakly nonlinear and long wave approximations.This study utilizes the complete discriminant system within a polynomial approach to derive exact traveling wave solutions for the coupled Boussinesq equation.The solutions are articulated through soliton,trigonometric,rational,and Jacobi elliptic functions.Notably,the introduction of Jacobi elliptic function solutions for this model marks a pioneering advancement.Contour plots of the solutions obtained by assigning values to various parameters are generated and subsequently analyzed.The methodology proposed in this study offers a systematic means to tackle nonlinear partial differential equations in mathematical physics,thereby enhancing comprehension of the physical attributes and dynamics of water waves.
文摘In this paper, we extend the mapping deformation method proposed by Lou. It is used to find new exacttravelling wave solutions of nonlinear partial differential equation or coupled nonlinear partial differential equations(PDEs). Based on the idea of the homogeneous balance method, we construct the general mapping relation betweenthe solutions of the PDEs and those of the cubic nonlinear Klein-Gordon (NKG) equation. By using this relation andthe abundant solutions of the cubic NKG equation, many explicit and exact travelling wave solutions of three systemsof coupled PDEs, which contain solitary wave solutions, trigonometric function solutions, Jacobian elliptic functionsolutions, and rational solutions, are obtained.
基金The project supported by National Natural Science Foundation of China under Grant No. 10071033 and the Natural Science Foundation of Jiangsu Province under Grant No. BK2002003. Acknowledgments 0ne of the authors (S.P. Qian) is indebted to Prof. S.Y. Lou for his helpful discussions.
文摘The simple Lie point symmetry reduction procedure is used to obtain infinitely many symmetries to a new integrable system of coupled KdV equations. Using some symmetry subalgebra of the equations, five types of the significant similarity reductions are obtained by virtue of the Lie group approach, and obtain abundant solutions of the coupled KdV equations, such as the solitary wave solution, exponential solution, rational solution, polynomial solution, etc.
文摘In the present paper, we established a traveling wave solution by using modified Kudryashov method for the space-time fractional nonlinear partial differential equations. The method is used to obtain the exact solutions for different types of the space-time fractional nonlinear partial differential equations such as, the space-time fractional coupled equal width wave equation(CEWE) and the space-time fractional coupled modified equal width wave equation(CMEW), which are the important soliton equations. Both equations are reduced to ordinary differential equations by the use of fractional complex transform and properties of modified Riemann–Liouville derivative. We plot the exact solutions for these equations at different time levels.
基金supported by the National Natural Science Foundation of China(Grant No.91130013)the Open Foundation of State Key Laboratory of HighPerformance Computing of China
文摘The energy preserving average vector field (AVF) method is applied to the coupled Schr6dinger-KdV equations. Two energy preserving schemes are constructed by using Fourier pseudospectral method in space direction discretization. In order to accelerate our simulation, the split-step technique is used. The numerical experiments show that the non-splitting scheme and splitting scheme are both effective, and have excellent long time numerical behavior. The comparisons show that the splitting scheme is faster than the non-splitting scheme, but it is not as good as the non-splitting scheme in preserving the invariants.
文摘Using the machinery of Lie group analysis,the nonlinear system of coupled Burgers-type equations is studied.Using the infinitesimal generators in the optimal system of subalgebra of the said Lie algebras,it leads to two nonequivalent similarity transformations by using it we obtain two reductions in the form of system of nonlinear ordinary differential equations.The search for solutions of these systems by using the G'/G-method has yielded certain exact solutions expressed by rational functions,hyperbolic functions,and trigonometric functions.Some figures are given to show the properties of the solutions.
基金*Supported by the National Natural Science Foundation of China under Grant No. 60772023, by the Open Fund of the State Key Laboratory of Software Development Environment under Grant No. SKLSDE-07-001, Beijing University of Aeronautics and Astronautics, by the National Basic Research Program of China (973 Program) under Grant No. 2005CB321901, and by the Specialized Research Fund for the Doctoral Program of Higher Education under Grant Nos. 20060006024 and 200800130006, Chinese Ministry of Education.
文摘Kortweg-de Vries (KdV)-typed equations have been used to describe certain nonlinear phenomena in fluids and plasmas. Generalized complex coupled KdV (GCCKdV) equations are investigated in this paper. Through the dependent variable transformations and symbolic computation, GCCKdV equations are transformed into their bilinear forms, based on which the one- and two-soliton solutions are obtained. Through the interactions of two solitons, the regular elastic collision are shown. When the wave numbers are complex, three kinds of solitonie collisions are presented: (i) two solitons merge and separate from each other periodically; (ii) two solitons exhibit the attraction and repulsion nearly twice, and finally separate from each other after such type of interaction; (iii) two solitons are ftuctuant in the central region of the collision. Propagation features of solitons are investigated with the effects of the coefficients in the GCCKdV equations considered. Velocity of soliton increase with the a increasing. Amplitude of v increase with the a increasing and decrease with the β increasing.
基金The project supported by the National Fundamental Research Program of China(973 Program)under Grant No.2007CB814800National Natural Science Foundation of China under Grant No.10601028
文摘The coupled Korteweg-de Vries (CKdV) equation with self-consistent sources (CKdVESCS) and its Lax representation are derived. We present a generalized binary Darboux transformation (GBDT) with an arbitrary time- dependent function for the CKdVESCS as well as the formula for the N-times repeated GBDT. This GBDT provides non-auto-Biicklund transformation between two CKdVESCSs with different degrees of sources and enables us to construct more generM solutions with N arbitrary t-dependent functions. We obtain positon, negaton, complexiton, and negaton- positon solutions of the CKdVESCS.
基金supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education,Science and Technology (2011-0007870)
文摘In this paper, we consider a system of coupled quasilinear viscoelastic equa- tions with nonlinear damping. We use the perturbed energy method to show the general decay rate estimates of energy of solutions, which extends some existing results concerning a general decay for a single equation to the case of system, and a nonlinear system of viscoelastic wave equations to a quasilinear system.
文摘The searching exact solutions in the solitary wave form of non-linear partial differential equations (PDEs) play a significant role to understand the internal mechanism of complex physical phenomena. In this paper we employ the proposed modified extended mapping method for constructing the exact solitary wave and soliton solutions of coupled Klein-Gordon equations and the (2-1-1)-dimensional cubic Klein-Gordon (K-G) equation. The Klein-Gordon equations are relativistic version of Schr6dinger equations, which describe the relation of relativistic energy-momentum in the form of quantized version. We productively achieve exact solutions involving parameters such as dark and bright solitary waves, Kink solitary wave, anti-Kink solitary wave, periodic solitary waves, and hyperbolic functions in which several solutions are novel. We plot the three-dimensional surface of some obtained solutions in this study. It is recognized that the modified mapping technique presents a more prestigious mathematical tool for acquiring analytical solutions of PDEs arise in mathematical physics.
基金supported by the National Natural Science Foundation of China(Grant No.11171038)
文摘In the current work, we extend the local discontinuous Galerkin method to a more general application system. The Burgers and coupled Burgers equations are solved by the local discontinuous Galerkin method. Numerical experiments are given to verify the efficiency and accuracy of our method. Moreover the numerical results show that the method can approximate sharp fronts accurately with minimal oscillation.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61072147 and 11271008)
文摘The coupled modified nonlinear Schrodinger equations are under investigation in this work. Starting from analyzing the spectral problem of the Lax pair, a Riemann-Hilbert problem for the coupled modified nonlinear Schrodinger equations is formulated. And then, through solving the obtained Riemann-Hilbert problem under the conditions of irregularity and reflectionless case, N-soliton solutions for the equations are presented. Furthermore, the localized structures and dynamic behaviors of the one-soliton solution are shown graphically.
基金Project supported by the National Natural Science Foundation of China (Grant No 10575087) and the Natural Science Foundation of Zheiiang Province of China (Grant No 102053). 0ne of the authors (Lin) would like to thank Prof. Sen-yue Lou for many useful discussions.
文摘In this paper Lou's direct perturbation method is applied to the perturbed coupled nonlinear Schrodinger equations to obtain their asymptotical solutions, which include not only the zero-order solutions but also the first-order modifications. Based on the asymptotical solutions, the effects of perturbations on soliton parameters and the collision between two solitons are then discussed in brief. Furthermore, we directly simulate the perturbed coupled nonlinear SchrSdinger equations by split-step Fourier method to check the validity of the direct perturbation method. It turns out that our analytical results are well supported by the numerical calculations.
基金Supported by Key Scientific Research Project of Colleges and Universities in Henan Province of China(Grant No.20B110012)。
文摘An AOR(Accelerated Over-Relaxation)iterative method is suggested by introducing one more parameter than SOR(Successive Over-Relaxation)method for solving coupled Lyapunov matrix equations(CLMEs)that come from continuous-time Markovian jump linear systems.The proposed algorithm improves the convergence rate,which can be seen from the given illustrative examples.The comprehensive theoretical analysis of convergence and optimal parameter needs further investigation.
文摘In this paper, exact solutions are derived for four coupled complex nonlinear different equations by using simplified transformation method and algebraic equations.
基金Project supported by the National Natural Science Foundation of China (No. 10871225)the Pujiang Talent Program of China (No. 06PJ14416)
文摘The dissipative equilibrium dynamics studies the law of fluid motion under constraints in the contact interface of the coupling system. It needs to examine how con- straints act upon the fluid movement, while the fluid movement reacts to the constraint field. It also needs to examine the coupling fluid field and media within the contact in- terface, and to use the multi-scale analysis to solve the regular and singular perturbation problems in micro-phenomena of laboratories and macro-phenomena of nature. This pa- per describes the field affected by the gravity constraints. Applying the multi-scale anal- ysis to the complex Fourier harmonic analysis, scale changes, and the introduction of new parameters, the complex three-dimensional coupling dynamic equations are transformed into a boundary layer problem in the one-dimensional complex space. Asymptotic analy- sis is carried out for inter and outer solutions to the perturbation characteristic function of the boundary layer equations in multi-field coupling. Examples are given for disturbance analysis in the flow field, showing the turning point from the index oscillation solution to the algebraic solution. With further analysis and calculation on nonlinear eigenfunctions of the contact interface dynamic problems by the eigenvalue relation, an asymptotic per- turbation solution is obtained. Finally, a boundary layer solution to multi-field coupling problems in the contact interface is obtained by asymptotic estimates of eigenvalues for the G-N mode in the large flow limit. Characteristic parameters in the final form of the eigenvalue relation are key factors of the dissipative dynamics in the contact interface.
文摘In this paper, an extended method is proposed for constructing new forms of exact travelling wave solutions to nonlinear partial differential equations by making a more general transformation. For illustration, we apply the method to the asymmetric Nizhnik-Novikov-Vesselov equation and the coupled Drinfel'd-Sokolov-Wilson equation and successfully cover the previously known travelling wave solutions found by Chen's method .
基金supported by the Scientific Foundation of the Southeast University of China (Grant No.KJ2009359)the National Natural Science Foundation of China (Grant No.10871182)+1 种基金the U.S.Army Research Office (contract/grant number W911NF-08-1-0511)Texas grant NHARP 2010
文摘On the tangent bundle TSN-1 of the unit sphere SN-l, this paper reduces the coupled Burgers equations to two Neumann systems by using the nonlinearization of the Lax pair, whose Liouville integrability is displayed in the scheme of the r-matrix technique. Based on the Lax matrix of the Neumann systems, the Abel-Jacobi coordinates are appropriately chosen to straighten out the restricted Neumann flows on the complex torus, from which the new finite-gap solutions expressed by Riemann theta functions for the coupled Burgers equations are given in view of the Jacobi inversion.