Granite residual soil (GRS) is a type of weathering soil that can decompose upon contact with water, potentially causing geological hazards. In this study, cement, an alkaline solution, and glass fiber were used to re...Granite residual soil (GRS) is a type of weathering soil that can decompose upon contact with water, potentially causing geological hazards. In this study, cement, an alkaline solution, and glass fiber were used to reinforce GRS. The effects of cement content and SiO_(2)/Na2O ratio of the alkaline solution on the static and dynamic strengths of GRS were discussed. Microscopically, the reinforcement mechanism and coupling effect were examined using X-ray diffraction (XRD), micro-computed tomography (micro-CT), and scanning electron microscopy (SEM). The results indicated that the addition of 2% cement and an alkaline solution with an SiO_(2)/Na2O ratio of 0.5 led to the densest matrix, lowest porosity, and highest static compressive strength, which was 4994 kPa with a dynamic impact resistance of 75.4 kN after adding glass fiber. The compressive strength and dynamic impact resistance were a result of the coupling effect of cement hydration, a pozzolanic reaction of clay minerals in the GRS, and the alkali activation of clay minerals. Excessive cement addition or an excessively high SiO_(2)/Na2O ratio in the alkaline solution can have negative effects, such as the destruction of C-(A)-S-H gels by the alkaline solution and hindering the production of N-A-S-H gels. This can result in damage to the matrix of reinforced GRS, leading to a decrease in both static and dynamic strengths. This study suggests that further research is required to gain a more precise understanding of the effects of this mixture in terms of reducing our carbon footprint and optimizing its properties. The findings indicate that cement and alkaline solution are appropriate for GRS and that the reinforced GRS can be used for high-strength foundation and embankment construction. The study provides an analysis of strategies for mitigating and managing GRS slope failures, as well as enhancing roadbed performance.展开更多
This paper presents an improved level set method for topology optimization of geometrically nonlinear structures accounting for the effect of thermo-mechanical couplings.It derives a new expression for element couplin...This paper presents an improved level set method for topology optimization of geometrically nonlinear structures accounting for the effect of thermo-mechanical couplings.It derives a new expression for element coupling stress resulting from the combination of mechanical and thermal loading,using geometric nonlinear finite element analysis.A topological model is then developed to minimize compliance while meeting displacement and frequency constraints to fulfill design requirements of structural members.Since the conventional Lagrange multiplier search method is unable to handle convergence instability arising from large deformation,a novel Lagrange multiplier search method is proposed.Additionally,the proposed method can be extended to multi-constrained geometrically nonlinear topology optimization,accommodating multiple physical field couplings.展开更多
Based on the rapid advancements in nanomaterials and nanotechnology,the Nanofluidic Reverse Electrodialysis(NRED)has attracted significant attention as an innovative and promising energy conversion strategy for extrac...Based on the rapid advancements in nanomaterials and nanotechnology,the Nanofluidic Reverse Electrodialysis(NRED)has attracted significant attention as an innovative and promising energy conversion strategy for extracting sustainable and clean energy fromthe salinity gradient energy.However,the scarcity of research investigating the intricate multi-factor coupling effects on the energy conversion performance,especially the trade-offs between ion selectivity and mass transfer in nanochannels,of NRED poses a great challenge to achieving breakthroughs in energy conversion processes.This numerical study innovatively investigates the multi-factor coupling effect of three critical operational factors,including the nanochannel configuration,the temperature field,and the concentration difference,on the energy conversion processes of NRED.In this work,a dimensionless amplitude parameter s is introduced to emulate the randomly varied wall configuration of nanochannels that inherently occur in practical applications,thereby enhancing the realism and applicability of our analysis.Numerical results reveal that the application of a temperature gradient,which is oriented in opposition to the concentration gradient,enhances the ion transportation and selectivity simultaneously,leading to an enhancement in both output power and energy conversion efficiency.Additionally,the increased fluctuation of the nanochannel wall from s=0 to s=0.08 improves ion selectivity yet raises ion transport resistance,resulting in an enhancement in output power and energy conversion efficiency but a slight reduction in current.Furthermore,with increasing the concentration ratio cH/cL from 10 to 1000,either within a fixed temperature field or at a constant dimensionless amplitude,the maximumpower consistently attains its optimal value at a concentration ratio of 100 but the cation transfer number experiences amonotonic decrease across this entire range of concentration ratios.Finally,uponmodifying the operational parameters fromthe baseline condition of s=0,c_(H)/c_(L)=10,andΔT=0 K to the targetedconditionof s=0.08,c_(H)/c_(L)=50,andΔT=25 K,there is a concerted improvement observed in the open-circuit potential,short-circuit current,andmaximumpower,with respective increments of 8.86%,204.97%,and 232.01%,but a reduction in cation transfer number with a notable decrease of 15.37%.展开更多
Lessening energy-related carbon emissions has become a crucial measure to achieve Chinese carbon neutrality.This study is the first to construct a Difference in Carbon pressures-adjusted Human Development Index(DCHDI)...Lessening energy-related carbon emissions has become a crucial measure to achieve Chinese carbon neutrality.This study is the first to construct a Difference in Carbon pressures-adjusted Human Development Index(DCHDI)model for the purpose of exploring the coupling effect between carbon emissions and human development variety from 2000 to 2019 in Chinese provinces.We demonstrate the following.(1)The total energy-related carbon footprint of 30 provinces in China reached 10.2 billion tons in 2019,with an average annual growth rate of 6.93% over the past two decades;and the provinces with the highest carbon emissions per capita are InnerMongolia,Ningxia,and Shanxi.(2)At the provincial level,we observed that the Human Development Index(HDI),which includes life expectancy,education,and income,has been rising,while Beijing,Shanghai,and Tianjin entered the super-high HDI level before 2008.(3)The entire coupling effect of 30 Chinese provinces has been broadly fortified in the last 20 years,but the growth rate of DCHDI values in 2011-2019 has slowed down compared with that in 2000-2010;the clustering phenomenon demonstrated that this discovery is associated with historical peaks in total carbon emissions.(4)The co-ordination degree of carbon emissions per capita and HDI was verified,and 96% of the data points were found in the range of super high coupling coordination degree.Overall,this study provides the government with worthwhile guidance for decision-making and carbon reduction strategies for other countries struggling to advance human sustainable development.展开更多
In order to investigate the effect of vehicle-bridge coupling on the dynamic characteristics of the bridge,a steel-concrete composite beam suspension bridge is taken as the research object,and a three-dimensional spat...In order to investigate the effect of vehicle-bridge coupling on the dynamic characteristics of the bridge,a steel-concrete composite beam suspension bridge is taken as the research object,and a three-dimensional spatial model of the bridge and a biaxial vehicle model of the vehicle are established,and then a vehicle-bridge coupling vibration system is constructed on the basis of the Nemak-βmethod,and the impact coefficients of each part of the bridge are obtained under different bridge deck unevenness and vehicle speed.The simulation results show that the bridge deck unevenness has the greatest influence on the vibration response of the bridge,and the bridge impact coefficient increases along with the increase in the level of bridge deck unevenness,and the impact coefficient of the main longitudinal girder and the secondary longitudinal girder achieves the maximum value when the level 4 unevenness is 0.328 and 0.314,respectively;when the vehicle speed is increased,the vibration response of the bridge increases and then decreases,and the impact coefficient of the bridge in the middle of the bridge at a speed of 60 km/h achieves the maximum value of 0.192.展开更多
Because of the small stiffness and high flexibility, the tension membrane structure is easy to relax and damage or even destroy under the action of external load, which leads to the occurrence of engineering accidents...Because of the small stiffness and high flexibility, the tension membrane structure is easy to relax and damage or even destroy under the action of external load, which leads to the occurrence of engineering accidents. In this paper, the damped nonlinear vibration of tensioned membrane structure under the coupling action of wind and rain is approximately solved, considering the geometric nonlinearity of membrane surface deformation and the influence of air damping. Applying von Karman’s large deflection theory and D’Alembert’s principle, the governing equations are established for an analytical solution, and the experimental results are compared with the analytical results. The feasibility of this method is verified, which provides some theoretical reference for practical membrane structure engineering design and maintenance.展开更多
The binding energy spectrum and electron momentum distributions for the outer valence orbitals of n-propyl iodide molecule have been measured using the electron momentum spectrometer employing non-coplanar asymmetric ...The binding energy spectrum and electron momentum distributions for the outer valence orbitals of n-propyl iodide molecule have been measured using the electron momentum spectrometer employing non-coplanar asymmetric geometry at impact energy of 2.5 keV plus binding energy. The ionization bands have been assigned in detail via the high accuracy SACCI general-R method calculation and the experimental momentum profiles are compared with the theoretical ones calculated by Hartree-Fock and B3LYP/aug-cc-pVTZ(C,H)6-311G??(I). The spin-orbit coupling effect and intramolecular orbital interaction have been analyzed for the outermost two bands, which are assigned to the iodine 5p lone pairs, using NBO method and non-relativistic as well as relativistic calculations. It is found that both of the interactions will lead to the observed differences in electron momentum distributions. The experimental results agree with the relativistic theoretical momentum profiles, indicating that the spin-orbit coupling effect dominates in n-propyl iodide molecule.展开更多
Based on the results of two dimension velo city structure, 1∶100 000 aeromagnetic anomaly, 1∶200 000 bouguer gravity anom aly and seismic anisotropy of Jiaodong and neighboring region in Shandong, China , the info...Based on the results of two dimension velo city structure, 1∶100 000 aeromagnetic anomaly, 1∶200 000 bouguer gravity anom aly and seismic anisotropy of Jiaodong and neighboring region in Shandong, China , the information of geophysical field was divided into two parts: deep and sh allow focus fields. And then, the information of two different fields was c ombined with that of deep seated geology and ore deposit features. The syntheti c result was adopted to analyze three dimension structure, to probe into crust mantle coupling effects of mineralization and dynamics of ore formation system .展开更多
Ultrasonic vibration-assisted grinding(UVAG)is an effective and promising method for machining of hard-to-cut materials.This article proposed an ultrasonic vibration plate device enabling the longitudinal full-wave an...Ultrasonic vibration-assisted grinding(UVAG)is an effective and promising method for machining of hard-to-cut materials.This article proposed an ultrasonic vibration plate device enabling the longitudinal full-wave and transverse half-wave(L2T1)vibration mode for UVAG.The characteristics of two-dimensional coupled vibration in different directions were analyzed on the basis of apparent elastic method and finite element method.Furthermore,a correction factor was applied to correct the frequency error caused by the apparent elastic method.Finally,the comparative experiments between the conventional creep-feed grinding and UVAG of Inconel 718 nickel-based superalloy were carried out.The results indicate that the apparent elastic method with the correction factor is accurate for the design of plate device under the L2T1 vibration mode.Compared with the conventional creep-feed grinding,the UVAG causes the reduction of grinding force and the improvement of machined surface quality of Inconel 718 nickel-based superalloy.Furthermore,under the current experimental conditions,the optimal ultrasonic vibration amplitude is determined as 6μm,with which the minimum surface roughness is achieved.展开更多
As drilling operations move into remote locations and extreme water depths, recoil analysis requires more careful considerations and the incidence of emergency disconnect is increased inevitably. To accurately capture...As drilling operations move into remote locations and extreme water depths, recoil analysis requires more careful considerations and the incidence of emergency disconnect is increased inevitably. To accurately capture the recoil dynamics of a deep-water riser in an emergency disconnect scenario, researchers typically focus on modelling the influential subsystems (e.g., the tensioner, the mud discharge and seawater refilling process) which can be solved in the preprocessing, and then the determined parameters are transmitted into an existing global riser analysis software. Distinctively, the current study devotes efforts into the coupling effects resulting from that the suspended riser reacts the platform heave motion via the tensioner system in the course of recoil and the discharging fluid column follows the oscillation of the riser in the mud discharge process. Four simulation models are established based on lumped mass method employing different formulas for the top boundary condition of the riser and the discharging flow acceleration. It demonstrates that the coupling effects discussed above can significantly affect the recoil behavior during the transition phase from initial disconnect to the final hang-off state. It is recommended to develop a fully- coupled integrated model for recoil analysis and anti-recoil control system design before extreme deep-water applications.展开更多
The water content and nutrient in soil are two main determine factors to crop yield and quality, managements of which in field are of great importance to maintain sustainable high yield. The objective of this study wa...The water content and nutrient in soil are two main determine factors to crop yield and quality, managements of which in field are of great importance to maintain sustainable high yield. The objective of this study was to measure the uptake, forms, and use efficiency of phosphorus (P) in wheat under four levels of irrigation (W0, W1, W2, and W3) and three levels of P application (P0, P1, and P2) through two growth seasons of wheat (2008-2010). The field experiment was carried out in a low level of soil P concentration and the eultivar was Jimai 20. The results indicated that P fertilizer combined with irrigation not only improved the activity of phosphatase in soil, but also increased P accumulation in wheat, similar results was found in the grain of wheat, the content of total P increased significantly. Meanwhile, the mainly existence forms of P in grain were the lecithoid-P and labile organic-P. On the other hand, in comparison to the irrigation, the dry matter and grain P production efficiency and postponing P application of wheat increased with increasing Papplication rates within the range of 0-180 kg P2O5 ha-1. The interaction between P and irrigation also significantly (P〈0.01) affected on the P accumulation, grain total P, grain phospholipid P, and P production efficiency. In this study, therefore, the P applications and irrigation improved grain P production efficiency and postponing P application of winter wheat, and W2P2 treatment (180 kg P2O5 ha-1 combination with 120 mm irrigation) had a high P accumulation and P use efficiency, it was an optimum level for P fertilizer application and irrigation in this region.展开更多
A series of In_(x)Sb_(2-x)S_(3) nanosheets modified g-C_(3)N_(4)(In_(x)Sb_(2-x)S_(3)-TCN)heterojunctions with different g-C_(3)N_(4) contents were fabricated by an in situ deposition method.All the In_(x)Sb_(2-x)S_(3)...A series of In_(x)Sb_(2-x)S_(3) nanosheets modified g-C_(3)N_(4)(In_(x)Sb_(2-x)S_(3)-TCN)heterojunctions with different g-C_(3)N_(4) contents were fabricated by an in situ deposition method.All the In_(x)Sb_(2-x)S_(3)-TCN composites were applied as photocatalysts in Cr(Ⅵ)polluted water treatment and the results displayed that In_(x)Sb_(2-x)S_(3)-TCN could effectively remove Cr(Ⅵ)under visible light through synergistic effects of adsorption and photocatalytic reduction.Especially,In_(x)Sb_(2-x)S_(3)-TCN-70(70 mg g-C_(3)N_(4)) exhibited the most excellent adsorption and photocatalytic reduction performance among all composites,which possessed a high equilibrium adsorption capacity of 12.45 mg/g in a 30.0 mg/L Cr(Ⅵ)aqueous solution,and reduced Cr(Ⅵ)to Cr(Ⅲ)within 10 min under visible light irradiation.DRS and PL results indicated that the interfacial coupling effect between g-C_(3)N_(4)and In_(x)Sb_(2-x)S_(3) enhanced the utilization efficiency of visible light and suppressed photoinduced carrier recombination,which improved the photocatalytic activity of composites.Moreover,the photocatalyst exhibited satisfactory reduction activity and good stability after 5 cycles of Cr(Ⅵ)adsorptionphotoreduction.展开更多
Global urbanization is exerting severe stress and having far-reaching impacts on the eco-environment, and yet there exists a complex non-linear coupling relationship between the two. Research on the interactive coupli...Global urbanization is exerting severe stress and having far-reaching impacts on the eco-environment, and yet there exists a complex non-linear coupling relationship between the two. Research on the interactive coupling effect between urbanization and the eco-environment will be a popular area of study and frontier in international earth system science and sustainability science in the next 10 years, while also being a high-priority research topic of particular interest to international organizations. This paper systematically collates and summarizes the international progress made in research on interactive coupling theory, coupling relationships, coupling mechanisms, coupling laws, coupling thresholds, coupling models and coupling optimization decision support systems. The research shows that urbanization and eco-environment interactive coupling theories include the Kuznets curve theory, telecoupling theory, planetary boundaries theory, footprint family theory and urban metabolism theory; most research on interactive coupling relationships is concerned with single- element coupling relationships, such as those between urbanization and water, land, atmosphere, climate change, ecosystems and biodiversity; the majority of research on interactive coupling mechanisms and laws focuses on five research paradigms, including coupled human and nature systems, complex social-ecological systems, urban ecosystems, social-economic-natural complex ecosystems, and urbanization development and eco-environment constraint ring; the majority of interactive coupling simulations use STIRPAT models, coupling degree models, multi-agent system models and big data urban computer models; and research has been carried out on urbanization and eco-environment coupling thresholds, coercing risk and optimal decision support systems. An objective evaluation of progress in international research on interactive coupling between urbanization and the eco-environment suggests that there are six main research focal points and six areas lacking research: a lot of research exists on macroscopic coupling effects, with little research on urban agglomeration and scale coupling effects; considerable research exists on sin-gle-dimension coupling effects, with little on multiple-dimension coupling effects; a great deal exists on "one-to-one" dual- element coupling effects, with little on "many-to-many" multiple-element coupling effects; a lot exists on positive feedback coupling effects, and little on negative feedback coupling effects; a great deal exists on empirical coupling effects, and little on theoretical coupling effects; a great deal exists on the use of simple quantitative methods, and little on using integrated simulation methods. Future studies should focus on coupling effects between urbanization in urban agglomerations and the eco-environment, spatial scale coupling effects, multi-dimensional coupling effects, telecoupling effects, "one-to-many" and "many-to-many" element coupling effects, and positive and negative feedback coupling effects. There is also a need to strengthen the development and application of dynamic models for multi-element,-scale,-scenario,-module and-agent integrated spatiotemporal coupling systems and further improve theoretical innovations in coupling effect research and integrate and form complete and diverse coupling theoretical systems.展开更多
Organic Rankine cycle(ORC)is widely used for the low grade geothermal power generation.However,a large amount of irreversible loss results in poor technical and economic performance due to its poor matching between th...Organic Rankine cycle(ORC)is widely used for the low grade geothermal power generation.However,a large amount of irreversible loss results in poor technical and economic performance due to its poor matching between the heat source/sink and the working medium in the condenser and the evaporator.The condensing temperature,cooling water temperature difference and pinch point temperature difference are often fixed according to engineering experience.In order to optimize the ORC system comprehensively,the coupling effect of evaporation and condensation process was proposed in this paper.Based on the laws of thermodynamics,the energy analysis,exergy analysis and entropy analysis were adopted to investigate the ORC performance including net output power,thermal efficiency,exergy efficiency,thermal conductivity,irreversible loss,etc.,using geothermal water at a temperature of 120℃as the heat source and isobutane as the working fluid.The results show that there exists a pair of optimal evaporating temperature and condensing temperatures to maximize the system performance.The net power output and the system comprehensive performance achieve their highest values at the same evaporating temperature,but the system comprehensive performance corresponds to a lower condensing temperature than the net power output.展开更多
In this paper, the three-dimensional (3D) coupling effect is discussed for nanowire junctionless silicon-on-insulator (SOI) FinFETs. With fin width decreasing from 100 nm to 7 nm, the electric field induced by the...In this paper, the three-dimensional (3D) coupling effect is discussed for nanowire junctionless silicon-on-insulator (SOI) FinFETs. With fin width decreasing from 100 nm to 7 nm, the electric field induced by the lateral gates increases and therefore the influence of back gate on the threshold voltage weakens. For a narrow and tall fin, the lateral gates mainly control the channel and therefore the effect of back gate decreases. A simple two-dimensional (2D) potential model is proposed for the subthreshold region of junctionless SO1 FinFET. TCAD simulations validate our model. It can be used to extract the threshold voltage and doping concentration. In addition, the tuning of back gate on the threshold voltage can be predicted.展开更多
A new higher-order continuum model is proposed by considering the coupling and lane changing effects of the vehicles on two adjacent lanes. A stability analysis of the proposed model provides the conditions that ensur...A new higher-order continuum model is proposed by considering the coupling and lane changing effects of the vehicles on two adjacent lanes. A stability analysis of the proposed model provides the conditions that ensure its linear stability. Issues related to lane changing, shock waves and rarefaction waves, local clustering and phase transition are also investigated with numerical experiments. The simulation results show that the proposed model is capable of providing explanations to some particular traffic phenomena commonly observable in real traffic flows.展开更多
Calcareous sand is typically known as a problematic marine sediment because of its diverse morphology and complex inner pore structure.However,the coupling effects of morphology and inner pores on the mechanical prope...Calcareous sand is typically known as a problematic marine sediment because of its diverse morphology and complex inner pore structure.However,the coupling effects of morphology and inner pores on the mechanical properties of calcareous sand particles have rarely been investigated and understood.In this study,apparent contours and internal pore distributions of calcareous sand particles were obtained by three-dimensional(3D)scanning imaging and X-ray micro-computed tomography(X-mCT),respectively.It was revealed that calcareous sand particles with different outer morphologies have different porosities and inner pore distributions because of their original sources and particle transport processes.In addition,a total of 120 photo-related compression tests and 4923D discrete element simulations of four specific shaped particles,i.e.bulky,angular,dendritic and flaky,with variations in the inner pore distribution were conducted.The macroscopic particle strength and Weibull modulus obtained from the physical tests are not positively correlated with the porosity or regularity in shape,indicating the existence of coupling effect of particle shape and pore distribution.The shape effect on the particle strength first increases with the porosity and then decreases.The particle crushing of relatively regular particles is governed by the porosity,but that of extremely irregular particles is governed by the particle shape.The particle strength increases with the uniformity of the pore distribution.Particle fragmentation is mainly dependant on tensile bond strength,and the degree of tensile failure is considerably impacted by the particle shape but limited by the pore distribution.展开更多
Wave-soil-pipe coupling effect on the untrenched pipeline stability on sands is for the first time investigated experimentally. Tests are conducted in the U-shaped water tunnel, which generates an oscillatory how, sim...Wave-soil-pipe coupling effect on the untrenched pipeline stability on sands is for the first time investigated experimentally. Tests are conducted in the U-shaped water tunnel, which generates an oscillatory how, simulating the water particle movements with periodically changing direction under the wave action. Characteristic times and phases during the instability process are revealed. Linear relationship between Froude number and non-dimensional pipe weight is obtained. Effects of initial embedment and loading history are observed. Test results between the wavesoil-pipe interaction and pipe-soil interaction under cyclic mechanical loading are compared. The mechanism is briefly discussed. For applying in the practical design, more extensive and systematic investigations are needed.展开更多
Soybean cultivar Bei 92-28 was tested in this experiment in 2000 to study the coupling effect of water and ferilizer on soybean yield.The results showed that the effect of irrigation varied among the levels of fertili...Soybean cultivar Bei 92-28 was tested in this experiment in 2000 to study the coupling effect of water and ferilizer on soybean yield.The results showed that the effect of irrigation varied among the levels of fertilizer application,and vice versa;pods per plant,seeds per pod.and 100-seed weight had positive correlations with soybean yield,but the degrees of correlations of different treatments were various;LAI and dry matter accumulation could be significantly increased when watered and applied fertilizer with different levels,but high fertilizer application treatment didn't obtain the highest yield;watering could increase the absolute absorption amount of N,P,K in seeds,but the accumulation rates were various.展开更多
基金the support provided by the National Natural Science Foundation of China(Grant Nos.52278336 and 42302032)Guangdong Basic and Applied Research Foundation(Grant Nos.2023B1515020061).
文摘Granite residual soil (GRS) is a type of weathering soil that can decompose upon contact with water, potentially causing geological hazards. In this study, cement, an alkaline solution, and glass fiber were used to reinforce GRS. The effects of cement content and SiO_(2)/Na2O ratio of the alkaline solution on the static and dynamic strengths of GRS were discussed. Microscopically, the reinforcement mechanism and coupling effect were examined using X-ray diffraction (XRD), micro-computed tomography (micro-CT), and scanning electron microscopy (SEM). The results indicated that the addition of 2% cement and an alkaline solution with an SiO_(2)/Na2O ratio of 0.5 led to the densest matrix, lowest porosity, and highest static compressive strength, which was 4994 kPa with a dynamic impact resistance of 75.4 kN after adding glass fiber. The compressive strength and dynamic impact resistance were a result of the coupling effect of cement hydration, a pozzolanic reaction of clay minerals in the GRS, and the alkali activation of clay minerals. Excessive cement addition or an excessively high SiO_(2)/Na2O ratio in the alkaline solution can have negative effects, such as the destruction of C-(A)-S-H gels by the alkaline solution and hindering the production of N-A-S-H gels. This can result in damage to the matrix of reinforced GRS, leading to a decrease in both static and dynamic strengths. This study suggests that further research is required to gain a more precise understanding of the effects of this mixture in terms of reducing our carbon footprint and optimizing its properties. The findings indicate that cement and alkaline solution are appropriate for GRS and that the reinforced GRS can be used for high-strength foundation and embankment construction. The study provides an analysis of strategies for mitigating and managing GRS slope failures, as well as enhancing roadbed performance.
基金supported by grants from the National Natural Science Foundation of China (51478130)the Guangzhou Municipal Education Bureau’s Scientific Research Project, China (2024312217)+1 种基金the China Scholarship Council (201808440070)the 111 Project of China (D21021).
文摘This paper presents an improved level set method for topology optimization of geometrically nonlinear structures accounting for the effect of thermo-mechanical couplings.It derives a new expression for element coupling stress resulting from the combination of mechanical and thermal loading,using geometric nonlinear finite element analysis.A topological model is then developed to minimize compliance while meeting displacement and frequency constraints to fulfill design requirements of structural members.Since the conventional Lagrange multiplier search method is unable to handle convergence instability arising from large deformation,a novel Lagrange multiplier search method is proposed.Additionally,the proposed method can be extended to multi-constrained geometrically nonlinear topology optimization,accommodating multiple physical field couplings.
基金funded by the National Natural Science Foundation of China[52106246]the Postgraduate Research&Practice innovation Program of Jiangsu Province[KYCX24_1641].
文摘Based on the rapid advancements in nanomaterials and nanotechnology,the Nanofluidic Reverse Electrodialysis(NRED)has attracted significant attention as an innovative and promising energy conversion strategy for extracting sustainable and clean energy fromthe salinity gradient energy.However,the scarcity of research investigating the intricate multi-factor coupling effects on the energy conversion performance,especially the trade-offs between ion selectivity and mass transfer in nanochannels,of NRED poses a great challenge to achieving breakthroughs in energy conversion processes.This numerical study innovatively investigates the multi-factor coupling effect of three critical operational factors,including the nanochannel configuration,the temperature field,and the concentration difference,on the energy conversion processes of NRED.In this work,a dimensionless amplitude parameter s is introduced to emulate the randomly varied wall configuration of nanochannels that inherently occur in practical applications,thereby enhancing the realism and applicability of our analysis.Numerical results reveal that the application of a temperature gradient,which is oriented in opposition to the concentration gradient,enhances the ion transportation and selectivity simultaneously,leading to an enhancement in both output power and energy conversion efficiency.Additionally,the increased fluctuation of the nanochannel wall from s=0 to s=0.08 improves ion selectivity yet raises ion transport resistance,resulting in an enhancement in output power and energy conversion efficiency but a slight reduction in current.Furthermore,with increasing the concentration ratio cH/cL from 10 to 1000,either within a fixed temperature field or at a constant dimensionless amplitude,the maximumpower consistently attains its optimal value at a concentration ratio of 100 but the cation transfer number experiences amonotonic decrease across this entire range of concentration ratios.Finally,uponmodifying the operational parameters fromthe baseline condition of s=0,c_(H)/c_(L)=10,andΔT=0 K to the targetedconditionof s=0.08,c_(H)/c_(L)=50,andΔT=25 K,there is a concerted improvement observed in the open-circuit potential,short-circuit current,andmaximumpower,with respective increments of 8.86%,204.97%,and 232.01%,but a reduction in cation transfer number with a notable decrease of 15.37%.
基金supported by the National Key R&D Program of China(No.2018YFD1100203)the National Natural Science Foundation of China(No.52200208)the International Postdoctoral Exchange Fellowship Program(No.YJ20200280)。
文摘Lessening energy-related carbon emissions has become a crucial measure to achieve Chinese carbon neutrality.This study is the first to construct a Difference in Carbon pressures-adjusted Human Development Index(DCHDI)model for the purpose of exploring the coupling effect between carbon emissions and human development variety from 2000 to 2019 in Chinese provinces.We demonstrate the following.(1)The total energy-related carbon footprint of 30 provinces in China reached 10.2 billion tons in 2019,with an average annual growth rate of 6.93% over the past two decades;and the provinces with the highest carbon emissions per capita are InnerMongolia,Ningxia,and Shanxi.(2)At the provincial level,we observed that the Human Development Index(HDI),which includes life expectancy,education,and income,has been rising,while Beijing,Shanghai,and Tianjin entered the super-high HDI level before 2008.(3)The entire coupling effect of 30 Chinese provinces has been broadly fortified in the last 20 years,but the growth rate of DCHDI values in 2011-2019 has slowed down compared with that in 2000-2010;the clustering phenomenon demonstrated that this discovery is associated with historical peaks in total carbon emissions.(4)The co-ordination degree of carbon emissions per capita and HDI was verified,and 96% of the data points were found in the range of super high coupling coordination degree.Overall,this study provides the government with worthwhile guidance for decision-making and carbon reduction strategies for other countries struggling to advance human sustainable development.
基金National Natural Science Foundation of China(11572001,51478004)2021 Undergraduate Course Ideological and Political Demonstration Course-Theoretical Mechanics(108051360022XN569)2022 Great Innovation Project-Frame Bridge Structural Engineering Research(108051360022XN388)。
文摘In order to investigate the effect of vehicle-bridge coupling on the dynamic characteristics of the bridge,a steel-concrete composite beam suspension bridge is taken as the research object,and a three-dimensional spatial model of the bridge and a biaxial vehicle model of the vehicle are established,and then a vehicle-bridge coupling vibration system is constructed on the basis of the Nemak-βmethod,and the impact coefficients of each part of the bridge are obtained under different bridge deck unevenness and vehicle speed.The simulation results show that the bridge deck unevenness has the greatest influence on the vibration response of the bridge,and the bridge impact coefficient increases along with the increase in the level of bridge deck unevenness,and the impact coefficient of the main longitudinal girder and the secondary longitudinal girder achieves the maximum value when the level 4 unevenness is 0.328 and 0.314,respectively;when the vehicle speed is increased,the vibration response of the bridge increases and then decreases,and the impact coefficient of the bridge in the middle of the bridge at a speed of 60 km/h achieves the maximum value of 0.192.
文摘Because of the small stiffness and high flexibility, the tension membrane structure is easy to relax and damage or even destroy under the action of external load, which leads to the occurrence of engineering accidents. In this paper, the damped nonlinear vibration of tensioned membrane structure under the coupling action of wind and rain is approximately solved, considering the geometric nonlinearity of membrane surface deformation and the influence of air damping. Applying von Karman’s large deflection theory and D’Alembert’s principle, the governing equations are established for an analytical solution, and the experimental results are compared with the analytical results. The feasibility of this method is verified, which provides some theoretical reference for practical membrane structure engineering design and maintenance.
文摘The binding energy spectrum and electron momentum distributions for the outer valence orbitals of n-propyl iodide molecule have been measured using the electron momentum spectrometer employing non-coplanar asymmetric geometry at impact energy of 2.5 keV plus binding energy. The ionization bands have been assigned in detail via the high accuracy SACCI general-R method calculation and the experimental momentum profiles are compared with the theoretical ones calculated by Hartree-Fock and B3LYP/aug-cc-pVTZ(C,H)6-311G??(I). The spin-orbit coupling effect and intramolecular orbital interaction have been analyzed for the outermost two bands, which are assigned to the iodine 5p lone pairs, using NBO method and non-relativistic as well as relativistic calculations. It is found that both of the interactions will lead to the observed differences in electron momentum distributions. The experimental results agree with the relativistic theoretical momentum profiles, indicating that the spin-orbit coupling effect dominates in n-propyl iodide molecule.
文摘Based on the results of two dimension velo city structure, 1∶100 000 aeromagnetic anomaly, 1∶200 000 bouguer gravity anom aly and seismic anisotropy of Jiaodong and neighboring region in Shandong, China , the information of geophysical field was divided into two parts: deep and sh allow focus fields. And then, the information of two different fields was c ombined with that of deep seated geology and ore deposit features. The syntheti c result was adopted to analyze three dimension structure, to probe into crust mantle coupling effects of mineralization and dynamics of ore formation system .
基金financially supported by the National Natural Science Foundation of China(Nos.51921003 and 51775275)National Key Laboratory of Science and Technology on Helicopter Transmission(Nanjing University of Aeronautics and Astronautics)(No.HTL-A-20G01)Postgraduate Research&Practice Innovation Program of Jiangsu Province(No.KYCX20_0179)。
文摘Ultrasonic vibration-assisted grinding(UVAG)is an effective and promising method for machining of hard-to-cut materials.This article proposed an ultrasonic vibration plate device enabling the longitudinal full-wave and transverse half-wave(L2T1)vibration mode for UVAG.The characteristics of two-dimensional coupled vibration in different directions were analyzed on the basis of apparent elastic method and finite element method.Furthermore,a correction factor was applied to correct the frequency error caused by the apparent elastic method.Finally,the comparative experiments between the conventional creep-feed grinding and UVAG of Inconel 718 nickel-based superalloy were carried out.The results indicate that the apparent elastic method with the correction factor is accurate for the design of plate device under the L2T1 vibration mode.Compared with the conventional creep-feed grinding,the UVAG causes the reduction of grinding force and the improvement of machined surface quality of Inconel 718 nickel-based superalloy.Furthermore,under the current experimental conditions,the optimal ultrasonic vibration amplitude is determined as 6μm,with which the minimum surface roughness is achieved.
基金financially supported by the National Natural Science Foundation of China(Grant No.51879161)
文摘As drilling operations move into remote locations and extreme water depths, recoil analysis requires more careful considerations and the incidence of emergency disconnect is increased inevitably. To accurately capture the recoil dynamics of a deep-water riser in an emergency disconnect scenario, researchers typically focus on modelling the influential subsystems (e.g., the tensioner, the mud discharge and seawater refilling process) which can be solved in the preprocessing, and then the determined parameters are transmitted into an existing global riser analysis software. Distinctively, the current study devotes efforts into the coupling effects resulting from that the suspended riser reacts the platform heave motion via the tensioner system in the course of recoil and the discharging fluid column follows the oscillation of the riser in the mud discharge process. Four simulation models are established based on lumped mass method employing different formulas for the top boundary condition of the riser and the discharging flow acceleration. It demonstrates that the coupling effects discussed above can significantly affect the recoil behavior during the transition phase from initial disconnect to the final hang-off state. It is recommended to develop a fully- coupled integrated model for recoil analysis and anti-recoil control system design before extreme deep-water applications.
基金financial supported by the National Natural Science Foundation of China(30900876 and 31101127)the Key Technology R&D Program of China(2012BAD14B17)+1 种基金the Special Research Funding for Public Benefit Industries (Agriculture) of China(201103001)the Major Innovation Project for Applied Technology of Shandong Province,China
文摘The water content and nutrient in soil are two main determine factors to crop yield and quality, managements of which in field are of great importance to maintain sustainable high yield. The objective of this study was to measure the uptake, forms, and use efficiency of phosphorus (P) in wheat under four levels of irrigation (W0, W1, W2, and W3) and three levels of P application (P0, P1, and P2) through two growth seasons of wheat (2008-2010). The field experiment was carried out in a low level of soil P concentration and the eultivar was Jimai 20. The results indicated that P fertilizer combined with irrigation not only improved the activity of phosphatase in soil, but also increased P accumulation in wheat, similar results was found in the grain of wheat, the content of total P increased significantly. Meanwhile, the mainly existence forms of P in grain were the lecithoid-P and labile organic-P. On the other hand, in comparison to the irrigation, the dry matter and grain P production efficiency and postponing P application of wheat increased with increasing Papplication rates within the range of 0-180 kg P2O5 ha-1. The interaction between P and irrigation also significantly (P〈0.01) affected on the P accumulation, grain total P, grain phospholipid P, and P production efficiency. In this study, therefore, the P applications and irrigation improved grain P production efficiency and postponing P application of winter wheat, and W2P2 treatment (180 kg P2O5 ha-1 combination with 120 mm irrigation) had a high P accumulation and P use efficiency, it was an optimum level for P fertilizer application and irrigation in this region.
基金Projects(41977129,21607176,42007138) supported by the National Natural Science Foundation of ChinaProject(kq1802011) supported by the Changsha Outstanding Innovative Youth Training Program,ChinaProject(2017JJ3516)supported by the Natural Science Foundation of Hunan Province,China。
文摘A series of In_(x)Sb_(2-x)S_(3) nanosheets modified g-C_(3)N_(4)(In_(x)Sb_(2-x)S_(3)-TCN)heterojunctions with different g-C_(3)N_(4) contents were fabricated by an in situ deposition method.All the In_(x)Sb_(2-x)S_(3)-TCN composites were applied as photocatalysts in Cr(Ⅵ)polluted water treatment and the results displayed that In_(x)Sb_(2-x)S_(3)-TCN could effectively remove Cr(Ⅵ)under visible light through synergistic effects of adsorption and photocatalytic reduction.Especially,In_(x)Sb_(2-x)S_(3)-TCN-70(70 mg g-C_(3)N_(4)) exhibited the most excellent adsorption and photocatalytic reduction performance among all composites,which possessed a high equilibrium adsorption capacity of 12.45 mg/g in a 30.0 mg/L Cr(Ⅵ)aqueous solution,and reduced Cr(Ⅵ)to Cr(Ⅲ)within 10 min under visible light irradiation.DRS and PL results indicated that the interfacial coupling effect between g-C_(3)N_(4)and In_(x)Sb_(2-x)S_(3) enhanced the utilization efficiency of visible light and suppressed photoinduced carrier recombination,which improved the photocatalytic activity of composites.Moreover,the photocatalyst exhibited satisfactory reduction activity and good stability after 5 cycles of Cr(Ⅵ)adsorptionphotoreduction.
基金Major Program of the National Natural Science Foundation of China,No.41590840,No.41590842
文摘Global urbanization is exerting severe stress and having far-reaching impacts on the eco-environment, and yet there exists a complex non-linear coupling relationship between the two. Research on the interactive coupling effect between urbanization and the eco-environment will be a popular area of study and frontier in international earth system science and sustainability science in the next 10 years, while also being a high-priority research topic of particular interest to international organizations. This paper systematically collates and summarizes the international progress made in research on interactive coupling theory, coupling relationships, coupling mechanisms, coupling laws, coupling thresholds, coupling models and coupling optimization decision support systems. The research shows that urbanization and eco-environment interactive coupling theories include the Kuznets curve theory, telecoupling theory, planetary boundaries theory, footprint family theory and urban metabolism theory; most research on interactive coupling relationships is concerned with single- element coupling relationships, such as those between urbanization and water, land, atmosphere, climate change, ecosystems and biodiversity; the majority of research on interactive coupling mechanisms and laws focuses on five research paradigms, including coupled human and nature systems, complex social-ecological systems, urban ecosystems, social-economic-natural complex ecosystems, and urbanization development and eco-environment constraint ring; the majority of interactive coupling simulations use STIRPAT models, coupling degree models, multi-agent system models and big data urban computer models; and research has been carried out on urbanization and eco-environment coupling thresholds, coercing risk and optimal decision support systems. An objective evaluation of progress in international research on interactive coupling between urbanization and the eco-environment suggests that there are six main research focal points and six areas lacking research: a lot of research exists on macroscopic coupling effects, with little research on urban agglomeration and scale coupling effects; considerable research exists on sin-gle-dimension coupling effects, with little on multiple-dimension coupling effects; a great deal exists on "one-to-one" dual- element coupling effects, with little on "many-to-many" multiple-element coupling effects; a lot exists on positive feedback coupling effects, and little on negative feedback coupling effects; a great deal exists on empirical coupling effects, and little on theoretical coupling effects; a great deal exists on the use of simple quantitative methods, and little on using integrated simulation methods. Future studies should focus on coupling effects between urbanization in urban agglomerations and the eco-environment, spatial scale coupling effects, multi-dimensional coupling effects, telecoupling effects, "one-to-many" and "many-to-many" element coupling effects, and positive and negative feedback coupling effects. There is also a need to strengthen the development and application of dynamic models for multi-element,-scale,-scenario,-module and-agent integrated spatiotemporal coupling systems and further improve theoretical innovations in coupling effect research and integrate and form complete and diverse coupling theoretical systems.
基金Project(2018YFB1501805)supported by the National Key Research and Development Program of ChinaProject(51406130)supported by the National Natural Science Foundation of ChinaProject(201604-504)supported by the Key Laboratory of Efficient Utilization of Low and Medium Grade Energy(Tianjin University),China
文摘Organic Rankine cycle(ORC)is widely used for the low grade geothermal power generation.However,a large amount of irreversible loss results in poor technical and economic performance due to its poor matching between the heat source/sink and the working medium in the condenser and the evaporator.The condensing temperature,cooling water temperature difference and pinch point temperature difference are often fixed according to engineering experience.In order to optimize the ORC system comprehensively,the coupling effect of evaporation and condensation process was proposed in this paper.Based on the laws of thermodynamics,the energy analysis,exergy analysis and entropy analysis were adopted to investigate the ORC performance including net output power,thermal efficiency,exergy efficiency,thermal conductivity,irreversible loss,etc.,using geothermal water at a temperature of 120℃as the heat source and isobutane as the working fluid.The results show that there exists a pair of optimal evaporating temperature and condensing temperatures to maximize the system performance.The net power output and the system comprehensive performance achieve their highest values at the same evaporating temperature,but the system comprehensive performance corresponds to a lower condensing temperature than the net power output.
基金supported by the Research Program of the National University of Defense Technology(Grant No.JC 13-06-04)
文摘In this paper, the three-dimensional (3D) coupling effect is discussed for nanowire junctionless silicon-on-insulator (SOI) FinFETs. With fin width decreasing from 100 nm to 7 nm, the electric field induced by the lateral gates increases and therefore the influence of back gate on the threshold voltage weakens. For a narrow and tall fin, the lateral gates mainly control the channel and therefore the effect of back gate decreases. A simple two-dimensional (2D) potential model is proposed for the subthreshold region of junctionless SO1 FinFET. TCAD simulations validate our model. It can be used to extract the threshold voltage and doping concentration. In addition, the tuning of back gate on the threshold voltage can be predicted.
基金supported by the National High Technology Research and Development Program of China(863)(511-0910-1031)the National"10th Five-Year"Science and Technique Important Program of China(2002BA404A07)
文摘A new higher-order continuum model is proposed by considering the coupling and lane changing effects of the vehicles on two adjacent lanes. A stability analysis of the proposed model provides the conditions that ensure its linear stability. Issues related to lane changing, shock waves and rarefaction waves, local clustering and phase transition are also investigated with numerical experiments. The simulation results show that the proposed model is capable of providing explanations to some particular traffic phenomena commonly observable in real traffic flows.
基金the Fundamental Research Funds for the Central Universities,China(Grant No.B210203032)the National Natural Science Foundation of China(Grant No.52279097)the Green and Blue Project of Jiangsu Province,China.
文摘Calcareous sand is typically known as a problematic marine sediment because of its diverse morphology and complex inner pore structure.However,the coupling effects of morphology and inner pores on the mechanical properties of calcareous sand particles have rarely been investigated and understood.In this study,apparent contours and internal pore distributions of calcareous sand particles were obtained by three-dimensional(3D)scanning imaging and X-ray micro-computed tomography(X-mCT),respectively.It was revealed that calcareous sand particles with different outer morphologies have different porosities and inner pore distributions because of their original sources and particle transport processes.In addition,a total of 120 photo-related compression tests and 4923D discrete element simulations of four specific shaped particles,i.e.bulky,angular,dendritic and flaky,with variations in the inner pore distribution were conducted.The macroscopic particle strength and Weibull modulus obtained from the physical tests are not positively correlated with the porosity or regularity in shape,indicating the existence of coupling effect of particle shape and pore distribution.The shape effect on the particle strength first increases with the porosity and then decreases.The particle crushing of relatively regular particles is governed by the porosity,but that of extremely irregular particles is governed by the particle shape.The particle strength increases with the uniformity of the pore distribution.Particle fragmentation is mainly dependant on tensile bond strength,and the degree of tensile failure is considerably impacted by the particle shape but limited by the pore distribution.
基金The project supported by the National Natural Science Foundation of China (19772057,19772065) and by the Chinese Academy of Sciences (KZ951-A1-405-01)
文摘Wave-soil-pipe coupling effect on the untrenched pipeline stability on sands is for the first time investigated experimentally. Tests are conducted in the U-shaped water tunnel, which generates an oscillatory how, simulating the water particle movements with periodically changing direction under the wave action. Characteristic times and phases during the instability process are revealed. Linear relationship between Froude number and non-dimensional pipe weight is obtained. Effects of initial embedment and loading history are observed. Test results between the wavesoil-pipe interaction and pipe-soil interaction under cyclic mechanical loading are compared. The mechanism is briefly discussed. For applying in the practical design, more extensive and systematic investigations are needed.
文摘Soybean cultivar Bei 92-28 was tested in this experiment in 2000 to study the coupling effect of water and ferilizer on soybean yield.The results showed that the effect of irrigation varied among the levels of fertilizer application,and vice versa;pods per plant,seeds per pod.and 100-seed weight had positive correlations with soybean yield,but the degrees of correlations of different treatments were various;LAI and dry matter accumulation could be significantly increased when watered and applied fertilizer with different levels,but high fertilizer application treatment didn't obtain the highest yield;watering could increase the absolute absorption amount of N,P,K in seeds,but the accumulation rates were various.