This paper aims to evaluate the stochastic response of steel columns subjected to blast loads using the modified single degree of freedom(MSDOF)method,which assessed towards the conventional single degree of freedom(S...This paper aims to evaluate the stochastic response of steel columns subjected to blast loads using the modified single degree of freedom(MSDOF)method,which assessed towards the conventional single degree of freedom(SDOF)and the experimentally validated Finite Element(FE)methods(LSDYNA).For this purpose,special atten-tion is given to calculating the response of H-shaped steel columns under blast.The damage amount is determined based on the support rotation criterion,which is expressed as a function of their maximum lateral mid-span dis-placement.To account for uncertainties in input parameters and obtain the failure probability,the Monte Carlo simulation(MCS)method is employed,complemented by the Latin Hypercube Sampling(LHS)method to reduce the number of simulations.A parametric analysis is hence performed to examine the effect of several input pa-rameters(including both deterministic and probabilistic parameters)on the probability of column damage as a function of support rotation.First,the MSDOF method confirms its higher accuracy in estimating the probability of column damage due to blast,compared to the conventional SDOF.The collected results also show that un-certainties of several input parameters have significant effects on the column behavior.In particular,geometric parameters(including cross-sectional characteristics,boundary conditions and column length)have major effect on the corresponding column response,in the same way of input blast load parameters and material properties.展开更多
In the adjoint-state method, the forward-propagated source wavefield and the backward-propagated receiver wavefield must be available simultaneously either for seismic imaging in migration or for gradient calculation ...In the adjoint-state method, the forward-propagated source wavefield and the backward-propagated receiver wavefield must be available simultaneously either for seismic imaging in migration or for gradient calculation in inversion. A feasible way to avoid the excessive storage demand is to reconstruct the source wavefield backward in time by storing the entire history of the wavefield in perfectly matched layers. In this paper, we make full use of the elementwise global property of the Laplace operator of the spectral element method (SEM) and propose an efficient source wavefield reconstruction method at the cost of storing the wavefield history only at single boundary layer nodes. Numerical experiments indicate that the accuracy of the proposed method is identical to that of the conventional method and is independent of the order of the Lagrange polynomials, the element type, and the temporal discretization method. In contrast, the memory-saving ratios of the conventional method versus our method is at least N when using either quadrilateral or hexahedron elements, respectively, where N is the order of the Lagrange polynomials used in the SEM. A higher memorysaving ratio is achieved with triangular elements versus quadrilaterals. The new method is applied to reverse time migration by considering the Marmousi model as a benchmark. Numerical results demonstrate that the method is able to provide the same result as the conventional method but with about 1/25 times lower storage demand. With the proposed wavefield reconstruction method, the storage demand is dramatically reduced;therefore, in-core memory storage is feasible even for large-scale three-dimensional adjoint inversion problems.展开更多
The behavior of single bubble rising in quiescent shear-thinning tlmds was lnvestlgateO numerically by level set metnoa. number of bubbles in a large range of Reynolds number and Eotvos number were investigated includ...The behavior of single bubble rising in quiescent shear-thinning tlmds was lnvestlgateO numerically by level set metnoa. number of bubbles in a large range of Reynolds number and Eotvos number were investigated including spherical, oblate and spherical. The bubble shape and drag coefficient were compared with experimental results. It is observed that the simulated results show good conformity to experimental results over a wide range of Reynolds number. In addition, the detailed flow field based on the reference coordinate system moving with the bubble is obtained, and the relationship among flow field, bubble shape and velocity is discussed.展开更多
Growth of high-quality single crystals is of great significance for research of condensed matter physics. The exploration of suitable growing conditions for single crystals is expensive and time-consuming, especially ...Growth of high-quality single crystals is of great significance for research of condensed matter physics. The exploration of suitable growing conditions for single crystals is expensive and time-consuming, especially for ternary compounds because of the lack of ternary phase diagram. Here we use machine learning(ML) trained on our experimental data to predict and instruct the growth. Four kinds of ML methods, including support vector machine(SVM), decision tree, random forest and gradient boosting decision tree, are adopted. The SVM method is relatively stable and works well, with an accuracy of 81% in predicting experimental results. By comparison,the accuracy of laboratory reaches 36%. The decision tree model is also used to reveal which features will take critical roles in growing processes.展开更多
Time for single vehicle combat preparation(TSVCP) is an important characteristic parameter for the operational support feature of armored vehicle. During the development phase, how to validate the TSVCP of armored veh...Time for single vehicle combat preparation(TSVCP) is an important characteristic parameter for the operational support feature of armored vehicle. During the development phase, how to validate the TSVCP of armored vehicle through analytic method is a difficult issue in analysis and validation of vehicle supportability.This paper uses Monte Carlo approach and builds a working model for single vehicle combat preparation(SVCP)of armored vehicle, thus realizes the prediction and analysis of the TSVCP of armored vehicle, and finally validates the effectiveness of the approach by example.展开更多
Two tetravalent uranium silicate and germanate M_(2)U^(Ⅳ)T_(3)O_(9)(M=K,Cs;T=Si,Ge)crystals were crystalized under inert gas by molten salt flux growth method.K_(2)USi_(3)O_(9)(1)crystallizes in the monoclinic space ...Two tetravalent uranium silicate and germanate M_(2)U^(Ⅳ)T_(3)O_(9)(M=K,Cs;T=Si,Ge)crystals were crystalized under inert gas by molten salt flux growth method.K_(2)USi_(3)O_(9)(1)crystallizes in the monoclinic space group P1_(21)/n1 with lattice parameters a=7.1076?,b=10.4776?,c=12.2957?,γ=120°and V=915.67?^(3).Cs_(2)UGe_(3)O_(9)(2)crystallizes in a hexagonal space group P-6 with lattice constants of a=7.5138?,b=7.5138?,c=11.0114?,γ=120°and V=538.38?^(3).Bond valence calculations indicate tetravalent uranium in both structures,which contain three-membered single-ring T_(3)O_(9)^(6-) trimers.K_(2)USi_(3)O_(9) is the first uranium silicate that contains the Si_(3)O_(9)^(6-) trimers.展开更多
Lead magnesium niobate-lead titanate(PMN-PT)piezoelectric single crystals are widely utilized due to their outstanding performance,with varying compositions significantly impacting their properties.While application o...Lead magnesium niobate-lead titanate(PMN-PT)piezoelectric single crystals are widely utilized due to their outstanding performance,with varying compositions significantly impacting their properties.While application of PMN-PT in high-power settings is rapidly evolving,material parameters are typically tested under low signal conditions(1 V),and effects of different PT(PbTiO_(3))contents on the performance of PMN-PT single crystals under high-power conditions remain unclear.This study developed a comprehensive high-power testing platform using the constant voltage method to evaluate performance of PMN-PT single crystals with different PT contents under high-power voltage stimulation.Using crystals sized at 10 mm×3 mm×0.5 mm as an example,this research explored changes in material parameters.The results exhibit that while trend of the parameter changes under high-power excitation was consistent across different PT contents,degree of the change varied significantly.For instance,a PMN-PT single crystal with 26%(in mol)PT content exhibited a 25%increase in the piezoelectric coefficient d_(31),a 13%increase in the elastic compliance coefficient s_(11)^(E),a 17%increase in the electromechanical coupling coefficient k_(31),and a 73%decrease in the mechanical quality factor Q_(m) when the power reached 7.90 W.As the PT content increased,the PMN-PT materials became more susceptible to temperature influences,significantly reducing the power tolerance and more readily reaching the depolarization temperatures.This led to loss of piezoelectric performance.Based on these findings,a clearer understanding of impact of PT content on performance of PMN-PT single crystals under high-power applications has been established,providing reliable data to support design of sensors or transducers using PMN-PT as the sensitive element.展开更多
Electrocatalytic reduction of carbon dioxide(CO_(2))to carbon monoxide(CO)is an effective strategy to achieve carbon neutrality.High selective and low-cost catalysts for the electrocatalytic reduction of CO_(2)have re...Electrocatalytic reduction of carbon dioxide(CO_(2))to carbon monoxide(CO)is an effective strategy to achieve carbon neutrality.High selective and low-cost catalysts for the electrocatalytic reduction of CO_(2)have received increasing attention.In contrast to the conventional tube furnace method,the high-temperature shock(HTS)method enables ultra-fast thermal processing,superior atomic efficiency,and a streamlined synthesis protocol,offering a simplified method for the preparation of high-performance single-atom catalysts(SACs).The reports have shown that nickel-based SACs can be synthesized quickly and conveniently using the HTS method,making their application in CO_(2)reduction reactions(CO_(2)RR)a viable and promising avenue for further exploration.In this study,the effect of heating temperature,metal loading and different nitrogen(N)sources on the catalyst morphology,coordination environment and electrocatalytic performance were investigated.Under optimal conditions,0.05Ni-DCD-C-1050 showed excellent performance in reducing CO_(2)to CO,with CO selectivity close to 100%(−0.7 to−1.0 V vs RHE)and current density as high as 130 mA/cm^(2)(−1.1 V vs RHE)in a flow cell under alkaline environment.展开更多
The single crystal scintillating optical fibers acting as the scintillators and light conductors show potential application in scintillating fiber array detectors with high spatial resolution.In this paper we report t...The single crystal scintillating optical fibers acting as the scintillators and light conductors show potential application in scintillating fiber array detectors with high spatial resolution.In this paper we report the growth of 0.2 at%Ce:Y_(3)Al_(5)O_(12) single crystal fiber.The crystalline phase,surface morphology of the axialsection and cro ss-section,optical and scintillation properties of the as-grown fiber were investigated.The Ce:Y_(3)Al_(5)O_(12) single crystal fiber has a pure YAG phase,a uniform distribution of cerium in the axialsection and cross-section surface.Emission spectrum is composed of broad bands ranging from 440 to700 nm.In addition,the single crystal fiber has a high light yield of 26115±2000 photons/MeV,low energy resolution of 9.44%@662 keV and decay time of a fast component of 78 ns and a slow component of 301 ns.The intensity ratio of fast to slow components is roughly 8:1.展开更多
Because of hydraulic-electromagnetic double supporting forms,the supporting capacity and stiffness of magnetic-liquid double suspension bearing(MLDSB)can be improved sharply and then it is more suitable for medium spe...Because of hydraulic-electromagnetic double supporting forms,the supporting capacity and stiffness of magnetic-liquid double suspension bearing(MLDSB)can be improved sharply and then it is more suitable for medium speed,heavy load and frequent-starting occasions.Due to the multiple uncertainty,such as the coupling,the unmodeled dynamics,the parameter perturbation and the external disturbance perturbation,the robust stability and stiffness of control system of MLDSB are hard to meet the design requirements.Firstly,the structural features and the regulation mechanisms of MLDSB are presented and the radial 4-DOF kinetic equations are established.Secondly,the influence factors of the control system's coupling on unbalanced vibration caused by the deviation of the rotor center of mass are revealed,and then the weighting function of suppressing the unbalanced vibration can be obtained.Finally,H∞ controller of MLDSB is designed with H∞ mixed-sensitivity method,and the control performances of H∞ controller is compared with the state feedback controller.The simulation results show that single degree of freedom(DOF)supporting system of MLDSB with H∞ controller has good robust stability,stiffness and the ability to suppress unbalanced external disturbances.This study can provide the theoretical reference for stabilized suspension and control of MLDSB.展开更多
An analysis of the interaction mechanisms between a Shaped Charge Jet(SCJ) and a single Moving Plate(MP) is proposed in this article using both experimental and numerical approaches. First, an experimental set-up is p...An analysis of the interaction mechanisms between a Shaped Charge Jet(SCJ) and a single Moving Plate(MP) is proposed in this article using both experimental and numerical approaches. First, an experimental set-up is presented. Four collision tests have been performed: two tests in Backward Moving Plate(BMP) configuration, where the plate moves in opposition to jet, and two tests in Forward Moving Plate(FMP) configuration, where the plate moves alongside the jet. Based on the virtual origin approximation,a methodology(the Virtual Origin Method, VOM) is developed to extract quantities from the X-ray images, which serve as comparative data. γSPH simulations are carried out to complete the analysis, as they well capture the disturbance dynamics observed in the experiments. Based on these complementary experimental and numerical results, a new physical description is proposed through a detailed analysis of the interaction. It is shown that the SCJ/MP interaction is driven at first order by the contact geometry. Thus, BMP and FMP configurations do not generate the same disturbances because their local flow geometries are different. In the collision point frame of reference, the BMP flows in the same direction as the jet, causing its overall deflection. On the contrary, the FMP flow opposes that of the jet leading to an alternative creation of fragments and ligaments. An in-depth study, using the VOM shows that deflection angles, fragment-ligament creation frequencies, and deflection velocities evolve as the interaction progresses through slower jet elements.展开更多
A gradient-based optimization method for producing a contoured beam by using a single-fed reflector antenna is presented. First, a quick and accurate pattern approximation formula based on physical optics(PO) is adopt...A gradient-based optimization method for producing a contoured beam by using a single-fed reflector antenna is presented. First, a quick and accurate pattern approximation formula based on physical optics(PO) is adopted to calculate the gradients of the directivity with respect to reflector's nodal displacements. Because the approximation formula is a linear function of nodal displacements, the gradient can be easily derived. Then, the method of the steepest descent is adopted, and an optimization iteration procedure is proposed. The iteration procedure includes two loops: an inner loop and an outer loop. In the inner loop, the gradient and pattern are calculated by matrix operation, which is very fast by using the pre-calculated data in the outer loop. In the outer loop, the ideal terms used in the inner loop to calculate the gradient and pattern are updated, and the real pattern is calculated by the PO method. Due to the high approximation accuracy, when the outer loop is performed once, the inner loop can be performed many times, which will save much time because the integration is replaced by matrix operation. In the end, a contoured beam covering the continental United States(CONUS) is designed, and simulation results show the effectiveness of the proposed algorithm.展开更多
Particle morphology is critical in affecting the crushing behavior of rockfill materials.In contrast,most current single particle simulations lack satisfactory morphology accuracy,and the resulting crushing modes devi...Particle morphology is critical in affecting the crushing behavior of rockfill materials.In contrast,most current single particle simulations lack satisfactory morphology accuracy,and the resulting crushing modes deviate from observations to some extent.Therefore,we reconstruct the real particle morphology with the spherical harmonic(SH)method and employ the finite-discrete element method(FDEM)to simulate the one-dimensional(1D)compressive crushing process of basalt particles commonly used in rockfill.The influences of four main morphological parameters,i.e.sphericity,aspect ratio,roundness,and convexity,on the single particle strength and the crushing modes are discussed.The results show that with the SH degree set to 15 and a mesh number of 20,480,the FDEM models of reconstructed particles achieve sufficient morphology accuracy and high computational efficiency.Based on the model,the simulation results demonstrate that the aspect ratio has the most significant impact on single particle strength,followed by sphericity.In contrast,roundness and convexity have a weaker effect than the above two parameters.Also,it is revealed that single particle strength decreases with increasing aspect ratio and sphericity,while it increases with higher roundness and convexity.Furthermore,aspect ratio significantly changes the initial crushing position,sphericity dominates post-crushing fragment size and quantity,and roundness mainly affects post-crushing morphology.The model results have been employed in establishing a support vector regression(SVR)-based predicted model,exhibiting good predictive performance and advantages for the optimization of rockfill particles in engineering.展开更多
The atmospheric scattering optical transfer function (OTF) is solved by applying the multi-coupled single scattering (MCSS) method to the three-dimensional radiative transfer equation (RTE) under the periodic gr...The atmospheric scattering optical transfer function (OTF) is solved by applying the multi-coupled single scattering (MCSS) method to the three-dimensional radiative transfer equation (RTE) under the periodic ground condition. This approach is a direct hit to the atmospheric scattering OTF using the same original context of modulation transfer function (MTF) measurement, i.e., images of sinusoidal grating at different spatial frequencies. Both the amplitude and phase shift of the OTF at various zenith and azimuth angles can be obtained at an arbitrary spatial frequency.展开更多
Using a linear scaling self-consistent-charge density functional tight binding (SCC-DFTB) and an ab initio Omol method, the bonding characteristics and Young's modulus of (10, 0) and (10,10) single-walled carbo...Using a linear scaling self-consistent-charge density functional tight binding (SCC-DFTB) and an ab initio Omol method, the bonding characteristics and Young's modulus of (10, 0) and (10,10) single-walled carbon nanotubes are calculated. The structure of a graphene is also calculated. It is found that the C-C and C-H bond length, their distribution characteristics on the tube, and Young^s modulus of the tube by linear scaling SCC-DFTB are identical to those by ab initio, while the computing cost by the linear scaling SCC-DFTB is reduced by more than 30 times as compared with that by the Dmol for the (10,0) and (10,10) tubes. By computing the structure of a graphene it is also found that the linear scaling SCCDFTB is reliable and time-saving.展开更多
Deployment of buoy systems is one of the most important procedures for the operation of buoy system. In the present study, a single-point mooring buoy system which contains surface buoy, cable segments with components...Deployment of buoy systems is one of the most important procedures for the operation of buoy system. In the present study, a single-point mooring buoy system which contains surface buoy, cable segments with components, anchor and so on is modeled by applying multi-body dynamics method. The motion equations are developed in discrete node description and fully Cartesian coordinates. Then numerical method is used to solve the ordinary differential equations and dynamics simulations are achieved while anchor is casting from board. The trajectories and velocities of different nodes without current and with current in buoy system are obtained. The transient tension force of each part of the cable is analyzed in the process of deployment. Numerical results indicate that the transient payload increases to a peak value when the anchor is touching the seabed and the maximum tension force will vary with different floating configuration. This work is helpful for design and deployment planning of buoy system.展开更多
Hydroxyapatite(HAP, Ca 10(PO 4) 6(OH) 2) is one of the quite important bone implant materials. The hydroxyapatite crystals were synthesized under hydrothermal condition. The specimen was verified to be HAP crystal by ...Hydroxyapatite(HAP, Ca 10(PO 4) 6(OH) 2) is one of the quite important bone implant materials. The hydroxyapatite crystals were synthesized under hydrothermal condition. The specimen was verified to be HAP crystal by the X-ray powder diffractometry(XRD). Then the specimen was distinguished single crystal from polycrystal by the use of the transmission electron microscope(TEM). The diffraction pattern of the specimen is neatly arranged diffraction spots, that verified the crystals were single crystals. The interplanar distance d calculated from diffraction spot is coincided with that of HAP’s JCPDS card. Moreover, crystal face angles calculated from crystal face index are coincided with the values by measuring on the pattern. The HAP crystals are needle-like in shape with about 3 μm in diameter and 180 μm in length. Most of the crystals are separate whiskers. Their length/diameter ratio ranges from 40 to 100. The average ratio is about 60.展开更多
Use of a single seed is very useful for genetic studies on Vitis vinifera. However, molecular markers require a fair amount of high purity DNA. Grapevine contains high concentrations of polysaccharides, polyphenols, t...Use of a single seed is very useful for genetic studies on Vitis vinifera. However, molecular markers require a fair amount of high purity DNA. Grapevine contains high concentrations of polysaccharides, polyphenols, tannins and other secondary metabolites. These compounds may hamper the DNA isolation processes and subsequent analysis. In this study we have compared two DNA isolation methods: the NucleoSpin Plant II method and a modified protocol from Doyle and Doyle. The average value of 260/280 nm absorption ratio, which is used to assess the purity of DNA and RNA was 1.8 (accepted as “pure” DNA) and 0.9 (presence of protein or other contaminants) for the first and second method, respectively. Using the NucleoSpin protocol, from a single seed (20 - 35 mg) we obtained an average yield of extracted DNA of 24.8 ± 5.2 to 38.4 ± 11.5 ng·mg-1 dry weight. Among the two protocols examined, the NucleoSpin method was more efficient and gave better quality of DNA values compared to those from the modified Doyle and Doyle procedures.展开更多
A new method of multi-coupled single scattering (MCSS) for solving a vector radiative transfer equation is de- veloped and made public on Internet. Recent solutions from Chandrasekhar's X-Y method is used to valida...A new method of multi-coupled single scattering (MCSS) for solving a vector radiative transfer equation is de- veloped and made public on Internet. Recent solutions from Chandrasekhar's X-Y method is used to validate the MCSS's result, which shows high precision. The MCSS method is theoretically simple and clear, so it can be easily and credibly extended to the simulation of aerosol/cloud atmosphere's radiative properties, which provides effective support for research into polarized remote sensing.展开更多
By using the asymptotic iteration method, we have calculated numerically the eigenvalues En of the hyperbolic single wave potential which is introduced by H. Bahlouli, and A. D. Alhaidari. They found a new approach (t...By using the asymptotic iteration method, we have calculated numerically the eigenvalues En of the hyperbolic single wave potential which is introduced by H. Bahlouli, and A. D. Alhaidari. They found a new approach (the “potential parameter” approach) which has been adopted for this eigenvalues problem. For a fixed energy, the problem is solvable for a set of values of the potential parameters (the “parameter spectrum”). This paper will introduce a related work to complete the goal of finding the eigenvalues, the Schr?dinger equation with hyperbolic single wave potential is solved by using asymptotic iteration method. It is found that asymptotically this method gives accurate results for arbitrary parameters, V0, γ, and λ.展开更多
文摘This paper aims to evaluate the stochastic response of steel columns subjected to blast loads using the modified single degree of freedom(MSDOF)method,which assessed towards the conventional single degree of freedom(SDOF)and the experimentally validated Finite Element(FE)methods(LSDYNA).For this purpose,special atten-tion is given to calculating the response of H-shaped steel columns under blast.The damage amount is determined based on the support rotation criterion,which is expressed as a function of their maximum lateral mid-span dis-placement.To account for uncertainties in input parameters and obtain the failure probability,the Monte Carlo simulation(MCS)method is employed,complemented by the Latin Hypercube Sampling(LHS)method to reduce the number of simulations.A parametric analysis is hence performed to examine the effect of several input pa-rameters(including both deterministic and probabilistic parameters)on the probability of column damage as a function of support rotation.First,the MSDOF method confirms its higher accuracy in estimating the probability of column damage due to blast,compared to the conventional SDOF.The collected results also show that un-certainties of several input parameters have significant effects on the column behavior.In particular,geometric parameters(including cross-sectional characteristics,boundary conditions and column length)have major effect on the corresponding column response,in the same way of input blast load parameters and material properties.
基金financial support for this work contributed by the National Key Research and Development Program of China (grant numbers 2016YFC0600101 and 2016YFC 0600201)the National Natural Science Foundation of China (grant numbers 41874065, 41604076, 41674102, 41674095, 41522401, 41574082, and 41774097)
文摘In the adjoint-state method, the forward-propagated source wavefield and the backward-propagated receiver wavefield must be available simultaneously either for seismic imaging in migration or for gradient calculation in inversion. A feasible way to avoid the excessive storage demand is to reconstruct the source wavefield backward in time by storing the entire history of the wavefield in perfectly matched layers. In this paper, we make full use of the elementwise global property of the Laplace operator of the spectral element method (SEM) and propose an efficient source wavefield reconstruction method at the cost of storing the wavefield history only at single boundary layer nodes. Numerical experiments indicate that the accuracy of the proposed method is identical to that of the conventional method and is independent of the order of the Lagrange polynomials, the element type, and the temporal discretization method. In contrast, the memory-saving ratios of the conventional method versus our method is at least N when using either quadrilateral or hexahedron elements, respectively, where N is the order of the Lagrange polynomials used in the SEM. A higher memorysaving ratio is achieved with triangular elements versus quadrilaterals. The new method is applied to reverse time migration by considering the Marmousi model as a benchmark. Numerical results demonstrate that the method is able to provide the same result as the conventional method but with about 1/25 times lower storage demand. With the proposed wavefield reconstruction method, the storage demand is dramatically reduced;therefore, in-core memory storage is feasible even for large-scale three-dimensional adjoint inversion problems.
基金Project(21406141)supported by the National Natural Science Foundation of ChinaProject(20141078)supported by the Scientific Research Starting Foundation for Doctors of Liaoning Province,China+1 种基金Project(L2014060)supported by the Foundation of Department of Education of Liaoning Province,ChinaProject(157B21)supported by the Scientific Research Starting Foundation for Doctors of Shenyang Aerospace University,China
文摘The behavior of single bubble rising in quiescent shear-thinning tlmds was lnvestlgateO numerically by level set metnoa. number of bubbles in a large range of Reynolds number and Eotvos number were investigated including spherical, oblate and spherical. The bubble shape and drag coefficient were compared with experimental results. It is observed that the simulated results show good conformity to experimental results over a wide range of Reynolds number. In addition, the detailed flow field based on the reference coordinate system moving with the bubble is obtained, and the relationship among flow field, bubble shape and velocity is discussed.
基金Supported by the National Key Research and Development Program of China under Grant Nos 2016YFA0401000 and2017YFA0302901the National Basic Research Program of China under Grant No 2015CB921000+2 种基金the National Natural Science Foundation of China under Grant Nos 11574371,11774399 and 11774398the Beijing Natural Science Foundation(Z180008)the Strategic Priority Research Program of Chinese Academy of Sciences under Grant No XDB28000000
文摘Growth of high-quality single crystals is of great significance for research of condensed matter physics. The exploration of suitable growing conditions for single crystals is expensive and time-consuming, especially for ternary compounds because of the lack of ternary phase diagram. Here we use machine learning(ML) trained on our experimental data to predict and instruct the growth. Four kinds of ML methods, including support vector machine(SVM), decision tree, random forest and gradient boosting decision tree, are adopted. The SVM method is relatively stable and works well, with an accuracy of 81% in predicting experimental results. By comparison,the accuracy of laboratory reaches 36%. The decision tree model is also used to reveal which features will take critical roles in growing processes.
文摘Time for single vehicle combat preparation(TSVCP) is an important characteristic parameter for the operational support feature of armored vehicle. During the development phase, how to validate the TSVCP of armored vehicle through analytic method is a difficult issue in analysis and validation of vehicle supportability.This paper uses Monte Carlo approach and builds a working model for single vehicle combat preparation(SVCP)of armored vehicle, thus realizes the prediction and analysis of the TSVCP of armored vehicle, and finally validates the effectiveness of the approach by example.
基金supported by the National Science Fund for Young Scholars(No.22106165)the National Science Fund for Distinguished Young Scholars(No.21925603)+1 种基金the Major Program of the National Natural Science Foundation of China(No.21790373)the National Natural Science Foundation of China(No.U20B2020)。
文摘Two tetravalent uranium silicate and germanate M_(2)U^(Ⅳ)T_(3)O_(9)(M=K,Cs;T=Si,Ge)crystals were crystalized under inert gas by molten salt flux growth method.K_(2)USi_(3)O_(9)(1)crystallizes in the monoclinic space group P1_(21)/n1 with lattice parameters a=7.1076?,b=10.4776?,c=12.2957?,γ=120°and V=915.67?^(3).Cs_(2)UGe_(3)O_(9)(2)crystallizes in a hexagonal space group P-6 with lattice constants of a=7.5138?,b=7.5138?,c=11.0114?,γ=120°and V=538.38?^(3).Bond valence calculations indicate tetravalent uranium in both structures,which contain three-membered single-ring T_(3)O_(9)^(6-) trimers.K_(2)USi_(3)O_(9) is the first uranium silicate that contains the Si_(3)O_(9)^(6-) trimers.
基金Research and Development Project on Voltage Sensors by China Southern Power Grid Digital Research Institute(210000KK52220017)。
文摘Lead magnesium niobate-lead titanate(PMN-PT)piezoelectric single crystals are widely utilized due to their outstanding performance,with varying compositions significantly impacting their properties.While application of PMN-PT in high-power settings is rapidly evolving,material parameters are typically tested under low signal conditions(1 V),and effects of different PT(PbTiO_(3))contents on the performance of PMN-PT single crystals under high-power conditions remain unclear.This study developed a comprehensive high-power testing platform using the constant voltage method to evaluate performance of PMN-PT single crystals with different PT contents under high-power voltage stimulation.Using crystals sized at 10 mm×3 mm×0.5 mm as an example,this research explored changes in material parameters.The results exhibit that while trend of the parameter changes under high-power excitation was consistent across different PT contents,degree of the change varied significantly.For instance,a PMN-PT single crystal with 26%(in mol)PT content exhibited a 25%increase in the piezoelectric coefficient d_(31),a 13%increase in the elastic compliance coefficient s_(11)^(E),a 17%increase in the electromechanical coupling coefficient k_(31),and a 73%decrease in the mechanical quality factor Q_(m) when the power reached 7.90 W.As the PT content increased,the PMN-PT materials became more susceptible to temperature influences,significantly reducing the power tolerance and more readily reaching the depolarization temperatures.This led to loss of piezoelectric performance.Based on these findings,a clearer understanding of impact of PT content on performance of PMN-PT single crystals under high-power applications has been established,providing reliable data to support design of sensors or transducers using PMN-PT as the sensitive element.
基金supported by the National Key R&D Program of China(2024YFB4106400)National Natural Science Foundation of China(22209200,52302331)。
文摘Electrocatalytic reduction of carbon dioxide(CO_(2))to carbon monoxide(CO)is an effective strategy to achieve carbon neutrality.High selective and low-cost catalysts for the electrocatalytic reduction of CO_(2)have received increasing attention.In contrast to the conventional tube furnace method,the high-temperature shock(HTS)method enables ultra-fast thermal processing,superior atomic efficiency,and a streamlined synthesis protocol,offering a simplified method for the preparation of high-performance single-atom catalysts(SACs).The reports have shown that nickel-based SACs can be synthesized quickly and conveniently using the HTS method,making their application in CO_(2)reduction reactions(CO_(2)RR)a viable and promising avenue for further exploration.In this study,the effect of heating temperature,metal loading and different nitrogen(N)sources on the catalyst morphology,coordination environment and electrocatalytic performance were investigated.Under optimal conditions,0.05Ni-DCD-C-1050 showed excellent performance in reducing CO_(2)to CO,with CO selectivity close to 100%(−0.7 to−1.0 V vs RHE)and current density as high as 130 mA/cm^(2)(−1.1 V vs RHE)in a flow cell under alkaline environment.
基金Project supported by the Instrument Developing Project of the Chinese Academy of Sciences(YJKYYQ20170019)International Partnership Program of Chinese Academy of Sciences(121631KYSB20180045)+2 种基金National Natural Science Foundation of China(51872309,U1832106,62005302)Science and Technology Commission of Shanghai Municipality(20511107400,ZJ2020-ZD-005)Science Foundation for Youth Scholar of State Key Laboratory of High Performance Ceramics and Superfine Micro structures(SKL201904)。
文摘The single crystal scintillating optical fibers acting as the scintillators and light conductors show potential application in scintillating fiber array detectors with high spatial resolution.In this paper we report the growth of 0.2 at%Ce:Y_(3)Al_(5)O_(12) single crystal fiber.The crystalline phase,surface morphology of the axialsection and cro ss-section,optical and scintillation properties of the as-grown fiber were investigated.The Ce:Y_(3)Al_(5)O_(12) single crystal fiber has a pure YAG phase,a uniform distribution of cerium in the axialsection and cross-section surface.Emission spectrum is composed of broad bands ranging from 440 to700 nm.In addition,the single crystal fiber has a high light yield of 26115±2000 photons/MeV,low energy resolution of 9.44%@662 keV and decay time of a fast component of 78 ns and a slow component of 301 ns.The intensity ratio of fast to slow components is roughly 8:1.
基金Supported by the National Nature Science Foundation of China(No.51705445,52075468)General Project of Natural Science Foundation of Hebei Province(E2020203052)+1 种基金Youth Fund Project of Scientific Research Project of Hebei University(QN202013)Open Project Funding of Jiangsu Provincial Key Laboratory of Advanced Manufacture and Process for Marine Mechanical Equipment and Open Project Funding of Fluid Power Transmission Control Laboratory of Yanshan University.
文摘Because of hydraulic-electromagnetic double supporting forms,the supporting capacity and stiffness of magnetic-liquid double suspension bearing(MLDSB)can be improved sharply and then it is more suitable for medium speed,heavy load and frequent-starting occasions.Due to the multiple uncertainty,such as the coupling,the unmodeled dynamics,the parameter perturbation and the external disturbance perturbation,the robust stability and stiffness of control system of MLDSB are hard to meet the design requirements.Firstly,the structural features and the regulation mechanisms of MLDSB are presented and the radial 4-DOF kinetic equations are established.Secondly,the influence factors of the control system's coupling on unbalanced vibration caused by the deviation of the rotor center of mass are revealed,and then the weighting function of suppressing the unbalanced vibration can be obtained.Finally,H∞ controller of MLDSB is designed with H∞ mixed-sensitivity method,and the control performances of H∞ controller is compared with the state feedback controller.The simulation results show that single degree of freedom(DOF)supporting system of MLDSB with H∞ controller has good robust stability,stiffness and the ability to suppress unbalanced external disturbances.This study can provide the theoretical reference for stabilized suspension and control of MLDSB.
基金supported by the Ministère des Armées,and the Agence de l'Innovation de Défense(AID).
文摘An analysis of the interaction mechanisms between a Shaped Charge Jet(SCJ) and a single Moving Plate(MP) is proposed in this article using both experimental and numerical approaches. First, an experimental set-up is presented. Four collision tests have been performed: two tests in Backward Moving Plate(BMP) configuration, where the plate moves in opposition to jet, and two tests in Forward Moving Plate(FMP) configuration, where the plate moves alongside the jet. Based on the virtual origin approximation,a methodology(the Virtual Origin Method, VOM) is developed to extract quantities from the X-ray images, which serve as comparative data. γSPH simulations are carried out to complete the analysis, as they well capture the disturbance dynamics observed in the experiments. Based on these complementary experimental and numerical results, a new physical description is proposed through a detailed analysis of the interaction. It is shown that the SCJ/MP interaction is driven at first order by the contact geometry. Thus, BMP and FMP configurations do not generate the same disturbances because their local flow geometries are different. In the collision point frame of reference, the BMP flows in the same direction as the jet, causing its overall deflection. On the contrary, the FMP flow opposes that of the jet leading to an alternative creation of fragments and ligaments. An in-depth study, using the VOM shows that deflection angles, fragment-ligament creation frequencies, and deflection velocities evolve as the interaction progresses through slower jet elements.
基金supported by the National Natural Science Foundation of China(51805399)the Fundamental Research Funds for the Central Universities(JB180403)+2 种基金the Chinese Academy of Sciences(CAS)"Light of West China" Program(2017-XBQNXZ-B-024)the National Basic Research Program of China(973 Program)(2015CB857100)the Operation,Maintenance and Upgrading Fund for Astronomical Telescopes and Facility Instruments,budgeted from the Ministry of Finance of China(MOF)and administrated by the CAS
文摘A gradient-based optimization method for producing a contoured beam by using a single-fed reflector antenna is presented. First, a quick and accurate pattern approximation formula based on physical optics(PO) is adopted to calculate the gradients of the directivity with respect to reflector's nodal displacements. Because the approximation formula is a linear function of nodal displacements, the gradient can be easily derived. Then, the method of the steepest descent is adopted, and an optimization iteration procedure is proposed. The iteration procedure includes two loops: an inner loop and an outer loop. In the inner loop, the gradient and pattern are calculated by matrix operation, which is very fast by using the pre-calculated data in the outer loop. In the outer loop, the ideal terms used in the inner loop to calculate the gradient and pattern are updated, and the real pattern is calculated by the PO method. Due to the high approximation accuracy, when the outer loop is performed once, the inner loop can be performed many times, which will save much time because the integration is replaced by matrix operation. In the end, a contoured beam covering the continental United States(CONUS) is designed, and simulation results show the effectiveness of the proposed algorithm.
基金financial support to this study from the National Natural Science Foundation of China,NSFC(Grant No.52278367).
文摘Particle morphology is critical in affecting the crushing behavior of rockfill materials.In contrast,most current single particle simulations lack satisfactory morphology accuracy,and the resulting crushing modes deviate from observations to some extent.Therefore,we reconstruct the real particle morphology with the spherical harmonic(SH)method and employ the finite-discrete element method(FDEM)to simulate the one-dimensional(1D)compressive crushing process of basalt particles commonly used in rockfill.The influences of four main morphological parameters,i.e.sphericity,aspect ratio,roundness,and convexity,on the single particle strength and the crushing modes are discussed.The results show that with the SH degree set to 15 and a mesh number of 20,480,the FDEM models of reconstructed particles achieve sufficient morphology accuracy and high computational efficiency.Based on the model,the simulation results demonstrate that the aspect ratio has the most significant impact on single particle strength,followed by sphericity.In contrast,roundness and convexity have a weaker effect than the above two parameters.Also,it is revealed that single particle strength decreases with increasing aspect ratio and sphericity,while it increases with higher roundness and convexity.Furthermore,aspect ratio significantly changes the initial crushing position,sphericity dominates post-crushing fragment size and quantity,and roundness mainly affects post-crushing morphology.The model results have been employed in establishing a support vector regression(SVR)-based predicted model,exhibiting good predictive performance and advantages for the optimization of rockfill particles in engineering.
基金supported by the Main Direction Program of Knowledge Innovation of Chinese Academy of Sciences(Grant No.KGFZD-125-13-006)
文摘The atmospheric scattering optical transfer function (OTF) is solved by applying the multi-coupled single scattering (MCSS) method to the three-dimensional radiative transfer equation (RTE) under the periodic ground condition. This approach is a direct hit to the atmospheric scattering OTF using the same original context of modulation transfer function (MTF) measurement, i.e., images of sinusoidal grating at different spatial frequencies. Both the amplitude and phase shift of the OTF at various zenith and azimuth angles can be obtained at an arbitrary spatial frequency.
基金support by Program for Changjing Schol-ars and Innovative Research Team in University(PSCIRT0720)
文摘Using a linear scaling self-consistent-charge density functional tight binding (SCC-DFTB) and an ab initio Omol method, the bonding characteristics and Young's modulus of (10, 0) and (10,10) single-walled carbon nanotubes are calculated. The structure of a graphene is also calculated. It is found that the C-C and C-H bond length, their distribution characteristics on the tube, and Young^s modulus of the tube by linear scaling SCC-DFTB are identical to those by ab initio, while the computing cost by the linear scaling SCC-DFTB is reduced by more than 30 times as compared with that by the Dmol for the (10,0) and (10,10) tubes. By computing the structure of a graphene it is also found that the linear scaling SCCDFTB is reliable and time-saving.
基金supported by the National Natural Science Foundation of China (Grant No. 51175484)the Science Foundation of Shandong Province (Grant No. ZR2010EM052)
文摘Deployment of buoy systems is one of the most important procedures for the operation of buoy system. In the present study, a single-point mooring buoy system which contains surface buoy, cable segments with components, anchor and so on is modeled by applying multi-body dynamics method. The motion equations are developed in discrete node description and fully Cartesian coordinates. Then numerical method is used to solve the ordinary differential equations and dynamics simulations are achieved while anchor is casting from board. The trajectories and velocities of different nodes without current and with current in buoy system are obtained. The transient tension force of each part of the cable is analyzed in the process of deployment. Numerical results indicate that the transient payload increases to a peak value when the anchor is touching the seabed and the maximum tension force will vary with different floating configuration. This work is helpful for design and deployment planning of buoy system.
文摘Hydroxyapatite(HAP, Ca 10(PO 4) 6(OH) 2) is one of the quite important bone implant materials. The hydroxyapatite crystals were synthesized under hydrothermal condition. The specimen was verified to be HAP crystal by the X-ray powder diffractometry(XRD). Then the specimen was distinguished single crystal from polycrystal by the use of the transmission electron microscope(TEM). The diffraction pattern of the specimen is neatly arranged diffraction spots, that verified the crystals were single crystals. The interplanar distance d calculated from diffraction spot is coincided with that of HAP’s JCPDS card. Moreover, crystal face angles calculated from crystal face index are coincided with the values by measuring on the pattern. The HAP crystals are needle-like in shape with about 3 μm in diameter and 180 μm in length. Most of the crystals are separate whiskers. Their length/diameter ratio ranges from 40 to 100. The average ratio is about 60.
文摘Use of a single seed is very useful for genetic studies on Vitis vinifera. However, molecular markers require a fair amount of high purity DNA. Grapevine contains high concentrations of polysaccharides, polyphenols, tannins and other secondary metabolites. These compounds may hamper the DNA isolation processes and subsequent analysis. In this study we have compared two DNA isolation methods: the NucleoSpin Plant II method and a modified protocol from Doyle and Doyle. The average value of 260/280 nm absorption ratio, which is used to assess the purity of DNA and RNA was 1.8 (accepted as “pure” DNA) and 0.9 (presence of protein or other contaminants) for the first and second method, respectively. Using the NucleoSpin protocol, from a single seed (20 - 35 mg) we obtained an average yield of extracted DNA of 24.8 ± 5.2 to 38.4 ± 11.5 ng·mg-1 dry weight. Among the two protocols examined, the NucleoSpin method was more efficient and gave better quality of DNA values compared to those from the modified Doyle and Doyle procedures.
基金Project supported by the Science Foundation of the Airborne Remote Sensing System,Large Research Infrastructure of the Chinese Academy of Sciences
文摘A new method of multi-coupled single scattering (MCSS) for solving a vector radiative transfer equation is de- veloped and made public on Internet. Recent solutions from Chandrasekhar's X-Y method is used to validate the MCSS's result, which shows high precision. The MCSS method is theoretically simple and clear, so it can be easily and credibly extended to the simulation of aerosol/cloud atmosphere's radiative properties, which provides effective support for research into polarized remote sensing.
文摘By using the asymptotic iteration method, we have calculated numerically the eigenvalues En of the hyperbolic single wave potential which is introduced by H. Bahlouli, and A. D. Alhaidari. They found a new approach (the “potential parameter” approach) which has been adopted for this eigenvalues problem. For a fixed energy, the problem is solvable for a set of values of the potential parameters (the “parameter spectrum”). This paper will introduce a related work to complete the goal of finding the eigenvalues, the Schr?dinger equation with hyperbolic single wave potential is solved by using asymptotic iteration method. It is found that asymptotically this method gives accurate results for arbitrary parameters, V0, γ, and λ.