期刊文献+
共找到11,710篇文章
< 1 2 250 >
每页显示 20 50 100
Sensorless battery expansion estimation using electromechanical coupled models and machine learning 被引量:1
1
作者 Xue Cai Caiping Zhang +4 位作者 Jue Chen Zeping Chen Linjing Zhang Dirk Uwe Sauer Weihan Li 《Journal of Energy Chemistry》 2025年第6期142-157,I0004,共17页
Developing sensorless techniques for estimating battery expansion is essential for effective mechanical state monitoring,improving the accuracy of digital twin simulation and abnormality detection.Therefore,this paper... Developing sensorless techniques for estimating battery expansion is essential for effective mechanical state monitoring,improving the accuracy of digital twin simulation and abnormality detection.Therefore,this paper presents a data-driven approach to expansion estimation using electromechanical coupled models with machine learning.The proposed method integrates reduced-order impedance models with data-driven mechanical models,coupling the electrochemical and mechanical states through the state of charge(SOC)and mechanical pressure within a state estimation framework.The coupling relationship was established through experimental insights into pressure-related impedance parameters and the nonlinear mechanical behavior with SOC and pressure.The data-driven model was interpreted by introducing a novel swelling coefficient defined by component stiffnesses to capture the nonlinear mechanical behavior across various mechanical constraints.Sensitivity analysis of the impedance model shows that updating model parameters with pressure can reduce the mean absolute error of simulated voltage by 20 mV and SOC estimation error by 2%.The results demonstrate the model's estimation capabilities,achieving a root mean square error of less than 1 kPa when the maximum expansion force is from 30 kPa to 120 kPa,outperforming calibrated stiffness models and other machine learning techniques.The model's robustness and generalizability are further supported by its effective handling of SOC estimation and pressure measurement errors.This work highlights the importance of the proposed framework in enhancing state estimation and fault diagnosis for lithium-ion batteries. 展开更多
关键词 Sensorless estimation Electromechanical coupling Impedance model Data-driven model Mechanical pressure
在线阅读 下载PDF
Regional Storm Surge Forecast Method Based on a Neural Network and the Coupled ADCIRC-SWAN Model 被引量:1
2
作者 Yuan SUN Po HU +2 位作者 Shuiqing LI Dongxue MO Yijun HOU 《Advances in Atmospheric Sciences》 2025年第1期129-145,共17页
Timely and accurate forecasting of storm surges can effectively prevent typhoon storm surges from causing large economic losses and casualties in coastal areas.At present,numerical model forecasting consumes too many ... Timely and accurate forecasting of storm surges can effectively prevent typhoon storm surges from causing large economic losses and casualties in coastal areas.At present,numerical model forecasting consumes too many resources and takes too long to compute,while neural network forecasting lacks regional data to train regional forecasting models.In this study,we used the DUAL wind model to build typhoon wind fields,and constructed a typhoon database of 75 processes in the northern South China Sea using the coupled Advanced Circulation-Simulating Waves Nearshore(ADCIRC-SWAN)model.Then,a neural network with a Res-U-Net structure was trained using the typhoon database to forecast the typhoon processes in the validation dataset,and an excellent storm surge forecasting effect was achieved in the Pearl River Estuary region.The storm surge forecasting effect of stronger typhoons was improved by adding a branch structure and transfer learning. 展开更多
关键词 regional storm surge forecast coupled ADCIRC-SWAN model neural network Res-U-Net structure
在线阅读 下载PDF
Coupled thermo-hydro-mechanical cohesive phase-field model for hydraulic fracturing in deep coal seams 被引量:1
3
作者 Jianping LIU Zhaozhong YANG +2 位作者 Liangping YI Duo YI Xiaogang LI 《Applied Mathematics and Mechanics(English Edition)》 2025年第4期663-682,共20页
A coupled thermal-hydro-mechanical cohesive phase-field model for hydraulic fracturing in deep coal seams is presented.Heat exchange between the cold fluid and the hot rock is considered,and the thermal contribution t... A coupled thermal-hydro-mechanical cohesive phase-field model for hydraulic fracturing in deep coal seams is presented.Heat exchange between the cold fluid and the hot rock is considered,and the thermal contribution terms between the cold fluid and the hot rock are derived.Heat transfer obeys Fourier's law,and porosity is used to relate the thermodynamic parameters of the fracture and matrix domains.The net pressure difference between the fracture and the matrix is neglected,and thus the fluid flow is modeled by the unified fluid-governing equations.The evolution equations of porosity and Biot's coefficient during hydraulic fracturing are derived from their definitions.The effect of coal cleats is considered and modeled by Voronoi polygons,and this approach is shown to have high accuracy.The accuracy of the proposed model is verified by two sets of fracturing experiments in multilayer coal seams.Subsequently,the differences in fracture morphology,fluid pressure response,and fluid pressure distribution between direct fracturing of coal seams and indirect fracturing of shale interlayers are explored,and the effects of the cluster number and cluster spacing on fracture morphology for multi-cluster fracturing are also examined.The numerical results show that the proposed model is expected to be a powerful tool for the fracturing design and optimization of deep coalbed methane. 展开更多
关键词 phase-field method thermo-hydro-mechanical coupling indirect fracturing cohesive zone model deep coal seam
在线阅读 下载PDF
Evaluation of East Asian Climatology as Simulated by Seven Coupled Models 被引量:54
4
作者 姜大膀 王会军 郎咸梅 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2005年第4期479-495,共17页
Using observation and reanalysis data throughout 1961-1990, the East Asian surface air temperature, precipitation and sea level pressure climatology as simulated by seven fully coupled atmosphere-ocean models, namely ... Using observation and reanalysis data throughout 1961-1990, the East Asian surface air temperature, precipitation and sea level pressure climatology as simulated by seven fully coupled atmosphere-ocean models, namely CCSR/NIES, CGCM2, CSIRO-Mk2, ECHAM4/OPYC3, GFDL-R30, HadCM3, and NCAR-PCM, are systematically evaluated in this study. It is indicated that the above models can successfully reproduce the annual and seasonal surface air temperature and precipitation climatology in East Asia, with relatively good performance for boreal autumn and annual mean. The models' ability to simulate surface air temperature is more reliable than precipitation. In addition, the models can dependably capture the geographical distribution pattern of annual, boreal winter, spring and autumn sea level pressure in East Asia. In contrast, relatively large simulation errors are displayed when simulated boreal summer sea level pressure is compared with reanalysis data in East Asia. It is revealed that the simulation errors for surface air temperature, precipitation and sea level pressure are generally large over and around the Tibetan Plateau. No individual model is best in every aspect. As a whole, the ECHAM4/OPYC3 and HadCM3 performances are much better, whereas the CGCM2 is relatively poorer in East Asia. Additionally, the seven-model ensemble mean usually shows a relatively high reliability. 展开更多
关键词 coupled model East Asian climatology EVALUATION
在线阅读 下载PDF
Progress in the Development and Application of Climate Ocean Models and Ocean-Atmosphere Coupled Models in China 被引量:23
5
作者 周天军 俞永强 +3 位作者 刘海龙 李薇 游小宝 周广庆 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2007年第6期1109-1120,共12页
A review is presented about the development and application of climate ocean models and oceanatmosphere coupled models developed in China as well as a review of climate variability and climate change studies performed... A review is presented about the development and application of climate ocean models and oceanatmosphere coupled models developed in China as well as a review of climate variability and climate change studies performed with these models. While the history of model development is briefly reviewed, emphasis has been put on the achievements made in the last five years. Advances in model development are described along with a summary on scientific issues addressed by using these models. The focus of the review is the climate ocean models and the associated coupled models, including both global and regional models, developed at the Institute of Atmospheric Physics, Chinese Academy of Sciences. The progress of either coupled model development made by other institutions or climate modeling using internationally developed models also is reviewed. 展开更多
关键词 climate ocean model ocean-atmosphere coupled model climate modeling
在线阅读 下载PDF
Investigation of hanging crosstie problem at bridge approaches:a train–track–bridge model coupled with discrete element method
6
作者 Zhongyi Liu Wenjing Li +2 位作者 Travis A.Shoemaker Erol Tutumluer Youssef M.A.Hashash 《Railway Engineering Science》 2025年第3期458-473,共16页
Nonuniform track support and differential settlements are commonly observed in bridge approaches where the ballast layer can develop gaps at crosstie-ballast interfaces often referred to as a hanging crosstie conditio... Nonuniform track support and differential settlements are commonly observed in bridge approaches where the ballast layer can develop gaps at crosstie-ballast interfaces often referred to as a hanging crosstie condition.Hanging crossties usually yield unfavorable dynamic effects such as higher wheel loads,which negatively impact the serviceability and safety of railway operations.Hence,a better understanding of the mechanisms that cause hanging crossties and their effects on the ballast layer load-deformation characteristics is necessary.Since the ballast layer is a particulate medium,the discrete element method(DEM),which simulates ballast particle interactions individually,is ideal to explore the interparticle contact forces and ballast movements under dynamic wheel loading.Accurate representations of the dynamic loads from the train and track superstructure are needed for high-fidelity DEM modeling.This paper introduces an integrated modeling approach,which couples a single-crosstie DEM ballast model with a train–track–bridge(TTB)model using a proportional–integral–derivative control loop.The TTB–DEM model was validated with field measurements,and the coupled model calculates similar crosstie displacements as the TTB model.The TTB–DEM provided new insights into the ballast particle-scale behavior,which the TTB model alone cannot explore.The TTB–DEM coupling approach identified detrimental effects of hanging crossties on adjacent crossties,which were found to experience drastic vibrations and large ballast contact force concentrations. 展开更多
关键词 Hanging crosstie Crosstie gap Transition zone model coupling Discrete element method Train-track model
在线阅读 下载PDF
Relationships between the Limit of Predictability and Initial Error in the Uncoupled and Coupled Lorenz Models 被引量:7
7
作者 丁瑞强 李建平 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2012年第5期1078-1088,共11页
In this study, the relationship between the limit of predictability and initial error was investigated using two simple chaotic systems: the Lorenz model, which possesses a single characteristic time scale, and the c... In this study, the relationship between the limit of predictability and initial error was investigated using two simple chaotic systems: the Lorenz model, which possesses a single characteristic time scale, and the coupled Lorenz model, which possesses two different characteristic time scales. The limit of predictability is defined here as the time at which the error reaches 95% of its saturation level; nonlinear behaviors of the error growth are therefore involved in the definition of the limit of predictability. Our results show that the logarithmic function performs well in describing the relationship between the limit of predictability and initial error in both models, although the coefficients in the logarithmic function were not constant across the examined range of initial errors. Compared with the Lorenz model, in the coupled Lorenz model in which the slow dynamics and the fast dynamics interact with each other--there is a more complex relationship between the limit of predictability and initial error. The limit of predictability of the Lorenz model is unbounded as the initial error becomes infinitesimally small; therefore, the limit of predictability of the Lorenz model may be extended by reducing the amplitude of the initial error. In contrast, if there exists a fixed initial error in the fast dynamics of the coupled Lorenz model, the slow dynamics has an intrinsic finite limit of predictability that cannot be extended by reducing the amplitude of the initial error in the slow dynamics, and vice versa. The findings reported here reveal the possible existence of an intrinsic finite limit of predictability in a coupled system that possesses many scales of time or motion. 展开更多
关键词 limit of predictability initial error Lorenz model coupled Lorenz model
在线阅读 下载PDF
A hybrid coupled model for the tropical Pacific constructed by integrating ROMS with a statistical atmospheric model
8
作者 Rong-Hua ZHANG Wenzhe ZHANG +4 位作者 Yang YU Yinnan LI Feng TIAN Chuan GAO Hongna WANG 《Journal of Oceanology and Limnology》 2025年第4期1037-1055,共19页
Numerical models are crucial for quantifying the ocean-atmosphere interactions associated with the El Niño-Southern Oscillation(ENSO)phenomenon in the tropical Pacific.Current coupled models often exhibit signifi... Numerical models are crucial for quantifying the ocean-atmosphere interactions associated with the El Niño-Southern Oscillation(ENSO)phenomenon in the tropical Pacific.Current coupled models often exhibit significant biases and inter-model differences in simulating ENSO,underscoring the need for alternative modeling approaches.The Regional Ocean Modeling System(ROMS)is a sophisticated ocean model widely used for regional studies and has been coupled with various atmospheric models.However,its application in simulating ENSO processes on a basin scale in the tropical Pacific has not been explored.For the first time,this study presents the development of a basin-scale hybrid coupled model(HCM)for the tropical Pacific,integrating ROMS with a statistical atmospheric model that captures the interannual relationships between sea surface temperature(SST)and wind stress anomalies.The HCM is evaluated for its capability to simulate the annual mean,seasonal,and interannual variations of the oceanic state in the tropical Pacific.Results demonstrate that the model effectively reproduces the ENSO cycle,with a dominant oscillation period of approximately two years.The ROMS-based HCM developed here offers an efficient and robust tool for investigating climate variability in the tropical Pacific. 展开更多
关键词 Regional Ocean modeling System(ROMS) statistical atmospheric model hybrid coupled model El Niño-Southern Oscillation(ENSO) model evaluation tropical Pacific
在线阅读 下载PDF
A review of thermo-hydro-mechanical modeling of coupled processes in fractured rock:From continuum to discontinuum perspective
9
作者 Iman Vaezi Keita Yoshioka +11 位作者 Silvia De Simone Berta María Gómez-Castro Adriana Paluszny Mohammadreza Jalali Inga Berre Jonny Rutqvist Ki-Bok Min Qinghua Lei Roman Y.Makhnenko Mengsu Hu Chin-Fu Tsang Victor Vilarrasa 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第11期7460-7488,共29页
Coupled thermo-hydro-mechanical(THM)processes in fractured rock are playing a crucial role in geoscience and geoengineering applications.Diverse and conceptually distinct approaches have emerged over the past decades ... Coupled thermo-hydro-mechanical(THM)processes in fractured rock are playing a crucial role in geoscience and geoengineering applications.Diverse and conceptually distinct approaches have emerged over the past decades in both continuum and discontinuum perspectives leading to significant progress in their comprehending and modeling.This review paper offers an integrated perspective on existing modeling methodologies providing guidance for model selection based on the initial and boundary conditions.By comparing various models,one can better assess the uncertainties in predictions,particularly those related to the conceptual models.The review explores how these methodologies have significantlyenhanced the fundamental understanding of how fractures respond to fluid injection and production,and improved predictive capabilities pertaining to coupled processes within fractured systems.It emphasizes the importance of utilizing advanced computational technologies and thoroughly considering fundamental theories and principles established through past experimental evidence and practical experience.The selection and calibration of model parameters should be based on typical ranges and applied to the specificconditions of applications.The challenges arising from inherent heterogeneity and uncertainties,nonlinear THM coupled processes,scale dependence,and computational limitations in representing fieldscale fractures are discussed.Realizing potential advances on computational capacity calls for methodical conceptualization,mathematical modeling,selection of numerical solution strategies,implementation,and calibration to foster simulation outcomes that intricately reflectthe nuanced complexities of geological phenomena.Future research efforts should focus on innovative approaches to tackle the hurdles and advance the state-of-the-art in this critical fieldof study. 展开更多
关键词 Fractured rock Fracture representation coupling scheme Fracture mechanics Numerical modeling
在线阅读 下载PDF
A deep residual intelligent model for ENSO prediction by incorporating coupled model forecast data
10
作者 Chunyang Song Xuefeng Zhang +3 位作者 Xingrong Chen Hua Jiang Liang Zhang Yongyong Huang 《Acta Oceanologica Sinica》 2025年第8期133-142,共10页
The El Niño-Southern Oscillation(ENSO)is a naturally recurring interannual climate fluctuation that affects the global climate system.The advent of deep learning-based approaches has led to transformative changes... The El Niño-Southern Oscillation(ENSO)is a naturally recurring interannual climate fluctuation that affects the global climate system.The advent of deep learning-based approaches has led to transformative changes in ENSO forecasts,resulting in significant progress.Most deep learning-based ENSO prediction models which primarily rely solely on reanalysis data may lead to challenges in intensity underestimation in long-term forecasts,reducing the forecasting skills.To this end,we propose a deep residual-coupled model prediction(Res-CMP)model,which integrates historical reanalysis data and coupled model forecast data for multiyear ENSO prediction.The Res-CMP model is designed as a lightweight model that leverages only short-term reanalysis data and nudging assimilation prediction results of the Community Earth System Model(CESM)for effective prediction of the Niño 3.4 index.We also developed a transfer learning strategy for this model to overcome the limitations of inadequate forecast data.After determining the optimal configuration,which included selecting a suitable transfer learning rate during training,along with input variables and CESM forecast lengths,Res-CMP demonstrated a high correlation ability for 19-month lead time predictions(correlation coefficients exceeding 0.5).The Res-CMP model also alleviated the spring predictability barrier(SPB).When validated against actual ENSO events,Res-CMP successfully captured the temporal evolution of the Niño 3.4 index during La Niña events(1998/99 and 2020/21)and El Niño events(2009/10 and 2015/16).Our proposed model has the potential to further enhance ENSO prediction performance by using coupled models to assist deep learning methods. 展开更多
关键词 ENSO prediction deep learning dynamical coupled model data incorporating
在线阅读 下载PDF
New insights on generalized heat conduction and thermoelastic coupling models
11
作者 Yue HUANG Lei YAN +1 位作者 Hua WU Yajun YU 《Applied Mathematics and Mechanics(English Edition)》 2025年第8期1533-1550,共18页
With the miniaturization of devices and the development of modern heating technologies,the generalization of heat conduction and thermoelastic coupling has become crucial,effectively emulating the thermodynamic behavi... With the miniaturization of devices and the development of modern heating technologies,the generalization of heat conduction and thermoelastic coupling has become crucial,effectively emulating the thermodynamic behavior of materials in ultrashort time scales.Theoretically,generalized heat conductive models are considered in this work.By analogy with mechanical viscoelastic models,this paper further enriches the heat conduction models and gives their one-dimensional physical expression.Numerically,the transient thermoelastic response of the slim strip material under thermal shock is investigated by applying the proposed models.First,the analytical solution in the Laplace domain is obtained by the Laplace transform.Then,the numerical results of the transient responses are obtained by the numerical inverse Laplace transform.Finally,the transient responses of different models are analyzed and compared,and the effects of material parameters are discussed.This work not only opens up new research perspectives on generalized heat conductive and thermoelastic coupling theories,but also is expected to be beneficial for the deeper understanding of the heat wave theory. 展开更多
关键词 generalized heat conduction thermoelastic coupling transient response generalized Cattaneo-Vernotte(CV)model generalized Green-Naghdi(GN)model
在线阅读 下载PDF
A regional ocean–atmosphere coupled model using CMA-TRAMS and LICOM: Preliminary results for tropical cyclone gale prediction over the northern South China Sea
12
作者 Ling Huang Chunxia Liu +1 位作者 Yongqiang Yu Liwei Zou 《Atmospheric and Oceanic Science Letters》 2025年第2期58-62,共5页
This paper provides a comparative analysis of the performance of a high-resolution regional ocean-atmosphere coupled model in predicting tropical cyclone(TC)gales over the northern South China Sea.The atmosphere and o... This paper provides a comparative analysis of the performance of a high-resolution regional ocean-atmosphere coupled model in predicting tropical cyclone(TC)gales over the northern South China Sea.The atmosphere and ocean components of the coupled system are represented by the China Meteorological Administration’s Tropical Regional Atmosphere Model for the South China Sea(CMA-TRAMS)and the LASG/IAP Climate system Ocean Model(LICOM),respectively.The Ocean Atmosphere Sea Ice Soil VersionH 3(OASIS3)software has been utilized for the exchange of momentum,heat,and freshwater fluxes between these two components.An assessment of the coupled model’s three-day predictions for five TCs’gales was conducted.Preliminary findings indicate that the predicted TC tracks show less sensitivity to oceanic influences than the predicted TC intensities.Significant improvement in predicting the surface TC gales has been achieved through coupling the ocean model.This improvement is attributed to the impact of the warmer ocean’s effect on TC intensification,counteracting the cooling effect of the cold wake.In summary,coupling has enhanced the model’s predictive capabilities for TC gales.A detailed assessment of the coupled model’s performance in predicting other tropical weather phenomena is forthcoming. 展开更多
关键词 TC gales Regional coupled ocean-atmosphere model Northern South China Sea
在线阅读 下载PDF
Employment of an Arctic sea-ice data assimilation scheme in the coupled climate system model FGOALS-f3-L and its preliminary results
13
作者 Yuyang Guo Yongqiang Yu Jiping Liu 《Atmospheric and Oceanic Science Letters》 2025年第4期27-34,共8页
Arctic sea ice is an important component of the global climate system and has experienced rapid changes during in the past few decades,the prediction of which is a significant application for climate models.In this st... Arctic sea ice is an important component of the global climate system and has experienced rapid changes during in the past few decades,the prediction of which is a significant application for climate models.In this study,a Localized Error Subspace Transform Kalman Filter is employed in a coupled climate system model(the Flexible Global Ocean–Atmosphere–Land System Model,version f3-L(FGOALS-f3-L))to assimilate sea-ice concentration(SIC)and sea-ice thickness(SIT)data for melting-season ice predictions.The scheme is applied through the following steps:(1)initialization for generating initial ensembles;(2)analysis for assimilating observed data;(3)adoption for dividing ice states into five thickness categories;(4)forecast for evolving the model;(5)resampling for updating model uncertainties.Several experiments were conducted to examine its results and impacts.Compared with the control experiment,the continuous assimilation experiments(CTNs)indicate assimilations improve model SICs and SITs persistently and generate realistic initials.Assimilating SIC+SIT data better corrects overestimated model SITs spatially than when only assimilating SIC data.The continuous assimilation restart experiments indicate the initials from the CTNs correct the overestimated marginal SICs and overall SITs remarkably well,as well as the cold biases in the oceanic and atmospheric models.The initials with SIC+SIT assimilated show more reasonable spatial improvements.Nevertheless,the SICs in the central Arctic undergo abnormal summer reductions,which is probably because overestimated SITs are reduced in the initials but the strong seasonal cycle(summer melting)biases are unchanged.Therefore,since systematic biases are complicated in a coupled system,for FGOALS-f3-L to make better ice predictions,oceanic and atmospheric assimilations are expected required. 展开更多
关键词 Arctic sea ice Data assimilation coupled climate system model FGOALS-f3-L
在线阅读 下载PDF
Fully coupled THM constitutive model for clay rocks:Formulation and application to laboratory tests
14
作者 Fei Song Antonio Gens +2 位作者 Stefano Collico Dragan Grgic Huaning Wang 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第4期1941-1960,共20页
This study presents a fully coupled thermo-hydro-mechanical (THM) constitutive model for clay rocks. The model is formulated within the elastic-viscoplasticity framework, which considers nonlinearity and softening aft... This study presents a fully coupled thermo-hydro-mechanical (THM) constitutive model for clay rocks. The model is formulated within the elastic-viscoplasticity framework, which considers nonlinearity and softening after peak strength, anisotropy of stiffness and strength, as well as permeability variation due to damage. In addition, the mechanical properties are coupled with thermal phenomena and accumulated plastic strains. The adopted nonlocal and viscoplastic approaches enhance numerical efficiency and provide the possibility to simulate localization phenomena. The model is validated against experimental data from laboratory tests conducted on Callovo-Oxfordian (COx) claystone samples that are initially unsaturated and under suction. The tests include a thermal phase where the COx specimens are subjected to different temperature increases. A good agreement with experimental data is obtained. In addition, parametric analyses are carried out to investigate the influence of the hydraulic boundary conditions (B.C.) and post-failure behavior models on the THM behavior evolution. It is shown that different drainage conditions affect the thermally induced pore pressures that, in turn, influence the onset of softening. The constitutive model presented constitutes a promising approach for simulating the most important features of the THM behavior of clay rocks. It is a tool with a high potential for application to several relevant case studies, such as thermal fracturing analysis of nuclear waste disposal systems. 展开更多
关键词 Hard soil Soft rocks Unsaturated/saturated conditions THM coupling processes Thermal pressurization Constitutive model
在线阅读 下载PDF
An Examination of the Predictability of Tropical Cyclone Genesis in High-Resolution Coupled Models with Dynamically Downscaled Coupled Data Assimilation Initialization 被引量:6
15
作者 Mingkui LI Shaoqing ZHANG +17 位作者 Lixin WU Xiaopei LIN Ping CHANG Gohkan DANABASOGLU Zhiqiang WEI Xiaolin YU Huiqin HU Xiaohui MA Weiwei MA Haoran ZHAO Dongning JIA Xin LIU Kai MAO Youwei MA Yingjing JIANG Xue WANG Guangliang LIU Yuhu CHEN 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2020年第9期939-950,共12页
Predicting tropical cyclone(TC)genesis is of great societal importance but scientifically challenging.It requires fineresolution coupled models that properly represent air−sea interactions in the atmospheric responses... Predicting tropical cyclone(TC)genesis is of great societal importance but scientifically challenging.It requires fineresolution coupled models that properly represent air−sea interactions in the atmospheric responses to local warm sea surface temperatures and feedbacks,with aid from coherent coupled initialization.This study uses three sets of highresolution regional coupled models(RCMs)covering the Asia−Pacific(AP)region initialized with local observations and dynamically downscaled coupled data assimilation to evaluate the predictability of TC genesis in the West Pacific.The APRCMs consist of three sets of high-resolution configurations of the Weather Research and Forecasting−Regional Ocean Model System(WRF-ROMS):27-km WRF with 9-km ROMS,and 9-km WRF with 3-km ROMS.In this study,a 9-km WRF with 9-km ROMS coupled model system is also used in a case test for the predictability of TC genesis.Since the local sea surface temperatures and wind shear conditions that favor TC formation are better resolved,the enhanced-resolution coupled model tends to improve the predictability of TC genesis,which could be further improved by improving planetary boundary layer physics,thus resolving better air−sea and air−land interactions. 展开更多
关键词 high-resolution coupled model tropical cyclone formation PREDICTABILITY TC genesis coupled data assimilation
在线阅读 下载PDF
Twentieth-century Pacific Decadal Oscillation simulated by CMIP5 coupled models 被引量:7
16
作者 WANG Tao MIAO Jia-Peng 《Atmospheric and Oceanic Science Letters》 CSCD 2018年第1期94-101,共8页
The authors examine the spatial and temporal characteristics of the simulated Pacific Decadal Oscillation (PDO) in 109 historical (i.e. all forcings) simulations derived from 25 coupled models within CMIPS. Compar... The authors examine the spatial and temporal characteristics of the simulated Pacific Decadal Oscillation (PDO) in 109 historical (i.e. all forcings) simulations derived from 25 coupled models within CMIPS. Compared with observations, most simulations successfully simulate the observed PDO pattern and its teleconnections to the SSTs in the tropical and southern Pacific. BNU-ESM, CanESM2, CCSM4, CESM 1 -FASTCHEM, FGOALS-g2, GFDL CM3, MIROCS, and NorESM 1 -M show better performance. Compared with the temporal phases of the observed PDO in the twentieth century, only five simulations -- from CNRM^CMS, CSIRO Mk3o6.0, HadCM3, and IPSL-CMSA-LR -- simulate an evolution of the PDO similar to that derived from observation, which suggests that current coupled models can barely reproduce the observed phase shifting of the PDO. To capture characteristics of the observed PDO in the twentieth century, a requirement is that all the relevant external forcings are included in the models. How to add realistic oceanic initial states into the model may be another key point. 展开更多
关键词 Pacific Decadal Oscillation CMIPS twentieth century coupled model
在线阅读 下载PDF
Landslide susceptibility assessment based on an interpretable coupled FR-RF model:A case study of Longyan City,Fujian Province,Southeast China
17
作者 Zong-yue Lu Gen-yuan Liu +5 位作者 Xi-dong Zhao Kang Sun Yan-si Chen Zhi-hong Song Kai Xue Ming-shan Yang 《China Geology》 2025年第2期281-294,共14页
To enhance the prediction accuracy of landslides in in Longyan City,China,this study developed a methodology for geologic hazard susceptibility assessment based on a coupled model composed of a Geographic Information ... To enhance the prediction accuracy of landslides in in Longyan City,China,this study developed a methodology for geologic hazard susceptibility assessment based on a coupled model composed of a Geographic Information System(GIS)with integrated spatial data,a frequency ratio(FR)model,and a random forest(RF)model(also referred to as the coupled FR-RF model).The coupled FR-RF model was constructed based on the analysis of nine influential factors,including distance from roads,normalized difference vegetation index(NDVI),and slope.The performance of the coupled FR-RF model was assessed using metrics such as Receiver Operating Characteristic(ROC)and Precision-Recall(PR)curves,yielding Area Under the Curve(AUC)values of 0.93 and 0.95,which indicate high predictive accuracy and reliability for geological hazard forecasting.Based on the model predictions,five susceptibility levels were determined in the study area,providing crucial spatial information for geologic hazard prevention and control.The contributions of various influential factors to landslide susceptibility were determined using SHapley Additive exPlanations(SHAP)analysis and the Gini index,enhancing the model interpretability and transparency.Additionally,this study discussed the limitations of the coupled FR-RF model and the prospects for its improvement using new technologies.This study provides an innovative method and theoretical support for geologic hazard prediction and management,holding promising prospects for application. 展开更多
关键词 Machine learning Landslide susceptibility assessment Geographic Information System(GIS) coupled FR-RF model Random forest INTERPRETABILITY SHapley Additive exPlanations Geological disater prevention engineering Longyan
在线阅读 下载PDF
Application of Pore Evolution and Fracture Development Coupled Models in the Prediction of Reservoir "Sweet Spots" in Tight Sandstones 被引量:3
18
作者 ZHANG Linyan ZHUO Xizhun +3 位作者 MA Licheng CHEN Xiaoshuai SONG Licai ZHOU Xingui 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2015年第3期1051-1052,共2页
The Chang-63 reservoir in the Huaqing area has widely developed tight sandstone "thick sand layers, but not reservoirs characterized by rich in oil", and it is thus necessary to further study its oil and gas enrichm... The Chang-63 reservoir in the Huaqing area has widely developed tight sandstone "thick sand layers, but not reservoirs characterized by rich in oil", and it is thus necessary to further study its oil and gas enrichment law. This study builds porosity and fracture development and evolution models in different deposition environments, through core observation, casting thin section, SEM, porosity and permeability analysis, burial history analysis, and "four-property-relationships" analysis. 展开更多
关键词 Sweet Spots in Tight Sandstones Application of Pore Evolution and Fracture Development coupled models in the Prediction of Reservoir
在线阅读 下载PDF
Preliminary analysis of the zonal distribution of ENSO-related SSTA in three CMIP5 coupled models 被引量:1
19
作者 GE Zi-an CHEN Lin 《Atmospheric and Oceanic Science Letters》 CSCD 2020年第5期443-451,共9页
The simulated sea surface temperature anomaly(SSTA)over the tropical Pacific during El Ni?o–Southern Oscillation(ENSO)is investigated in three representative coupled models:CESM1-CAM5,FGOALS-s2,and FGOALS-g2.It is fo... The simulated sea surface temperature anomaly(SSTA)over the tropical Pacific during El Ni?o–Southern Oscillation(ENSO)is investigated in three representative coupled models:CESM1-CAM5,FGOALS-s2,and FGOALS-g2.It is found that there is a significant westward shift bias in reproducing the zonal distribution(ZD)of the ENSO-related SSTA in CESM1-CAM5 and FGOALS-s2,whereas the SSTA-ZD simulated by FGOALS-g2 is relatively realistic.Through examining the SSTA-ZD during both warm and cold phases of ENSO separately,the authors reveal that the SSTA-ZD simulation bias during the ENSO cycle mainly lies in the bias during the warm phase.It is noted that both the simulated zonal wind stress anomaly(τ’_x)and shortwave heat flux(SW)anomaly exhibit westward shift biases in CESM1-CAM5 and FGOALS-s2,while the counterparts in FGOALS-g2 are relatively reasonable.The westward shift biases in representingτ’_x and the SW anomaly(SWA)are attributed to the westward-shifted precipitation anomaly(PrA).It is suggested that the mean SST cold bias over the cold tongue region is the key factor behind the westward-shift bias in simulating the El Ni?o-related PrA,which leads to the westward-shiftedτ’_x and SWA.Collectively,the aforementioned anomaly fields,including the dynamic part(τ’_x)and thermodynamic part(SWA),contribute to the westward-shift bias in simulating the El Ni?o-related SSTA.This study provides clues for understanding the ZD simulation biases of ENSO-related fields;however,further in-depth investigation with more model simulations,especially the incoming CMIP6 simulations,is still needed to fully understand the ENSO SSTA-ZD simulation bias in coupled models. 展开更多
关键词 ENSO SSTA zonal distribution coupled models simulation bias
在线阅读 下载PDF
Model Design and Simulation of an 80 kW Capacitor Coupled Substation Derived from a 132 kV Transmission Line
20
作者 Sinqobile Wiseman Nene Bolanle Tolulope Abe Agha Francis Nnachi 《Open Journal of Modelling and Simulation》 2025年第1期1-19,共19页
The global rise in energy demand, particularly in remote and sparsely populated regions, necessitates innovative and cost-effective electrical distribution solutions. Traditional Rural Electrification (RE) methods, li... The global rise in energy demand, particularly in remote and sparsely populated regions, necessitates innovative and cost-effective electrical distribution solutions. Traditional Rural Electrification (RE) methods, like Conventional Rural Electrification (CRE), have proven economically unfeasible in such areas due to high infrastructure costs and low electricity demand. Consequently, Unconventional Rural Electrification (URE) technologies, such as Capacitor Coupled Substations (CCS), are gaining attention as viable alternatives. This study presents the design and simulation of an 80 kW CCS system, which taps power directly from a 132 kV transmission line to supply low-voltage consumers. The critical components of the CCS, the capacitors are calculated, then a MATLAB/Simulink model with the attained results is executed. Mathematical representation and state-space representation for maintaining the desired tapped voltage area also developed. The research further explores the feasibility and operational performance of this CCS configuration, aiming to address the challenges of rural electrification by offering a sustainable and scalable solution. The results show that the desired value of the tapped voltage can be achieved at any level of High Voltage (HV) with the selection of capacitors that are correctly rated. With an adequately designed control strategy, the research also shows that tapped voltage can be attained under both steady-state and dynamic loads. By leveraging CCS technology, the study demonstrates the potential for delivering reliable electricity to underserved areas, highlighting the system’s practicality and effectiveness in overcoming the limitations of conventional distribution methods. 展开更多
关键词 Capacitor-coupled Substation Transmission Line-linked Capacitor-coupled Substation Capacitor-coupled Substation Simulation MICROGRIDS Rural Electrification Power System modeling
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部