A comprehensive mathematical model has been developed to describe the interaction of the multiple physics fields during the conventional DC casting and LFEC (low frequency electromagnetic casting) process. The model i...A comprehensive mathematical model has been developed to describe the interaction of the multiple physics fields during the conventional DC casting and LFEC (low frequency electromagnetic casting) process. The model is based on a combination of the commercial finite element package ANSYS and the commercial finite volume package FLUENT, with the former for the calculation of the electromagnetic field and the latter for the calculation of the magnetic driven fluid flow, heat transfer and solidification. Moreover, the model has been verified against the temperature measurements obtained from two 7XXX aluminum alloy billets of 200mm diameter, cast during the conventional DC casting and the LFEC casting processes. In addition, a measurement of the sump shape of the billets were carried out by using addition melting metal of Al-30%Cu alloy into the billets during casting process. There was a good agreement between the calculated results and the measured results. Further, comparison of the calculated results during the LFEC process with that during the conventional DC casting process indicated that velocity patterns, temperature profiles and the sump depth are strongly modified by the application of a low frequency electromagnetic field during the DC casting.展开更多
This paper proposes a more realistic mathematical simulation method to investigate the dynamic process of tumour angio-genesis by fully coupling the vessel growth,tumour growth and associated blood perfusion.The tumou...This paper proposes a more realistic mathematical simulation method to investigate the dynamic process of tumour angio-genesis by fully coupling the vessel growth,tumour growth and associated blood perfusion.The tumour growth and angiogenesis are coupled by the chemical microenvironment and the cell-matrix interaction.The haemodynamic calculation is carried out on the new vasculature,and an estimation of vessel collapse is made according to the wall shear stress criterion.The results are consistent with physiological observations,and further confirm the application of the coupled model feedback mechanism.The model is available to examine the interactions between angiogenesis and tumour growth,to study the change in the dynamic process of chemical environment and the vessel remodeling.展开更多
Carbon emissions and water use are two major kinds of human activities. To reveal whether these two activities can modify the hydrological cycle and climate system in China, we conducted two sets of numerical experime...Carbon emissions and water use are two major kinds of human activities. To reveal whether these two activities can modify the hydrological cycle and climate system in China, we conducted two sets of numerical experiments using regional climate model RegCM4. In the first experiment used to study the climatic responses to human carbon emissions, the model were configured over entire China because the impacts of carbon emissions can be detected across the whole country. Results from the first experiment revealed that near-surface air temperature may significantly increase from 2007 to 2059 at a rate exceeding 0.1 ~C per decade in most areas across the country; southwestern and southeastern China also showed increasing trends in summer precipitation, with rates exceeding 10 mm per decade over the same period. In summer, only northern China showed an increasing trend of evapotranspiration, with increase rates ranging from 1 to 5 mm per decade; in winter, increase rates ranging from 1 to 5 mm per decade were observed in most regions. These effects are believed to be caused by global warming from human carbon emissions. In the second experiment used to study the effects of human water use, the model were configured over a limited region-- Haihe River Basin in the northern China, because compared with the human carbon emissions, the effects of human water use are much more local and regional, and the Haihe River Basin is the most typical region in China that suffers from both intensive human groundwater exploitation and surface water diversion. We incorporated a scheme of human water regulation into RegCM4 and conducted the second experiment. Model outputs showed that the groundwater table severely declined by -10 m in 1971-2000 through human groundwater over- exploitation in the basin; in fact, current conditions are so extreme that even reducing the pumping rate by half cannot eliminate the ground- water depletion cones observed in the area. Other hydrological and climatic elements, such as soil moisture, runoff generation, air humidity, precipitation, wind field, and soil and air temperature, were also significantly affected by anthropogenic water withdrawal and consumption, although these effects could be mitigated by reducing the amount of water drawn for extraction and application.展开更多
Cone penetration test(CPT)is an appropriate technique for quickly determining the geotechnical properties of lunar soil,which is valuable for in situ lunar exploration.Utilizing a typical coupling method recently deve...Cone penetration test(CPT)is an appropriate technique for quickly determining the geotechnical properties of lunar soil,which is valuable for in situ lunar exploration.Utilizing a typical coupling method recently developed by the authors,a finite element method(FEM)-discrete element method(DEM)coupled model of CPTs is obtained.A series of CPTs in lunar soil are simulated to qualitatively reveal the flow of particles and the development of resistance throughout the penetration process.In addition,the effects of major factors,such as penetration velocity,penetration depth,cone tip angle,and the low gravity on the Moon surface are investigated.展开更多
From the viewpoint of interaction mechanics for solid and gas, a coupled mathematical model was presented for solid coal/rock deformation and gas leak flow in parallel deformable coal seams. Numerical solutions using ...From the viewpoint of interaction mechanics for solid and gas, a coupled mathematical model was presented for solid coal/rock deformation and gas leak flow in parallel deformable coal seams. Numerical solutions using the SIP (Strong Implicit Proce- dure) method to the coupled mathematical model for double parallel coal seams were also developed in detail. Numerical simulations for the prediction of the safety range using protection layer mining were performed with experimental data from a mine with potential danger of coal/gas outbursts. Analyses show that the numerical simulation results are consistent with the measured data in situ.展开更多
This study presents a coupled thermo-hydro-mechanical-fatigue(THM-F)model,developed based on variational phase-field fatigue theory,to simulate the freeze-thaw(F-T)damage process in concrete.The fracture phasefield mo...This study presents a coupled thermo-hydro-mechanical-fatigue(THM-F)model,developed based on variational phase-field fatigue theory,to simulate the freeze-thaw(F-T)damage process in concrete.The fracture phasefield model incorporates the F-T fatigue mechanism driven by energy dissipation during the free energy growth stage.Using microscopic inclusion theory,we derive an evolution model of pore size distribution(PSD)for concrete under F-T cycles by treating pore water as columnar inclusions.Drawing upon pore ice crystal theory,calculation models that account for concrete PSD characteristics are established to determine ice saturation,permeability coefficient,and pore pressure.To enhance computational accuracy,a segmented Gaussian integration strategy based on aperture levels is employed.The pore pressure estimation model is applied to assess the frost resistance of concrete with varying air-entraining agent contents,confirming that optimal air-entrainment significantly improves pore structure and lowers the overall freezing point of pore ice.The derived permeability coefficient and pore pressure estimation models are integrated into the THM-F coupled framework,which employs a staggered iterative solution scheme for efficient simulation.Mesoscale numerical examples of concrete demonstrate that the proposed THM-F model effectively captures structural degradation and accurately tracks the procession of F-T-induced fatigue cracks.Validations against experimental measurements,including temperature variations,stress-strain curves,and strain history,shows excellent agreement,underscoring the model’s accuracy and applicability.This study provides a robust theoretical and computational framework for quantitative analysis of coupled F-T-fatigue damage in concrete.展开更多
Spacecrafts free of all but gravitational forces are important in precision navigation,gravity field measurement and basic scientific research.The Inner-formation Flying System,one kind of spacecrafts free of all but ...Spacecrafts free of all but gravitational forces are important in precision navigation,gravity field measurement and basic scientific research.The Inner-formation Flying System,one kind of spacecrafts free of all but gravitational forces,is used for gravitational field measurement with high precision.Restraining the interfering factors on the inner-satellite is one of the keys to gravitational field measurement.Radiometer effect and residual gas damping are both interfering forces on the inner-satellite caused by gas molecules.By analyzing the mechanism of the two forces,a coupled model for radiometer effect and residual gas damping was established,which contained the coupling term and reflected the actual force of gas molecules on the inner-satellite.The simulation results showed the coupling property of radiometer effect and residual gas damping:The actual force of gas molecules is directly proportional to the average pressure in the cavity and the largest cross-sectional area of the inner-satellite,but is inversely proportional to the square root of the average temperature in the cavity.展开更多
A coupled discrete-continuum simulation incorporating a 3D aspect and non-circular particles was performed to analyze soil-pile interactions during pile penetration in sand.A self-developed non-circular particle numer...A coupled discrete-continuum simulation incorporating a 3D aspect and non-circular particles was performed to analyze soil-pile interactions during pile penetration in sand.A self-developed non-circular particle numerical simulation program was used which considered sand near the pile as interacted particles using a discrete element method;the sand away from the pile was simulated as a continuous medium exhibiting linear elastic behaviors.The domain analyzed was divided into two zones.Contact forces at the interface between the two zones were obtained from a discrete zone and applied to the continuum boundaries as nodal forces,while the interface velocities were obtained from the continuum zone and applied to the discrete boundaries.We show that the coupled discrete-continuum simulation can give a microscopic description of the pile penetration process without losing the discrete nature of the zone concerned,and may significantly improve computational efficiency.展开更多
A high-resolution tropical Pacific general circulation model (GCM) coupled to a global atmospheric GCM is described in this paper. The atmosphere component is the 5°× 4° global general circulation mod...A high-resolution tropical Pacific general circulation model (GCM) coupled to a global atmospheric GCM is described in this paper. The atmosphere component is the 5°× 4° global general circulation model of the Institute of Atmospheric Physics (IAP) with 9 levels in the vertical direction. The ocean component with a horizontal resolution of 0.5°, is based on a low-resolution model (2° × 1° in longitude-latitude). Simulations of the ocean component are first compared with its previous version. Results show that the enhanced ocean horizontal resolution allows an improved ocean state to be simulated; this involves (1) an apparent decrease in errors in the tropical Pacific cold tongue region, which exists in many ocean models, (2) more realistic large-scale flows, and (3) an improved ability to simulate the interannual variability and a reduced root mean square error (RMSE) in a long time integration. In coupling these component models, a monthly "linear-regression" method is employed to correct the model's exchanged flux between the sea and the atmosphere. A 100-year integration conducted with the coupled GCM (CGCM) shows the effectiveness of such a method in reducing climate drift. Results from years 70 to 100 are described. The model produces a reasonably realistic annual cycle of equatorial SST. The large SSTA is confined to the eastern equatorial Pacific with little propagation. Irregular warm and cold events alternate with a broad spectrum of periods between 24 and 50 months, which is very realistic. But the simulated variability is weaker than the observed and is also asymmetric in the sense of the amplitude of the warm and cold events.展开更多
Tension Leg Platform(TLP)in deepwater oil and gas field development usually consists of a hull,tendons,and top tension risers(TTRs).To maintain its top tension,each TTR is connected with a tensioner system to the hull...Tension Leg Platform(TLP)in deepwater oil and gas field development usually consists of a hull,tendons,and top tension risers(TTRs).To maintain its top tension,each TTR is connected with a tensioner system to the hull.Owing to the complicated configuration of the tensioners,the hull and TTRs form a strong coupled system.Traditionally,some simplified tensioner models are applied to analyze the TLP structures.There is a large discrepancy between their analysis results and the actual mechanism behaviors of a tensioner.It is very necessary to develop a more detailed tensioner model to consider the coupling effects between TLP and TTRs.In the present study,a fully coupled TLP hull-TTR system for hydrodynamic numerical simulation is established.A specific hydraulic pneumatic tensioner is modeled by considering 4 cylinders.The production TTR model is stacked up by specific riser joints.The simulation is also extended to analyze an array of TTRs.Different regular and irregular waves are considered.The behaviors of different cylinders are presented.The results show that it is important to consider the specific configurations of the tensioner and TTRs,which may lead to obviously different response behaviors,compared with those from a simplified model.展开更多
Based on the new viewpoint of solid and gas interaction mechanics, gas leakage in a double deformable coal seam can be understood. That is, under the action of geophysical fields, the methane flow in a double deformab...Based on the new viewpoint of solid and gas interaction mechanics, gas leakage in a double deformable coal seam can be understood. That is, under the action of geophysical fields, the methane flow in a double deformable coal seam can be essentially considered to be compressible with time dependent and mixed permeation and diffusion through a pore cleat deformable heterogeneous and anisotropy medium. Based on this new viewpoint, a coupled mathematical model for coal seam deformation and gas leakage in a double coal seam was formulated and numerical simulations for gas emission from the coal seam are presented. It is found that coupled models might be closer to reality.展开更多
The Electro–Hydrostatic Actuator(EHA)is applied to drive the control surface in flightcontrol system of more electric aircraft.In EHA,the Oil-Immersed Motor Pump(OMP)serves asthe core as a power assembly.However,the ...The Electro–Hydrostatic Actuator(EHA)is applied to drive the control surface in flightcontrol system of more electric aircraft.In EHA,the Oil-Immersed Motor Pump(OMP)serves asthe core as a power assembly.However,the compact integration of the OMP presents challenges inefficiently dissipating internal heat,leading to a performance degradation of the EHA due to ele-vated temperatures.Therefore,accurately modeling and predicting the internal thermal dynamicsof the OMP hold considerable significance for monitoring the operational condition of the EHA.In view of this,a modeling method considering cumulative thermal coupling was hereby proposed.Based on the proposed method,the thermal models of the motor and the pump were established,taking into account heat accumulation and transfer.Taking the leakage oil as the heat couplingpoint between the motor and the pump,the dynamic thermal coupling model of the OMP wasdeveloped,with the thermal characteristics of the oil considered.Additionally,the comparativeexperiments were conducted to illustrate the efficiency of the proposed model.The experimentalresults demonstrate that the proposed dynamic thermal coupling model accurately captured thethermal behavior of OMP,outperforming the static thermal parameter model.Overall,thisadvancement is crucial for effectively monitoring the health of EHA and ensuring flight safety.展开更多
Timely and accurate forecasting of storm surges can effectively prevent typhoon storm surges from causing large economic losses and casualties in coastal areas.At present,numerical model forecasting consumes too many ...Timely and accurate forecasting of storm surges can effectively prevent typhoon storm surges from causing large economic losses and casualties in coastal areas.At present,numerical model forecasting consumes too many resources and takes too long to compute,while neural network forecasting lacks regional data to train regional forecasting models.In this study,we used the DUAL wind model to build typhoon wind fields,and constructed a typhoon database of 75 processes in the northern South China Sea using the coupled Advanced Circulation-Simulating Waves Nearshore(ADCIRC-SWAN)model.Then,a neural network with a Res-U-Net structure was trained using the typhoon database to forecast the typhoon processes in the validation dataset,and an excellent storm surge forecasting effect was achieved in the Pearl River Estuary region.The storm surge forecasting effect of stronger typhoons was improved by adding a branch structure and transfer learning.展开更多
The problem of flooding in Central Vietnam in general and the lower Ba River in particular is one of the natural disasters that frequently threatens people's lives and socioeconomic development in the region.Espec...The problem of flooding in Central Vietnam in general and the lower Ba River in particular is one of the natural disasters that frequently threatens people's lives and socioeconomic development in the region.Especially,climate change is becoming ever more prominent and hotter,making extreme natural disasters more unusual and unpredictable.In this research,MIKE-FLOOD—a model that connects a 1-dimensional(1-D)MIKE 11 Hydrodynamics(HD)model with a 2-dimensional(2-D)MIKE 21 HD model—was used to set up.The model was calculated for three floods:(1)flood in October 1993,(2)flood in November 2003,and(3)flood in November 2007;these are floods with high frequency and relatively large magnitude.The results show that the 1993 flood rose and receded quickly.The flood peak inundated an area of 22,600 ha,accounting for 52%of the natural area.The flooded areas deeper than 1,2,3,4,and 5m were 16500,11,000,7000,4200,and 2200 ha,respectively.In the center of Tuy Hoa city,the flooded area at the time of maximum water level was almost 100%.展开更多
To investigate the effect of rail pad viscoelasticity on vehicle-track-bridge coupled vibration,the fractional Voigt and Maxwell model in parallel(FVMP)was used to characterize the viscoelastic properties of the rail ...To investigate the effect of rail pad viscoelasticity on vehicle-track-bridge coupled vibration,the fractional Voigt and Maxwell model in parallel(FVMP)was used to characterize the viscoelastic properties of the rail pad based on dynamic performance test results.The FVMP model was then incorporated into the vehicle-track-bridge nonlinear coupled model,and its dynamic response was solved using a cross-iteration algorithm with a relaxation factor.Results indicate that the nonlinear coupled model achieves good convergence when the time step is less than 0.001 s,with the cross-iteration algorithm adjusting the wheel-rail force.In particular,the best convergence is achieved when the relaxation factor is within the range of 0.3-0.5.The FVMP model effectively characterizes the viscoelasticity of rail pads across a temperature range of±20℃and a frequency range of 1-1000 Hz.The viscoelasticity of rail pads significantly affects high-frequency vibrations in the coupled system,particularly around 50 Hz,corresponding to the wheel-rail coupled resonance range.Considering rail pad viscoelasticity is essential for accurately predicting track structure vibrations.展开更多
The utilization of coalbed methane(CBM)cannot only alleviate the energy crisis,but also reduce greenhouse gas emissions.Gas injection is an effective method to enhance CBM recovery.Compared to single-gas injection,the...The utilization of coalbed methane(CBM)cannot only alleviate the energy crisis,but also reduce greenhouse gas emissions.Gas injection is an effective method to enhance CBM recovery.Compared to single-gas injection,the injection of CO_(2)/N_(2) mixtures can balance the sharp decline in permeability caused by pure CO_(2) and the premature breakthrough by pure N_(2).In this study,a more comprehensive thermo-hydro-mechanical(THM)coupled mathematical model was developed,incorporating processes such as ternary gas non-isothermal adsorption,gas dissolution in water,gas-water two-phase flow,energy exchange,and coal deformation.After experimental validation,the model was applied to simulate the entire process of gas mixtures for enhanced CBM recovery(GM-ECBM).Results indicate that the permeability near the production well(Pw)initially decreases due to increased effective stress,then increases as a result of CH_(4) desorption.Near the injection well(Iw),the permeability first increases due to reduced effective stress and later stabilizes under the combined effects of effective stress and CO_(2)/N_(2) adsorption.The initial CH_(4) pressure and coal seam permeability have the most significant impact on CH_(4) production,while the coal seam permeability and temperature significantly affect CO_(2)/N_(2) injection.As the coal seam permeability increases,the optimal CO_(2)/N_(2) ratio also increases accordingly.These findings provide important theoretical guidance for improving GM-ECBM efficiency in coal seams with varying permeabilities.展开更多
Numerical models are crucial for quantifying the ocean-atmosphere interactions associated with the El Niño-Southern Oscillation(ENSO)phenomenon in the tropical Pacific.Current coupled models often exhibit signifi...Numerical models are crucial for quantifying the ocean-atmosphere interactions associated with the El Niño-Southern Oscillation(ENSO)phenomenon in the tropical Pacific.Current coupled models often exhibit significant biases and inter-model differences in simulating ENSO,underscoring the need for alternative modeling approaches.The Regional Ocean Modeling System(ROMS)is a sophisticated ocean model widely used for regional studies and has been coupled with various atmospheric models.However,its application in simulating ENSO processes on a basin scale in the tropical Pacific has not been explored.For the first time,this study presents the development of a basin-scale hybrid coupled model(HCM)for the tropical Pacific,integrating ROMS with a statistical atmospheric model that captures the interannual relationships between sea surface temperature(SST)and wind stress anomalies.The HCM is evaluated for its capability to simulate the annual mean,seasonal,and interannual variations of the oceanic state in the tropical Pacific.Results demonstrate that the model effectively reproduces the ENSO cycle,with a dominant oscillation period of approximately two years.The ROMS-based HCM developed here offers an efficient and robust tool for investigating climate variability in the tropical Pacific.展开更多
The El Niño-Southern Oscillation(ENSO)is a naturally recurring interannual climate fluctuation that affects the global climate system.The advent of deep learning-based approaches has led to transformative changes...The El Niño-Southern Oscillation(ENSO)is a naturally recurring interannual climate fluctuation that affects the global climate system.The advent of deep learning-based approaches has led to transformative changes in ENSO forecasts,resulting in significant progress.Most deep learning-based ENSO prediction models which primarily rely solely on reanalysis data may lead to challenges in intensity underestimation in long-term forecasts,reducing the forecasting skills.To this end,we propose a deep residual-coupled model prediction(Res-CMP)model,which integrates historical reanalysis data and coupled model forecast data for multiyear ENSO prediction.The Res-CMP model is designed as a lightweight model that leverages only short-term reanalysis data and nudging assimilation prediction results of the Community Earth System Model(CESM)for effective prediction of the Niño 3.4 index.We also developed a transfer learning strategy for this model to overcome the limitations of inadequate forecast data.After determining the optimal configuration,which included selecting a suitable transfer learning rate during training,along with input variables and CESM forecast lengths,Res-CMP demonstrated a high correlation ability for 19-month lead time predictions(correlation coefficients exceeding 0.5).The Res-CMP model also alleviated the spring predictability barrier(SPB).When validated against actual ENSO events,Res-CMP successfully captured the temporal evolution of the Niño 3.4 index during La Niña events(1998/99 and 2020/21)and El Niño events(2009/10 and 2015/16).Our proposed model has the potential to further enhance ENSO prediction performance by using coupled models to assist deep learning methods.展开更多
Characterized by special morphologic,geographic,hydrologic,and societal behaviors,the water resources management of the Mediterranean catchment often shows a higher level of complexity including security issues of wat...Characterized by special morphologic,geographic,hydrologic,and societal behaviors,the water resources management of the Mediterranean catchment often shows a higher level of complexity including security issues of water supply,inundation risks,and environment management under the perspective of climate change.To have a comprehensive understanding of the Mediterranean water-cycle system,a deterministic distributed hydrologic modeling approach has been developed and presented in this study based on an application in the Var catchment(2800 km^(2))located at the French Mediterranean region.A 1D and 2D coupled model of MIKE SHE and MIKE 11 has been set up under a series of hypotheses to represent the whole hydrologic and hydrodynamic processes including rainfall-runoff,snow-melting,channel flow,overland flow,and the water exchange between land surface and unsaturated/saturated zones.The developed model was first calibrated with 4 years daily records from 2008 to 2011,then to be validated and further run within hourly time interval to produce detailed representation of the catchment water-cycle from 2012 to 2014.The deterministic distributed modeling approach presented in this study is able to represent its complicated water-cycle and used for supporting the decision‐making process of the water resources management of the catchment.展开更多
Typically,seat or floor acceleration is used to evaluate the ride comfort of a high-speed train.However,the dynamic performance of the human body significantly differs from that of the floor.Therefore,using the car bo...Typically,seat or floor acceleration is used to evaluate the ride comfort of a high-speed train.However,the dynamic performance of the human body significantly differs from that of the floor.Therefore,using the car body floor and seat accelerations to calculate the ride comfort index of a high-speed train may not reflect the true feelings of passengers.In this study,a 3D human-seat-vehicle-track coupling model was established to investigate the ride comfort of highspeed train passengers.The seated human model,which considers the longitudinal,lateral,vertical,pitching,yawing,and rolling motions,comprises the head,upper torso,lower torso,pelvis,thighs,and shanks.The model parameters were determined using multi-axis excitation measurement data based on a genetic algorithm.Subsequently,the applicability of the small-angle assumption and natural modes of the human model is analyzed.Using the coupling system model,the vibration characteristics of the human-seat interaction surface were analyzed.The ride comfort of the high-speed train and human body dynamic performance were analyzed under normal conditions,track geometric irregularities and train meeting conditions.The results showed that the passenger seats in the front and rear rows adjacent to the window had a higher acceleration value than the others.The human backrest and seat pad connection points have higher vibration amplitudes than the car body floor in the human-sensitive frequency range,indicating that using the acceleration values on the floor may underestimate the discomfort of passengers.The ride comfort of high-speed trains diminishes in the presence of track geometric irregularities and when trains pass each other.When the excitation frequency of track geometry irregularities approached the natural frequency of the human-seat-vehicle system,ride comfort in high-speed trains decreased significantly.Moreover,using seat acceleration to evaluate passenger ride comfort overlooks the vibration characteristics of the human body.The transient aerodynamic force generated when the train meets can cause a larger car body roll and lateral motion at 2 Hz,which,in turn,decreases the passenger ride comfort.This study presents a detailed human-seat-vehicle-track coupling system that can reflect a passenger’s dynamic performance under complex operating conditions.展开更多
文摘A comprehensive mathematical model has been developed to describe the interaction of the multiple physics fields during the conventional DC casting and LFEC (low frequency electromagnetic casting) process. The model is based on a combination of the commercial finite element package ANSYS and the commercial finite volume package FLUENT, with the former for the calculation of the electromagnetic field and the latter for the calculation of the magnetic driven fluid flow, heat transfer and solidification. Moreover, the model has been verified against the temperature measurements obtained from two 7XXX aluminum alloy billets of 200mm diameter, cast during the conventional DC casting and the LFEC casting processes. In addition, a measurement of the sump shape of the billets were carried out by using addition melting metal of Al-30%Cu alloy into the billets during casting process. There was a good agreement between the calculated results and the measured results. Further, comparison of the calculated results during the LFEC process with that during the conventional DC casting process indicated that velocity patterns, temperature profiles and the sump depth are strongly modified by the application of a low frequency electromagnetic field during the DC casting.
基金supported by the National Natural Science Foundation of China (10772051)the State Scholarship Fund of China (2009610108)the Ninth Innovation Fundfor Graduate Students of Fudan University (YAN CAI)
文摘This paper proposes a more realistic mathematical simulation method to investigate the dynamic process of tumour angio-genesis by fully coupling the vessel growth,tumour growth and associated blood perfusion.The tumour growth and angiogenesis are coupled by the chemical microenvironment and the cell-matrix interaction.The haemodynamic calculation is carried out on the new vasculature,and an estimation of vessel collapse is made according to the wall shear stress criterion.The results are consistent with physiological observations,and further confirm the application of the coupled model feedback mechanism.The model is available to examine the interactions between angiogenesis and tumour growth,to study the change in the dynamic process of chemical environment and the vessel remodeling.
文摘Carbon emissions and water use are two major kinds of human activities. To reveal whether these two activities can modify the hydrological cycle and climate system in China, we conducted two sets of numerical experiments using regional climate model RegCM4. In the first experiment used to study the climatic responses to human carbon emissions, the model were configured over entire China because the impacts of carbon emissions can be detected across the whole country. Results from the first experiment revealed that near-surface air temperature may significantly increase from 2007 to 2059 at a rate exceeding 0.1 ~C per decade in most areas across the country; southwestern and southeastern China also showed increasing trends in summer precipitation, with rates exceeding 10 mm per decade over the same period. In summer, only northern China showed an increasing trend of evapotranspiration, with increase rates ranging from 1 to 5 mm per decade; in winter, increase rates ranging from 1 to 5 mm per decade were observed in most regions. These effects are believed to be caused by global warming from human carbon emissions. In the second experiment used to study the effects of human water use, the model were configured over a limited region-- Haihe River Basin in the northern China, because compared with the human carbon emissions, the effects of human water use are much more local and regional, and the Haihe River Basin is the most typical region in China that suffers from both intensive human groundwater exploitation and surface water diversion. We incorporated a scheme of human water regulation into RegCM4 and conducted the second experiment. Model outputs showed that the groundwater table severely declined by -10 m in 1971-2000 through human groundwater over- exploitation in the basin; in fact, current conditions are so extreme that even reducing the pumping rate by half cannot eliminate the ground- water depletion cones observed in the area. Other hydrological and climatic elements, such as soil moisture, runoff generation, air humidity, precipitation, wind field, and soil and air temperature, were also significantly affected by anthropogenic water withdrawal and consumption, although these effects could be mitigated by reducing the amount of water drawn for extraction and application.
基金Project(51278451) supported by the National Natural Science Foundation of ChinaProject(LZ12E09001) supported by the Zhejiang Natural Science Foundation,China
文摘Cone penetration test(CPT)is an appropriate technique for quickly determining the geotechnical properties of lunar soil,which is valuable for in situ lunar exploration.Utilizing a typical coupling method recently developed by the authors,a finite element method(FEM)-discrete element method(DEM)coupled model of CPTs is obtained.A series of CPTs in lunar soil are simulated to qualitatively reveal the flow of particles and the development of resistance throughout the penetration process.In addition,the effects of major factors,such as penetration velocity,penetration depth,cone tip angle,and the low gravity on the Moon surface are investigated.
文摘From the viewpoint of interaction mechanics for solid and gas, a coupled mathematical model was presented for solid coal/rock deformation and gas leak flow in parallel deformable coal seams. Numerical solutions using the SIP (Strong Implicit Proce- dure) method to the coupled mathematical model for double parallel coal seams were also developed in detail. Numerical simulations for the prediction of the safety range using protection layer mining were performed with experimental data from a mine with potential danger of coal/gas outbursts. Analyses show that the numerical simulation results are consistent with the measured data in situ.
基金supported by the National Natural Science Foundation of China(Grant Nos.11932006 and 12172121).
文摘This study presents a coupled thermo-hydro-mechanical-fatigue(THM-F)model,developed based on variational phase-field fatigue theory,to simulate the freeze-thaw(F-T)damage process in concrete.The fracture phasefield model incorporates the F-T fatigue mechanism driven by energy dissipation during the free energy growth stage.Using microscopic inclusion theory,we derive an evolution model of pore size distribution(PSD)for concrete under F-T cycles by treating pore water as columnar inclusions.Drawing upon pore ice crystal theory,calculation models that account for concrete PSD characteristics are established to determine ice saturation,permeability coefficient,and pore pressure.To enhance computational accuracy,a segmented Gaussian integration strategy based on aperture levels is employed.The pore pressure estimation model is applied to assess the frost resistance of concrete with varying air-entraining agent contents,confirming that optimal air-entrainment significantly improves pore structure and lowers the overall freezing point of pore ice.The derived permeability coefficient and pore pressure estimation models are integrated into the THM-F coupled framework,which employs a staggered iterative solution scheme for efficient simulation.Mesoscale numerical examples of concrete demonstrate that the proposed THM-F model effectively captures structural degradation and accurately tracks the procession of F-T-induced fatigue cracks.Validations against experimental measurements,including temperature variations,stress-strain curves,and strain history,shows excellent agreement,underscoring the model’s accuracy and applicability.This study provides a robust theoretical and computational framework for quantitative analysis of coupled F-T-fatigue damage in concrete.
基金supported by the National Natural Science Foundation of China (Grant No. 11002076)National Defence Pre-Research (Grant No. 51320010201)
文摘Spacecrafts free of all but gravitational forces are important in precision navigation,gravity field measurement and basic scientific research.The Inner-formation Flying System,one kind of spacecrafts free of all but gravitational forces,is used for gravitational field measurement with high precision.Restraining the interfering factors on the inner-satellite is one of the keys to gravitational field measurement.Radiometer effect and residual gas damping are both interfering forces on the inner-satellite caused by gas molecules.By analyzing the mechanism of the two forces,a coupled model for radiometer effect and residual gas damping was established,which contained the coupling term and reflected the actual force of gas molecules on the inner-satellite.The simulation results showed the coupling property of radiometer effect and residual gas damping:The actual force of gas molecules is directly proportional to the average pressure in the cavity and the largest cross-sectional area of the inner-satellite,but is inversely proportional to the square root of the average temperature in the cavity.
基金Project (No.90815008) supported by the National Natural Science Foundation of China
文摘A coupled discrete-continuum simulation incorporating a 3D aspect and non-circular particles was performed to analyze soil-pile interactions during pile penetration in sand.A self-developed non-circular particle numerical simulation program was used which considered sand near the pile as interacted particles using a discrete element method;the sand away from the pile was simulated as a continuous medium exhibiting linear elastic behaviors.The domain analyzed was divided into two zones.Contact forces at the interface between the two zones were obtained from a discrete zone and applied to the continuum boundaries as nodal forces,while the interface velocities were obtained from the continuum zone and applied to the discrete boundaries.We show that the coupled discrete-continuum simulation can give a microscopic description of the pile penetration process without losing the discrete nature of the zone concerned,and may significantly improve computational efficiency.
文摘A high-resolution tropical Pacific general circulation model (GCM) coupled to a global atmospheric GCM is described in this paper. The atmosphere component is the 5°× 4° global general circulation model of the Institute of Atmospheric Physics (IAP) with 9 levels in the vertical direction. The ocean component with a horizontal resolution of 0.5°, is based on a low-resolution model (2° × 1° in longitude-latitude). Simulations of the ocean component are first compared with its previous version. Results show that the enhanced ocean horizontal resolution allows an improved ocean state to be simulated; this involves (1) an apparent decrease in errors in the tropical Pacific cold tongue region, which exists in many ocean models, (2) more realistic large-scale flows, and (3) an improved ability to simulate the interannual variability and a reduced root mean square error (RMSE) in a long time integration. In coupling these component models, a monthly "linear-regression" method is employed to correct the model's exchanged flux between the sea and the atmosphere. A 100-year integration conducted with the coupled GCM (CGCM) shows the effectiveness of such a method in reducing climate drift. Results from years 70 to 100 are described. The model produces a reasonably realistic annual cycle of equatorial SST. The large SSTA is confined to the eastern equatorial Pacific with little propagation. Irregular warm and cold events alternate with a broad spectrum of periods between 24 and 50 months, which is very realistic. But the simulated variability is weaker than the observed and is also asymmetric in the sense of the amplitude of the warm and cold events.
基金The research was financially supported by the National Natural Science Foundation of China for Youth(Grant No.51609169)Guangxi Science and Technology Major Project(Grant No.Guike AA17292007)+2 种基金the National Key R&D Program of China(Grant No.2018YFC0310502)National Natural Science Foundation of China(Grant No.51779173)China Scholarship Council(CSC).
文摘Tension Leg Platform(TLP)in deepwater oil and gas field development usually consists of a hull,tendons,and top tension risers(TTRs).To maintain its top tension,each TTR is connected with a tensioner system to the hull.Owing to the complicated configuration of the tensioners,the hull and TTRs form a strong coupled system.Traditionally,some simplified tensioner models are applied to analyze the TLP structures.There is a large discrepancy between their analysis results and the actual mechanism behaviors of a tensioner.It is very necessary to develop a more detailed tensioner model to consider the coupling effects between TLP and TTRs.In the present study,a fully coupled TLP hull-TTR system for hydrodynamic numerical simulation is established.A specific hydraulic pneumatic tensioner is modeled by considering 4 cylinders.The production TTR model is stacked up by specific riser joints.The simulation is also extended to analyze an array of TTRs.Different regular and irregular waves are considered.The behaviors of different cylinders are presented.The results show that it is important to consider the specific configurations of the tensioner and TTRs,which may lead to obviously different response behaviors,compared with those from a simplified model.
文摘Based on the new viewpoint of solid and gas interaction mechanics, gas leakage in a double deformable coal seam can be understood. That is, under the action of geophysical fields, the methane flow in a double deformable coal seam can be essentially considered to be compressible with time dependent and mixed permeation and diffusion through a pore cleat deformable heterogeneous and anisotropy medium. Based on this new viewpoint, a coupled mathematical model for coal seam deformation and gas leakage in a double coal seam was formulated and numerical simulations for gas emission from the coal seam are presented. It is found that coupled models might be closer to reality.
基金supported by the National Key R&D Program of China(No.2021YFB2011300)the National Natural Science Foundation of China(Nos.52275044,U2233212)。
文摘The Electro–Hydrostatic Actuator(EHA)is applied to drive the control surface in flightcontrol system of more electric aircraft.In EHA,the Oil-Immersed Motor Pump(OMP)serves asthe core as a power assembly.However,the compact integration of the OMP presents challenges inefficiently dissipating internal heat,leading to a performance degradation of the EHA due to ele-vated temperatures.Therefore,accurately modeling and predicting the internal thermal dynamicsof the OMP hold considerable significance for monitoring the operational condition of the EHA.In view of this,a modeling method considering cumulative thermal coupling was hereby proposed.Based on the proposed method,the thermal models of the motor and the pump were established,taking into account heat accumulation and transfer.Taking the leakage oil as the heat couplingpoint between the motor and the pump,the dynamic thermal coupling model of the OMP wasdeveloped,with the thermal characteristics of the oil considered.Additionally,the comparativeexperiments were conducted to illustrate the efficiency of the proposed model.The experimentalresults demonstrate that the proposed dynamic thermal coupling model accurately captured thethermal behavior of OMP,outperforming the static thermal parameter model.Overall,thisadvancement is crucial for effectively monitoring the health of EHA and ensuring flight safety.
基金supported by the National Natural Science Foundation of China(Grant No.42076214)Natural Science Foundation of Shandong Province(Grant No.ZR2024QD057).
文摘Timely and accurate forecasting of storm surges can effectively prevent typhoon storm surges from causing large economic losses and casualties in coastal areas.At present,numerical model forecasting consumes too many resources and takes too long to compute,while neural network forecasting lacks regional data to train regional forecasting models.In this study,we used the DUAL wind model to build typhoon wind fields,and constructed a typhoon database of 75 processes in the northern South China Sea using the coupled Advanced Circulation-Simulating Waves Nearshore(ADCIRC-SWAN)model.Then,a neural network with a Res-U-Net structure was trained using the typhoon database to forecast the typhoon processes in the validation dataset,and an excellent storm surge forecasting effect was achieved in the Pearl River Estuary region.The storm surge forecasting effect of stronger typhoons was improved by adding a branch structure and transfer learning.
基金Asia-Pacific Network for Global Change Research,Grant/Award Number:CRRP2020-09MYKantoush。
文摘The problem of flooding in Central Vietnam in general and the lower Ba River in particular is one of the natural disasters that frequently threatens people's lives and socioeconomic development in the region.Especially,climate change is becoming ever more prominent and hotter,making extreme natural disasters more unusual and unpredictable.In this research,MIKE-FLOOD—a model that connects a 1-dimensional(1-D)MIKE 11 Hydrodynamics(HD)model with a 2-dimensional(2-D)MIKE 21 HD model—was used to set up.The model was calculated for three floods:(1)flood in October 1993,(2)flood in November 2003,and(3)flood in November 2007;these are floods with high frequency and relatively large magnitude.The results show that the 1993 flood rose and receded quickly.The flood peak inundated an area of 22,600 ha,accounting for 52%of the natural area.The flooded areas deeper than 1,2,3,4,and 5m were 16500,11,000,7000,4200,and 2200 ha,respectively.In the center of Tuy Hoa city,the flooded area at the time of maximum water level was almost 100%.
基金Project(2023ZDZX0008)supported by the Sichuan Major Science and Technology Project,ChinaProject(52308468)supported by the National Natural Science Foundation of ChinaProject(2022JBQY009)supported by the Fundamental Research Funds for the Central Universities(Science and Technology Leading Talent Team Project),China。
文摘To investigate the effect of rail pad viscoelasticity on vehicle-track-bridge coupled vibration,the fractional Voigt and Maxwell model in parallel(FVMP)was used to characterize the viscoelastic properties of the rail pad based on dynamic performance test results.The FVMP model was then incorporated into the vehicle-track-bridge nonlinear coupled model,and its dynamic response was solved using a cross-iteration algorithm with a relaxation factor.Results indicate that the nonlinear coupled model achieves good convergence when the time step is less than 0.001 s,with the cross-iteration algorithm adjusting the wheel-rail force.In particular,the best convergence is achieved when the relaxation factor is within the range of 0.3-0.5.The FVMP model effectively characterizes the viscoelasticity of rail pads across a temperature range of±20℃and a frequency range of 1-1000 Hz.The viscoelasticity of rail pads significantly affects high-frequency vibrations in the coupled system,particularly around 50 Hz,corresponding to the wheel-rail coupled resonance range.Considering rail pad viscoelasticity is essential for accurately predicting track structure vibrations.
基金supported by the National Natural Science Foundation of China(Grant No.52174117)the Universitylocal Government Scientific and Technical Cooperation Cultivation Project of Ordos Institute-LNTU(Grant No.YJY-XD-2024-A-009)+2 种基金the Basic Scientific Research Project of Liaoning Provincial Department of Education(Grant No.JYTZD2023073)the Liaoning Revitalization Talents Program(XLYC2203139)the Liaoning Provincial Natural Science Foundation Program(Excellent Youth Fund)(Grant No.2024JH3/10200043).
文摘The utilization of coalbed methane(CBM)cannot only alleviate the energy crisis,but also reduce greenhouse gas emissions.Gas injection is an effective method to enhance CBM recovery.Compared to single-gas injection,the injection of CO_(2)/N_(2) mixtures can balance the sharp decline in permeability caused by pure CO_(2) and the premature breakthrough by pure N_(2).In this study,a more comprehensive thermo-hydro-mechanical(THM)coupled mathematical model was developed,incorporating processes such as ternary gas non-isothermal adsorption,gas dissolution in water,gas-water two-phase flow,energy exchange,and coal deformation.After experimental validation,the model was applied to simulate the entire process of gas mixtures for enhanced CBM recovery(GM-ECBM).Results indicate that the permeability near the production well(Pw)initially decreases due to increased effective stress,then increases as a result of CH_(4) desorption.Near the injection well(Iw),the permeability first increases due to reduced effective stress and later stabilizes under the combined effects of effective stress and CO_(2)/N_(2) adsorption.The initial CH_(4) pressure and coal seam permeability have the most significant impact on CH_(4) production,while the coal seam permeability and temperature significantly affect CO_(2)/N_(2) injection.As the coal seam permeability increases,the optimal CO_(2)/N_(2) ratio also increases accordingly.These findings provide important theoretical guidance for improving GM-ECBM efficiency in coal seams with varying permeabilities.
基金Supported by the Laoshan Laboratory(No.LSKJ 202202404)the Strategic Priority Research Program of the Chinese Academy of Sciences(No.XDB 42000000)+1 种基金the National Natural Science Foundation of China(NSFC)(No.42030410)the Startup Foundation for Introducing Talent of NUIST,and the Jiangsu Innovation Research Group(No.JSSCTD 202346)。
文摘Numerical models are crucial for quantifying the ocean-atmosphere interactions associated with the El Niño-Southern Oscillation(ENSO)phenomenon in the tropical Pacific.Current coupled models often exhibit significant biases and inter-model differences in simulating ENSO,underscoring the need for alternative modeling approaches.The Regional Ocean Modeling System(ROMS)is a sophisticated ocean model widely used for regional studies and has been coupled with various atmospheric models.However,its application in simulating ENSO processes on a basin scale in the tropical Pacific has not been explored.For the first time,this study presents the development of a basin-scale hybrid coupled model(HCM)for the tropical Pacific,integrating ROMS with a statistical atmospheric model that captures the interannual relationships between sea surface temperature(SST)and wind stress anomalies.The HCM is evaluated for its capability to simulate the annual mean,seasonal,and interannual variations of the oceanic state in the tropical Pacific.Results demonstrate that the model effectively reproduces the ENSO cycle,with a dominant oscillation period of approximately two years.The ROMS-based HCM developed here offers an efficient and robust tool for investigating climate variability in the tropical Pacific.
基金The National Key Research and Development Program of China under contract Nos 2024YFF0808900,2023YFF0805300,and 2020YFA0608804the Civilian Space Programme of China under contract No.D040305.
文摘The El Niño-Southern Oscillation(ENSO)is a naturally recurring interannual climate fluctuation that affects the global climate system.The advent of deep learning-based approaches has led to transformative changes in ENSO forecasts,resulting in significant progress.Most deep learning-based ENSO prediction models which primarily rely solely on reanalysis data may lead to challenges in intensity underestimation in long-term forecasts,reducing the forecasting skills.To this end,we propose a deep residual-coupled model prediction(Res-CMP)model,which integrates historical reanalysis data and coupled model forecast data for multiyear ENSO prediction.The Res-CMP model is designed as a lightweight model that leverages only short-term reanalysis data and nudging assimilation prediction results of the Community Earth System Model(CESM)for effective prediction of the Niño 3.4 index.We also developed a transfer learning strategy for this model to overcome the limitations of inadequate forecast data.After determining the optimal configuration,which included selecting a suitable transfer learning rate during training,along with input variables and CESM forecast lengths,Res-CMP demonstrated a high correlation ability for 19-month lead time predictions(correlation coefficients exceeding 0.5).The Res-CMP model also alleviated the spring predictability barrier(SPB).When validated against actual ENSO events,Res-CMP successfully captured the temporal evolution of the Niño 3.4 index during La Niña events(1998/99 and 2020/21)and El Niño events(2009/10 and 2015/16).Our proposed model has the potential to further enhance ENSO prediction performance by using coupled models to assist deep learning methods.
基金supported by the National Key R&D Program of China(No.2023YFC3006702)the Natural Science Foundation of Beijing Municipality(IS23117).
文摘Characterized by special morphologic,geographic,hydrologic,and societal behaviors,the water resources management of the Mediterranean catchment often shows a higher level of complexity including security issues of water supply,inundation risks,and environment management under the perspective of climate change.To have a comprehensive understanding of the Mediterranean water-cycle system,a deterministic distributed hydrologic modeling approach has been developed and presented in this study based on an application in the Var catchment(2800 km^(2))located at the French Mediterranean region.A 1D and 2D coupled model of MIKE SHE and MIKE 11 has been set up under a series of hypotheses to represent the whole hydrologic and hydrodynamic processes including rainfall-runoff,snow-melting,channel flow,overland flow,and the water exchange between land surface and unsaturated/saturated zones.The developed model was first calibrated with 4 years daily records from 2008 to 2011,then to be validated and further run within hourly time interval to produce detailed representation of the catchment water-cycle from 2012 to 2014.The deterministic distributed modeling approach presented in this study is able to represent its complicated water-cycle and used for supporting the decision‐making process of the water resources management of the catchment.
基金Supported by National Natural Science Foundation of China(Grant No.U1934203)Research and Development Project of Science and Technology of China Railway Corporation(Grant No.P2023T002)。
文摘Typically,seat or floor acceleration is used to evaluate the ride comfort of a high-speed train.However,the dynamic performance of the human body significantly differs from that of the floor.Therefore,using the car body floor and seat accelerations to calculate the ride comfort index of a high-speed train may not reflect the true feelings of passengers.In this study,a 3D human-seat-vehicle-track coupling model was established to investigate the ride comfort of highspeed train passengers.The seated human model,which considers the longitudinal,lateral,vertical,pitching,yawing,and rolling motions,comprises the head,upper torso,lower torso,pelvis,thighs,and shanks.The model parameters were determined using multi-axis excitation measurement data based on a genetic algorithm.Subsequently,the applicability of the small-angle assumption and natural modes of the human model is analyzed.Using the coupling system model,the vibration characteristics of the human-seat interaction surface were analyzed.The ride comfort of the high-speed train and human body dynamic performance were analyzed under normal conditions,track geometric irregularities and train meeting conditions.The results showed that the passenger seats in the front and rear rows adjacent to the window had a higher acceleration value than the others.The human backrest and seat pad connection points have higher vibration amplitudes than the car body floor in the human-sensitive frequency range,indicating that using the acceleration values on the floor may underestimate the discomfort of passengers.The ride comfort of high-speed trains diminishes in the presence of track geometric irregularities and when trains pass each other.When the excitation frequency of track geometry irregularities approached the natural frequency of the human-seat-vehicle system,ride comfort in high-speed trains decreased significantly.Moreover,using seat acceleration to evaluate passenger ride comfort overlooks the vibration characteristics of the human body.The transient aerodynamic force generated when the train meets can cause a larger car body roll and lateral motion at 2 Hz,which,in turn,decreases the passenger ride comfort.This study presents a detailed human-seat-vehicle-track coupling system that can reflect a passenger’s dynamic performance under complex operating conditions.