期刊文献+
共找到32篇文章
< 1 2 >
每页显示 20 50 100
A semi-analytical model for coupled flow in stress-sensitive multi-scale shale reservoirs with fractal characteristics 被引量:3
1
作者 Qian Zhang Wen-Dong Wang +4 位作者 Yu-Liang Su Wei Chen Zheng-Dong Lei Lei Li Yong-Mao Hao 《Petroleum Science》 SCIE EI CAS CSCD 2024年第1期327-342,共16页
A large number of nanopores and complex fracture structures in shale reservoirs results in multi-scale flow of oil. With the development of shale oil reservoirs, the permeability of multi-scale media undergoes changes... A large number of nanopores and complex fracture structures in shale reservoirs results in multi-scale flow of oil. With the development of shale oil reservoirs, the permeability of multi-scale media undergoes changes due to stress sensitivity, which plays a crucial role in controlling pressure propagation and oil flow. This paper proposes a multi-scale coupled flow mathematical model of matrix nanopores, induced fractures, and hydraulic fractures. In this model, the micro-scale effects of shale oil flow in fractal nanopores, fractal induced fracture network, and stress sensitivity of multi-scale media are considered. We solved the model iteratively using Pedrosa transform, semi-analytic Segmented Bessel function, Laplace transform. The results of this model exhibit good agreement with the numerical solution and field production data, confirming the high accuracy of the model. As well, the influence of stress sensitivity on permeability, pressure and production is analyzed. It is shown that the permeability and production decrease significantly when induced fractures are weakly supported. Closed induced fractures can inhibit interporosity flow in the stimulated reservoir volume (SRV). It has been shown in sensitivity analysis that hydraulic fractures are beneficial to early production, and induced fractures in SRV are beneficial to middle production. The model can characterize multi-scale flow characteristics of shale oil, providing theoretical guidance for rapid productivity evaluation. 展开更多
关键词 Multi-scale coupled flow Stress sensitivity Shale oil Micro-scale effect Fractal theory
原文传递
A novel multi-fidelity coupled simulation method for flow systems 被引量:1
2
作者 Wang Peng Zheng Yun +2 位作者 Zou Zhengping Qi Lei Zhou Zhixiang 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2013年第4期868-875,共8页
For the numerical simulation of flow systems with various complex components, the traditional one-dimensional (1D) network method has its comparative advantage in time consuming and the CFD method has its absolute a... For the numerical simulation of flow systems with various complex components, the traditional one-dimensional (1D) network method has its comparative advantage in time consuming and the CFD method has its absolute advantage in the detailed flow capturing. The proper coupling of the advantages of different dimensional methods can strike balance well between time cost and accuracy and then significantly decrease the whole design cycle for the flow systems in modern machines. A novel multi-fidelity coupled simulation method with numerical zooming is developed for flow systems. This method focuses on the integration of one-, two-and three-dimensional codes for various components. Coupled iterative process for the different dimensional simulation cycles of sub-systems is performed until the concerned flow variables of the whole system achieve convergence. Numerical zooming is employed to update boundary data of components with different dimen-sionalities. Based on this method, a highly automatic, multi-discipline computing environment with integrated zooming is developed. The numerical results of Y-Junction and the air system of a jet engine are presented to verify the solution method. They indicate that this type of multi-fidelity simulationmethod can greatly improve the prediction capability for the flow systems. 展开更多
关键词 Complex flow system Coupling Jet engine Multi-fidelity Zooming
原文传递
Numerical Investigation on the Flow and Temperature Fields in an Inductively Coupled Plasma Reactor 被引量:1
3
作者 吴彬 林烈 +1 位作者 张秀杰 吴承康 《Plasma Science and Technology》 SCIE EI CAS CSCD 2000年第6期565-571,共7页
This paper gives a numerical study on the flow and temperature fields in an induced plasma reactor, which worked in 0.5 ATM with air as a working gas. We employed a two-dimensional mode of an inductively coupled plas... This paper gives a numerical study on the flow and temperature fields in an induced plasma reactor, which worked in 0.5 ATM with air as a working gas. We employed a two-dimensional mode of an inductively coupled plasma to calculate the temperature and flow field of the reactor as well as the generator. The algorithm is based on the solutions of the two-dimensional continuity, momentum, and energy equations in term of vorticity, stream function and enthalpy. An upwind finite-difference scheme was adopted to solve those equations with appropriate boundary conditions. The computed results show that there is a flat region with little parameter change in the reactor, that the diameter of the region is not much larger than that of the generator and that a deep change of parameter exists in the outer side of the region. 展开更多
关键词 RE Numerical Investigation on the Flow and Temperature Fields in an Inductively coupled Plasma Reactor
在线阅读 下载PDF
A New Unified Stabilized Mixed Finite Element Method of the Stokes-Darcy Coupled Problem: Isotropic Discretization
4
作者 Houédanou Koffi Wilfrid 《Journal of Applied Mathematics and Physics》 2021年第7期1673-1706,共34页
In this paper, we develop an a-priori error analysis of a new unified mixed finite element method for the coupling of fluid flow with porous media flow in R<sup><em>N</em></sup>, <em>N<... In this paper, we develop an a-priori error analysis of a new unified mixed finite element method for the coupling of fluid flow with porous media flow in R<sup><em>N</em></sup>, <em>N</em> ∈ {2,3}, on isotropic meshes. Flows are governed by the Stokes and Darcy equations, respectively, and the corresponding transmission conditions are given by mass conservation, balance of normal forces, and the Beavers-Joseph-Saffman law. The approach utilizes a modification of the Darcy problem which allows us to apply a variant nonconforming Crouzeix-Raviart finite element to the whole coupled Stokes-Darcy problem. The well-posedness of the finite element scheme and its convergence analysis are derived. Finally, the numerical experiments are presented, which confirm the excellent stability and accuracy of our method. 展开更多
关键词 coupled Stokes and Darcy flows Nonconforming Finite Element Method Crouzeix-Raviart Element
在线阅读 下载PDF
Effects of lateral translation on aerodynamic characteristics of superconducting maglev trains
5
作者 ZHANG Lei PAN Shen-gong +5 位作者 LIN Tong-tong YU Qing-song WANG Tian-tian YANG Ming-zhi LIU Dong-run XU Shu 《Journal of Central South University》 2025年第8期3150-3172,共23页
Irregularities in the track and uneven forces acting on the train can cause shifts in the position of the superconducting magnetic levitation train relative to the track during operation.These shifts lead to asymmetri... Irregularities in the track and uneven forces acting on the train can cause shifts in the position of the superconducting magnetic levitation train relative to the track during operation.These shifts lead to asymmetries in the flow field structure on both sides of the narrow suspension gap,resulting in instability and deterioration of the train’s aerodynamic characteristics,significantly impacting its operational safety.In this study,we firstly validate the aerodynamic characteristics of the superconducting magnetic levitation system by developing a numerical simulation method based on wind tunnel test results.We then investigate the influence of lateral translation parameters on the train’s aerodynamic performance under conditions both with and without crosswinds.We aim to clarify the evolution mechanism of the flow field characteristics under the coupling effect between the train and the U-shaped track and to identify the most unfavorable operational parameters contributing to the deterioration of the train’s aerodynamic properties.The findings show that,without crosswinds,a lateral translation of 30 mm causes a synchronous resonance phenomenon at the side and bottom gaps of the train-track coupling,leading to the worst aerodynamic performance.Under crosswind conditions,a lateral translation of 40 mm maximizes peak pressure fluctuations and average turbulent kinetic energy around the train,resulting in the poorest aerodynamic performance.This research provides theoretical support for enhancing the operational stability of superconducting magnetic levitation trains. 展开更多
关键词 superconducting magnetic trains lateral translation aerodynamic characteristics crosswind operation flow coupling
在线阅读 下载PDF
Two-way coupling of unsaturated-saturated flow by integrating the SWAT and MODFLOW models with application in an irrigation district in arid region of West China 被引量:14
6
作者 Yi LUO Marios SOPHOCLEOUS 《Journal of Arid Land》 SCIE 2011年第3期164-173,共10页
This paper presents the realization of two-way coupling of the unsaturated-saturated flow interactions of the SWAT2000 and MODFLOW96 models on the basis of the integrated surface/groundwater model SWATMOD99, and its a... This paper presents the realization of two-way coupling of the unsaturated-saturated flow interactions of the SWAT2000 and MODFLOW96 models on the basis of the integrated surface/groundwater model SWATMOD99, and its application in Hetao Irrigation District (HID), Inner Mongolia, China. Major revisions and enhancements were made to the SWAT2000 and MODFLOW models for simulating the detailed hydrologic budget and coupled unsaturated and saturated interactions, and irrigation canal hydrology for the HID. The simulation results of seasonal groundwater recharge to and evaporate from the shallow groundwater, and the annual water budget over the district are presented and discussed. The results implied the necessity of two-way coupling of the unsaturated-saturated interactions when groundwater is shallow, and the feasibility of making comprehensive use of the information coming from both the surface water and groundwater models to make a more physically-based assessment of the coupled interactions. 展开更多
关键词 SWAT MODFLOW SWATMOD coupled unsaturated-saturated flow irrigation canals groundwater recharge groundwater evaporation
在线阅读 下载PDF
Influence of underground water seepage flow on surrounding rock deformation of multi-arch tunnel 被引量:11
7
作者 李夕兵 张伟 +1 位作者 李地元 王其胜 《Journal of Central South University of Technology》 EI 2008年第1期69-74,共6页
Based on a typical multi-arch tunnel in a freeway, the fast Lagrangian analysis of continua in 3 dimensions(FLAC3D) was used to calculate the surrounding rock deformation of the tunnel under which the effect of underg... Based on a typical multi-arch tunnel in a freeway, the fast Lagrangian analysis of continua in 3 dimensions(FLAC3D) was used to calculate the surrounding rock deformation of the tunnel under which the effect of underground water seepage flow was taken into account or not. The distribution of displacement field around the multi-arch tunnel, which is influenced by the seepage field, was gained. The result indicates that the settlement values of the vault derived from coupling analysis are bigger when considering the seepage flow effect than that not considering. Through the contrast of arch subsidence quantities calculated by two kinds of computation situations, and the comparison between the calculated and measured value of tunnel vault settlement, it is found that the calculated value(5.7-6.0 mm) derived from considering the seepage effect is more close to the measured value(5.8-6.8 mm). Therefore, it is quite necessary to consider the seepage flow effect of the underground water in aquiferous stratum for multi-arch tunnel design. 展开更多
关键词 multi-arch tunnel underground water seepage flow coupling flow and stress surrounding rock deformation vault settlement
在线阅读 下载PDF
Cast-rolling force model in solid-liquid cast-rolling bonding(SLCRB) process for fabricating bimetal clad strips 被引量:8
8
作者 Jun-peng ZHANG Hua-gui HUANG +2 位作者 Ri-dong ZHAO Miao FENG Kai MENG 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2021年第3期626-635,共10页
Based on twin-roll casting, a cast-rolling force model was proposed to predict the rolling force in the bimetal solid-liquid cast-rolling bonding(SLCRB) process. The solid-liquid bonding zone was assumed to be below t... Based on twin-roll casting, a cast-rolling force model was proposed to predict the rolling force in the bimetal solid-liquid cast-rolling bonding(SLCRB) process. The solid-liquid bonding zone was assumed to be below the kiss point(KP). The deformation resistance of the liquid zone was ignored. Then, the calculation model was derived. A 2D thermal-flow coupled simulation was established to provide a basis for the parameters in the model, and then the rolling forces of the Cu/Al clad strip at different rolling speeds were calculated. Meanwhile, through measurement experiments, the accuracy of the model was verified. The influence of the rolling speed, the substrate strip thickness, and the material on the rolling force was obtained. The results indicate that the rolling force decreases with the increase of the rolling speed and increases with the increase of the thickness and thermal conductivity of the substrate strip. The rolling force is closely related to the KP height. Therefore, the formulation of reasonable process parameters to control the KP height is of great significance to the stability of cast-rolling forming. 展开更多
关键词 bimetal clad strip solid−liquid cast-rolling bonding rolling force calculation model kiss point thermal−flow coupled simulation
在线阅读 下载PDF
A CFD-based numerical virtual flight simulator and its application in control law design of a maneuverable missile model 被引量:9
9
作者 Laiping ZHANG Xinghua CHANG +2 位作者 Rong MA Zhong ZHAO Nianhua WANG 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2019年第12期2577-2591,共15页
A CFD-based Numerical Virtual Flight(NVF)simulator is presented,which integrates an unsteady flow solver on moving hybrid grids,a Rigid-Body Dynamics(RBD)solver and a module of the Flight Control System(FCS).A techni... A CFD-based Numerical Virtual Flight(NVF)simulator is presented,which integrates an unsteady flow solver on moving hybrid grids,a Rigid-Body Dynamics(RBD)solver and a module of the Flight Control System(FCS).A technique of dynamic hybrid grids is developed to control the active control surfaces with body morphing,with a technique of parallel unstructured dynamic overlapping grids generating proper moving grids over the deflecting control surfaces(e.g.the afterbody rudders of a missile).For the flow/kinematic coupled problems,the 6 Degree-Of-Freedom(DOF)equations are solved by an explicit or implicit method coupled with the URANS CFD solver.The module of the control law is explicitly coupled into the NVF simulator and then improved by the simulation of the pitching maneuver process of a maneuverable missile model.A nonlinear dynamic inversion method is then implemented to design the control law for the pitching process of the maneuverable missile model.Simulations and analysis of the pitching maneuver process are carried out by the NVF simulator to improve the flight control law.Higher control response performance is obtained by adjusting the gain factors and adding an integrator into the control loop. 展开更多
关键词 Dynamic hybrid grid generation Flight control law Flow/kinematic coupling method Maneuverable missile pitching Nonlinear dynamic inversion Numerical virtual?ight
原文传递
NUMERICAL SIMULATION OF CASTING PROCESS 被引量:2
10
作者 L.L. Chen, R.X. Liu and H.T. Lin College of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2000年第2期764-769,共6页
In this paper, the development status of casting numerical simulation technology is introduced. In additional, mathematical model, solution method, initial condition, boundary condition and defect predicting scheme of... In this paper, the development status of casting numerical simulation technology is introduced. In additional, mathematical model, solution method, initial condition, boundary condition and defect predicting scheme of foundry process are also analyzed, which include the mold filling process, solidification process and the process coupling fluid flow with heat transfer. Finally, a practical casting is taken out to show how to predict defects and optimize foundry process with numerical simulation technology. 展开更多
关键词 FOUNDRY numerical simulation temperature field fluid field coupling fluid flow with heat transfer
在线阅读 下载PDF
NUMERICAL SIMULATION OF MOLTEN POOL AND CONTROL STRATEGY OF KISS POINT IN A TWIN-ROLL STRIP CASTING PROCESS 被引量:2
11
作者 G.M. Cao C.G. Li Z. Y. Liu D. Wu G.D. Wang X.H. Liu 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2008年第6期459-468,共10页
Coupled turbulent flow, temperature fields of the twin-roll casting strip process were simulated by three-dimensional finite element method. Based on the heat balance calculation and using inverse methods between the ... Coupled turbulent flow, temperature fields of the twin-roll casting strip process were simulated by three-dimensional finite element method. Based on the heat balance calculation and using inverse methods between the simulations and real experiments, the relational models among casting speed, location, and coefficient of heat transfer between molten metal and rolls in different regions are given. In the simulation, the calculated surface temperatures are in good agreement with the measured values. An on-line model of kiss point is derived by simulations and the geometry of molten pool, corresponding control strategy is also proposed. 展开更多
关键词 Twin-roll strip casting coupled temperature and flow field Numerical simulation Kiss point Control strategy
在线阅读 下载PDF
4D-stress evolution of tight sandstone reservoir during horizontal wells injection and production: A case study of Yuan 284 block,Ordos Basin,NW China 被引量:3
12
作者 ZHU Haiyan SONG Yujia +1 位作者 LEI Zhengdong TANG Xuanhe 《Petroleum Exploration and Development》 CSCD 2022年第1期156-169,共14页
To investigate the 4D stress change during injection and production in tight sandstone reservoirs, a multi-physical fields modeling method is proposed considering the reservoir heterogeneity, hydraulic fracture and co... To investigate the 4D stress change during injection and production in tight sandstone reservoirs, a multi-physical fields modeling method is proposed considering the reservoir heterogeneity, hydraulic fracture and complex injection-production system. The 4D stress evolution of tight sandstone reservoir in Yuan 284 block of Huaqing oilfield, Ordos Basin,during injection-production in horizontal well network is investigated by modeling coupled flow and geomechanics. Results show:(1) Induced by injection and production, the 3D stress increases near the injectors but decreases near the producers, and the horizontal stresses are distributed in obvious strips along their respective stress directions.(2) The horizontal stress difference is the highest at the horizontal wellbore beside injectors during injection and production, while it is the lowest in undeveloped zone between the injectors, and the orientation of maximum horizontal principal stress changes the most near the injectors, which is distributed radially.(3) The hydraulic fracture in re-fracturing well was observed to be asymmetrical in geometry and deflected as the stress changed. The results provide theoretical guidance for horizantal well network modification and re-fracturing optimization design in tight sandstone reservoir. 展开更多
关键词 tight oil tight sandstone reservoir injection-production well network stress evolution flow and geomechanical coupling Ordos Basin
在线阅读 下载PDF
Temperature influence on macro-mechanics parameter of intact coal sample containing original gas from Baijiao Coal Mine in China 被引量:5
13
作者 Wang Chunguang He Manchao +2 位作者 Zhang Xiaohu Liu Zhaoxia Zhao Tongbin 《International Journal of Mining Science and Technology》 SCIE EI 2013年第4期584-589,共6页
Investigation of temperature effect on mechanical parameters of coal is very important for understanding the mechanical response of coal bed at high temperature.It is especially benefcial for mitigating the thermal-in... Investigation of temperature effect on mechanical parameters of coal is very important for understanding the mechanical response of coal bed at high temperature.It is especially benefcial for mitigating the thermal-induced disasters occurred in those coal mines suffering from heat hazard.In this work,coal samples,obtained from the No.2442 working face of Baijiao Coal Mine,were subjected to uniaxial compression ranging from 20 to 40℃ with an interval of 5℃.The apparatus used was designed to obtain deformation of a stressed sample,as well as the emission of gases desorbing from coal matrix.The adsorbed gas desorption caused by heating is measured during the entire testing.It is evident that the concentrations of releasing gas(containing methane,carbon dioxide and ethane)slightly rise with increasing temperature.Gas movement observed is closely related to the deformation of coal sample.Both uniaxial compressive strength and elastic modulus of coal samples tend to reduce with temperature.It reveals that increasing temperature can not only result in thermal expansion of coal,but also lead to desorption of preexisting gas in coal which can in turns harden coal due to shrinks of the coal matrix.Even though desorption of adsorbed gas can contribute to the hardening effect for the heated coal,by comparison to the results,it could be inferred that the softening of coal resulted from thermal expansion still predominates changes in mechanical characters of coal sample with temperature at the range from20 to 40℃. 展开更多
关键词 Gas flow Coupling of temperature and pressure Adsorption Desorption
在线阅读 下载PDF
A well test analysis model of generalized tube flow and seepage coupling 被引量:1
14
作者 LIN Jia'en HE Hui WANG Yihua 《Petroleum Exploration and Development》 CSCD 2021年第4期923-934,共12页
"Generalized mobility"is used to realize the unification of tube flow and seepage in form and the unification of commonly used linear and nonlinear flow laws in form,which makes it possible to use the same f... "Generalized mobility"is used to realize the unification of tube flow and seepage in form and the unification of commonly used linear and nonlinear flow laws in form,which makes it possible to use the same form of motion equations to construct unified governing equations for reservoirs of different scales in different regions.Firstly,by defining the generalized mobility under different flow conditions,the basic equation governing fluid flow in reservoir coupling generalized tube flow and seepage is established.Secondly,two typical well test analysis models for coupling tube flow and seepage flow are given,namely,pipe-shaped composite reservoir model and partially open cylindrical reservoir model.The log-log pressure draw-down type-curve of composite pipe-shaped reservoir model can show characteristics of two sets of linear flow.The log-log pressure drawdown plot of partially opened cylindrical reservoir model can show the characteristics of spherical flow and linear flow,as well as spherical flow and radial flow.The pressure build-up derivative curves of the two models basically coincide with their respective pressure drawdown derivative curves in the early stage,pulling down features in the late stage,and the shorter the production time is,the earlier the pulling down feature appears.Finally,the practicability and reliability of the models presented in this paper are verified by three application examples. 展开更多
关键词 generalized mobility complex reservoir multiphase flow coupled tube flow and seepage well test analysis
在线阅读 下载PDF
Vibrational frequency analysis of finite elastic tube filled with compressible viscous fluid 被引量:2
15
作者 Ilyess Mnassri Adil El Baroudi 《Acta Mechanica Solida Sinica》 SCIE EI CSCD 2017年第4期435-444,共10页
The vibrational frequency analysis of finite elastic tube filled with compressible viscous fluid has received plenty of attention in recent years. To apply frequency analysis to defect detection for example, it is nec... The vibrational frequency analysis of finite elastic tube filled with compressible viscous fluid has received plenty of attention in recent years. To apply frequency analysis to defect detection for example, it is necessary to investigate the vibrational behavior under appropriate boundary conditions. In this paper, we present a detailed theoretical study of the three dimensional modal analysis of compressible fluid within an elastic cylinder. The dispersion equations of flexura], torsional and longitudinal modes are derived by elastodynamic theory and the unsteady Stokes equation. The symbolic software Mathematica is used in order to find the coupled vibration frequencies. The dispersion equation is deduced and analytically solved. The finite element results are compared with the present method for validation and an acceptable match between them are obtained. 展开更多
关键词 Frequency analysis Compressible Stokes flow coupled vibration Elastodynamic
原文传递
Effect of hydraulic fracture deformation hysteresis on CO_(2)huff-n-puff performance in shale gas reservoirs 被引量:1
16
作者 Xia YAN Pi-yang LIU +4 位作者 Zhao-qin HUANG Hai SUN Kai ZHANG Jun-feng WANG Jun YAO 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2023年第1期37-55,共19页
As a promising enhanced gas recovery technique,CO_(2)huff-n-puff has attracted great attention recently.However,hydraulic fracture deformation hysteresis is rarely considered,and its effect on CO_(2)huff-n-puff perfor... As a promising enhanced gas recovery technique,CO_(2)huff-n-puff has attracted great attention recently.However,hydraulic fracture deformation hysteresis is rarely considered,and its effect on CO_(2)huff-n-puff performance is not well understood.In this study,we present a fully coupled multi-component flow and geomechanics model for simulating CO_(2)huff-n-puff in shale gas reservoirs considering hydraulic fracture deformation hysteresis.Specifically,a shale gas reservoir after hydraulic fracturing is modeled using an efficient hybrid model incorporating an embedded discrete fracture model(EDFM),multiple porosity model,and single porosity model.In flow equations,Fick’s law,extended Langmuir isotherms,and the Peng-Robinson equation of state are used to describe the molecular diffusion,multi-component adsorption,and gas properties,respectively.In relation to geomechanics,a path-dependent constitutive law is applied for the hydraulic fracture deformation hysteresis.The finite volume method(FVM)and the stabilized extended finite element method(XFEM)are applied to discretize the flow and geomechanics equations,respectively.We then solve the coupled model using the fixed-stress split iterative method.Finally,we verify the presented method using several numerical examples,and apply it to investigate the effect of hydraulic fracture deformation hysteresis on CO_(2)huff-n-puff performance in a 3D shale gas reservoir.Numerical results show that hydraulic fracture deformation hysteresis has some negative effects on CO_(2)huff-n-puff performance.The effects are sensitive to the initial conductivity of hydraulic fracture,production pressure,starting time of huff-n-puff,injection pressure,and huff-n-puff cycle number. 展开更多
关键词 Enhanced gas recovery CO_(2)huff-n-puff coupled geomechanics and multi-component flow Hydraulic fracture deformation hysteresis Embedded discrete fracture model(EDFM)
原文传递
Numerical analysis of thermal impact on hydro-mechanical properties of clay 被引量:2
17
作者 Xuerui Wang Hua Shao +3 位作者 Jürgen Hesser Chunliang Zhang Wenqing Wang Olaf Kolditz 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2014年第5期405-416,共12页
As is known, high-level radioactive waste (HLW) is commonly heat-emitting. Heat output from HLWwilldissipate through the surrounding rocks and induce complex thermo-hydro-mechanical-chemical(THMC) processes. In hi... As is known, high-level radioactive waste (HLW) is commonly heat-emitting. Heat output from HLWwilldissipate through the surrounding rocks and induce complex thermo-hydro-mechanical-chemical(THMC) processes. In highly consolidated clayey rocks, thermal effects are particularly significantbecause of their very low permeability and water-saturated state. Thermal impact on the integrity of thegeological barriers is of most importance with regard to the long-term safety of repositories. This studyfocuses on numerical analysis of thermal effects on hydro-mechanical properties of clayey rock using acoupled thermo-mechanical multiphase flow (TH2M) model which is implemented in the finite elementprogramme OpenGeoSys (OGS). The material properties of the numerical model are characterised by atransversal isotropic elastic model based on Hooke's law, a non-isothermal multiphase flow model basedon van Genuchten function and Darcy's law, and a transversal isotropic heat transport model based onFourier's law. In the numerical approaches, special attention has been paid to the thermal expansion ofthree different phases: gas, fluid and solid, which could induce changes in pore pressure and porosity.Furthermore, the strong swelling and shrinkage behaviours of clayey material are also considered in thepresent model. The model has been applied to simulate a laboratory heating experiment on claystone.The numerical model gives a satisfactory representation of the observed material behaviour in thelaboratory experiment. The comparison of the calculated results with the laboratory findings verifies thatthe simulation with the present numerical model could provide a deeper understanding of the observedeffects. 2014 Institute of Rock and Soil Mechanics, Chinese Academy of Sciences. Production and hosting byElsevier B.V. All rights reserved. 展开更多
关键词 Radioactive waste disposal Clayey rock Heating experiment Numerical modelling OpenGeoSys(OGS) Thermo-hydro-mechanical(THM) coupling Multiphase flow Thermal effect
在线阅读 下载PDF
Cell-fluid Interaction: Coupling Between the Deformation of an Adherent Leukocyte and the Shear Flow 被引量:2
18
作者 X.H. LIU~(1,2) H. HUANG~1 C. YU~1 M.J. ZOU~1 X. WANG~3 1(Institute of Biomedical Engineering, Center of West China Medical Sciences, Sichuan University, Chengdu 610041, China)2(Laboratory of Cardiovascular Diseases, West China Hospital, Sichuan University, Chengdu 610041, China)3(LEMTA-UMR-CNRS 7563, Vandoeuvre-les-Nancy, 54500, BP160, France) 《生物医学工程学杂志》 EI CAS CSCD 北大核心 2005年第S1期22-,共1页
关键词 Cell-fluid Interaction Coupling Between the Deformation of an Adherent Leukocyte and the Shear Flow CELL
暂未订购
Integrated wellbore-reservoir-geomechanics modeling for enhanced interpretation of distributed fiber-optic strain sensing data in hydraulicfracture analysis
19
作者 Lijun Liu Xinglin Guo Xiaoguang Wang 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第8期3136-3148,共13页
Fiber-optic distributed strain sensing(FO-DSS)has been successful in monitoring strain changes along horizontal wellbores in hydraulically fractured reservoirs.However,the mechanism driving the various FO-DSS response... Fiber-optic distributed strain sensing(FO-DSS)has been successful in monitoring strain changes along horizontal wellbores in hydraulically fractured reservoirs.However,the mechanism driving the various FO-DSS responses associated with near-wellbore hydraulic fracture properties is still unclear.To address this knowledge gap,we use coupled wellbore-reservoir-geomechanics simulations to study measured strain-change behavior and infer hydraulic fracture characteristics.The crossflow among fractures is captured through explicit modeling of the transient wellbore flow.In addition,local grid refinement is applied to accurately capture strain changes along the fiber.A Base Case model was designed with four fractures of varying properties,simulating strain change signals when the production well is shut-in for 10 d after 240 d of production and reopened for 2 d.Strain-pressure plots for different fracture clusters were used to gain insights into inferring fracture properties using DSS data.When comparing the model with and without the wellbore,distinct strain change signals were observed,emphasizing the importance of incorporating the wellbore in FO-DSS modeling.The effects of fracture spacing and matrix permeability on strain change signals were thoroughly investigated.The results of our numerical study can improve the understanding of the relation between DSS signals and fracture hydraulic properties,thus maximizing the value of the dataset for fracture diagnostics and characterization. 展开更多
关键词 Distributed strain sensing Fracture diagnostic coupled flow and geomechanics Transient wellbore flow
在线阅读 下载PDF
Numerical modeling of influence of thermal flow coupling on flow characteristics of molten steel
20
作者 Fan Junfei Ren Sanbing +3 位作者 Chen Yaxian Zhao Shunli Huang Zongze Zhu Miaoyong 《Baosteel Technical Research》 CAS 2008年第1期51-55,共5页
Using the equation of continuity and the double equation of Navier-Stokes and k-ε, numerical modeling on a single outlet continuous casting tundish has been carried out during the process of non-thermal flow coupling... Using the equation of continuity and the double equation of Navier-Stokes and k-ε, numerical modeling on a single outlet continuous casting tundish has been carried out during the process of non-thermal flow coupling. The flow field distribution inside the tundish was calculated and the viscosity response time was calculated with the mass transfer equation based on the flow field distribution. The flow characteristics of the molten steel inside the tundish were analyzed, with the results of the numerical modeling compared to the hydraulic modeling. The results showed that the Resident Time Distribution (RTD) curves in the latter anatomosed comparatively better. This certified the validity established by the mathematical model. Numerical modeling was carried out on both large and small tundishes during the processes of thermal flow coupling and also thermal non-flow coupling. The results showed that in regards to large tundishes with relatively simple flow processes, using numerical modeling for thermal flow coupling is necessary. 展开更多
关键词 TUNDISH liquid flow thermal flow coupling numerical modeling
在线阅读 下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部