Nonlinear coupled dynamics of a liquid-filled spherical container in microgravity are investigated. The governing equations of the low-gravity liquid sloshing in a convex axisymmetrical container subjected to lateral ...Nonlinear coupled dynamics of a liquid-filled spherical container in microgravity are investigated. The governing equations of the low-gravity liquid sloshing in a convex axisymmetrical container subjected to lateral excitation is obtained by the variational principle and solved with a modal analysis method. The variational formulas are transformed into a frequency equation in the form of a standard eigenvalue problem by the Galerkin method, in which admissible functions for the velocity potential and the liquid flee surface displacement are determined analytically in terms of the Gaussian hypergeometric series. The coupled dynamic equations of the liquid-filled container are derived using the Lagrange's method and are numerically solved. The time histories of the modal solutions are obtained in numerical simulations.展开更多
Accurate prediction of the offshore structure motion response and associate mooring line tension is important in both technical applications and scientific research. In our study, a truss spar platform, operated in Gu...Accurate prediction of the offshore structure motion response and associate mooring line tension is important in both technical applications and scientific research. In our study, a truss spar platform, operated in Gulf of Mexico, is numerically simulated and analyzed by an in-house numerical code 'COUPLE'. Both the platform motion responses and associated mooring line tension are calculated and investigated through a time domain nonlinear coupled dynamic analysis. Satisfactory agreement between the simulation and corresponding field measurements is in general reached, indicating that the numerical code can be used to conduct the time-domain analysis of a truss spar interacting with its mooting and riser system. Based on the comparison between linear and nonlinear results, the relative importance of nonlinearity in predicting the platform motion response and mooring line tensions is assessed and presented. Through the coupled and quasi-static analysis, the importance of the dynamic coupling effect between the platform hull and the mooting/riser system in predicting the mooting line tension and platform motions is quantified. These results may provide essential information pertaining to facilitate the numerical simulation and design of the large scale offshore structures.展开更多
Inspired by the integrated guidance and control design for endo-atmospheric aircraft,the integrated position and attitude control of spacecraft has attracted increasing attention and gradually induced a wide variety o...Inspired by the integrated guidance and control design for endo-atmospheric aircraft,the integrated position and attitude control of spacecraft has attracted increasing attention and gradually induced a wide variety of study results in last over two decades,fully incorporating control requirements and actuator characteristics of space missions.This paper presents a novel and comprehensive survey to the coupled position and attitude motions of spacecraft from the perspective of dynamics and control.To this end,a systematic analysis is firstly conducted in details to show the position and attitude mutual couplings of spacecraft.Particularly,in terms of the time discrepancy between spacecraft position and attitude motions,space missions can be categorized into two types:space proximity operation and space orbital maneuver.Based on this classification,the studies on the coupled dynamic modeling and the integrated control design for position and attitude motions of spacecraft are sequentially summarized and analyzed.On the one hand,various coupled position and dynamic formulations of spacecraft based on various mathematical tools are reviewed and compared from five aspects,including mission applicability,modeling simplicity,physical clearance,information matching and expansibility.On the other hand,the development of the integrated position and attitude control of spacecraft is analyzed for two space missions,and especially,five distinctive development trends are captured for space operation missions.Finally,insightful prospects on future development of the integrated position and attitude control technology of spacecraft are proposed,pointing out current primary technical issues and possible feasible solutions.展开更多
The transmission systems of the differential velocity vane pumps (DVVP) have periodic vibrations under loads. And it is not easy to find the reason. In order to optimize the performance of the pump, the authors prop...The transmission systems of the differential velocity vane pumps (DVVP) have periodic vibrations under loads. And it is not easy to find the reason. In order to optimize the performance of the pump, the authors proposed DVVP driven by the hybrid Higher-order Fourier non-circular gears and tested it. There were also simi- lar periodic vibrations and noises under loads. Taking into account this phenomenon, the paper proposes fluid mechanics and solid mechanics simulation methodology to analyze the coupling dynamics between fluid and transmission system and reveals the reason. The results show that the pump has the reverse drive phenomenon, which is that the blades drive the non-circular gears when the suction and discharge is alternating. The reverse drive phenomenon leads the sign of the shaft torque to be changed in positive and negative way. So the transmis- sion system produces torsional vibrations. In order to confirm the simulation results, micro strains of the input shaft of the pump impeller are measured by the Wheatstone bridge and wireless sensor technology. The relation- ships between strain and torque are obtained by experimental calibration, and then the (rue torque of input shaft is calculated indirectly. The experimental results are consistent to the simulation results. It is proven that the peri- odic vibrations are mainly caused by fluid solid coupling, which leads to periodic torsional vibration of the trans- mission system.展开更多
With the floating structures pushing their activities to the ultra-deep water, model tests have presented a challenge due to the limitation of the existing wave basins. Therefore, the concept of truncated mooring syst...With the floating structures pushing their activities to the ultra-deep water, model tests have presented a challenge due to the limitation of the existing wave basins. Therefore, the concept of truncated mooring system is implemented to replace the full depth mooring system in the model tests, which aims to have the same dynamic responses as the full depth system. The truncated mooring system plays such a significant role that extra attention should be paid to the mooring systems with large truncation factor. Three different types of large truncation factor mooring system are being employed in the simulations, including the homogenously truncated mooring system, non-homogenously truncated mooring system and simplified truncated mooring system. A catenary moored semi-submersible operating at 1000 m water depth is presented. In addition, truncated mooring systems are proposed at the truncated water depth of 200 m. In order to explore the applicability of these truncated mooring systems, numerical simulations of the platform’s surge free decay interacting with three different styles of truncated mooring systems are studied in calm water. Furthermore, the mooring-induced damping of the truncated mooring systems is simulated in the regular wave. Finally, the platform motion responses and mooring line dynamics are simulated in irregular wave. All these simulations are implemented by employing full time domain coupled dynamic analysis, and the results are compared with those of the full depth simulations in the same cases. The results show that the mooring-induced damping plays a significant role in platform motion responses, and all truncated mooring systems are suitable for model tests with appropriate truncated mooring line diameters. However, a large diameter is needed for simplified truncated mooring lines. The suggestions are given to the selection of truncated mooring system for different situations as well as to the truncated mooring design criteria.展开更多
The dynamic cumulative damage of rigid-flexible coupling model of high-speed train with flexible bogie frame is performed by using the coupled scheme of elastic and multibody dynamics theories.The motion equations of ...The dynamic cumulative damage of rigid-flexible coupling model of high-speed train with flexible bogie frame is performed by using the coupled scheme of elastic and multibody dynamics theories.The motion equations of the present problem are firstly established by integrating the finite element method and floating frame of reference approach based on the virtual power principle and D'Alembert principle.The process of condensing the elastic DOFs of the obtained finite element model involving the incorporation of the substructure technique and sparse approximate inverse method is tentatively carried out.Then,the motion equations are further solved by virtue of the generalized α method and the Jacobian-free Newton-Krylov technologies.And the superiority of coupled scheme is proven by comparing with the traditional approach.Finally,besides the dynamic behaviors of the considered vehicle model,the time-variations of stresses on the elastic bogie frame's dangerous nodes and the distributions of stresses of bogie frame at some specified moments are synchronously calculated and analyzed.More importantly,the real-time and time-varying cumulative damages of some typical nodes on bogie frame are investigated.展开更多
Dynamics of quantum entanglement of two qubits in two identical quantum Rabi models is studied analytically in the framework of corrections to the rotating-wave approximations. A closed-form expression for the entangl...Dynamics of quantum entanglement of two qubits in two identical quantum Rabi models is studied analytically in the framework of corrections to the rotating-wave approximations. A closed-form expression for the entanglement dynamics initiated from the well-known Bell states is derived, which is very close to the numerical exact results up to the ultrastrong coupling regime. It is found that the vanishing entanglement can be purely induced by the counter-rotating terms, and can be enhanced with the atom-cavity coupling.展开更多
Unlike conventional spherical charges,a shaped charge generates not only a strong shock wave and a pulsating bubble,but also a high strain rate metal jet and a ballistic wave during the underwater explosion.They show ...Unlike conventional spherical charges,a shaped charge generates not only a strong shock wave and a pulsating bubble,but also a high strain rate metal jet and a ballistic wave during the underwater explosion.They show significant characteristic differences and couple each other.This paper designs and conducts experiments with shaped charges to analyze the complicated process.The effects of liner angle and weight of shaped charge on the characteristics of metal jets,waves,and bubbles are discussed.It is found that in underwater explosions,the shaped charge generates the metal jet accompanied by the ballistic wave.Then,the shock wave propagates and superimposes with the ballistic wave,and the generated bubble pulsates periodically.It is revealed that the maximum head velocity of the metal jet versus the liner angle a and length-to-diameter ratio k of the shaped charge follows the laws of 1/(α/180°)^(0.55)andλ^(0.16),respectively.The head shape and velocity of the metal jet determine the curvature and propagation speed of the initial ballistic wave,thus impacting the superposition time and region with the shock wave.Our findings also reveal that the metal jet carries away some explosion products,which hinders the bubble development,causing an inward depression of the bubble wall near the metal jet.Therefore,the maximum bubble radius and pulsation period are 5.2%and 3.9%smaller than the spherical charge with the same weight.In addition,the uneven axial energy distribution of the shaped charge leads to an oblique bubble jet formation.展开更多
This paper presents a canonical Hamiltonian model of liquid sloshing for the container coupled with spacecraft. Elliptical shape of rigid body is considered as spacecraft structure. Hamiltonian system is an important ...This paper presents a canonical Hamiltonian model of liquid sloshing for the container coupled with spacecraft. Elliptical shape of rigid body is considered as spacecraft structure. Hamiltonian system is an important form of mechanical system. It mostly used to stabilize the potential shaping of dynamical system. Free surface movement of liquid inside the container is called sloshing. If there is uncontrolled resonance between the motion of tank and liquid-frequency inside the tank then such sloshing can be a reason of attitude disturbance or structural damage of spacecraft. Equivalent mechanical model of simple pendulum or mass attached with spring for sloshing is used by many researchers. Mass attached with spring is used as an equivalent model of sloshing to derive the mathematical equations in terms of Hamiltonian model. Analytical method of Lyapunov function with Casimir energy function is used to find the stability for spacecraft dynamics. Vertical axial rotation is taken as the major axial steady rotation for the moving rigid body.展开更多
Optical tweezers technology utilizes the optical potential well generated by a focused laser beam to achieve precise manipulation of micro and nanoparticles.Based on the optical tweezers platform,the motion behavior a...Optical tweezers technology utilizes the optical potential well generated by a focused laser beam to achieve precise manipulation of micro and nanoparticles.Based on the optical tweezers platform,the motion behavior and dynamic laws of particles are deeply studied,which can reveal the transport mechanism of complex systems.Based on summarizing the principles and experimental methods of optical tweezers technology,this article systematically summarizes the typical force characteristics of particles in optical tweezers,focusing on the dynamic research progress of single particle non-equilibrium state,double particle coupling,and multi-particle cluster system,laying a theoretical foundation for expanding the application of optical tweezers technology in physics,chemistry,biology,and other fields.展开更多
The integrated systems of unmanned surface vehicles(USVs) and remotely operated vehicles(ROVs) have been extensively applied in marine exploration and seabed coverage. However, the simultaneous navigation of USV-ROV s...The integrated systems of unmanned surface vehicles(USVs) and remotely operated vehicles(ROVs) have been extensively applied in marine exploration and seabed coverage. However, the simultaneous navigation of USV-ROV systems is frequently limited by strong disturbances induced by waves or currents. This paper develops a novel rigidflexible coupling multibody dynamic model that incorporates disturbances of variable-length marine cables with geometrically nonlinear motion. A hybrid Lagrangian-Eulerian absolute nodal coordinate formulation(ANCF) element is developed to accurately model subsea cables which undergo significant overall motion, substantial deformation,and mass flow during the deployment of underwater equipment. Furthermore, the governing equations of the coupled USV-umbilical-ROV system are derived, considering wave-induced forces and current disturbances. A numerical solver based on the Newmark-beta method is proposed, along with an adaptive meshing technique near the release point. After validating three experimental cases, the cable disturbances at both the USV and ROV ends—caused by ocean currents, heave motion, and simultaneous navigation—are comprehensively compared and evaluated. Finally,it is demonstrated that a PD controller with disturbance compensation can enhance the simultaneous navigation performance of USV-ROV systems.展开更多
The El Niño-Southern Oscillation(ENSO)is a naturally recurring interannual climate fluctuation that affects the global climate system.The advent of deep learning-based approaches has led to transformative changes...The El Niño-Southern Oscillation(ENSO)is a naturally recurring interannual climate fluctuation that affects the global climate system.The advent of deep learning-based approaches has led to transformative changes in ENSO forecasts,resulting in significant progress.Most deep learning-based ENSO prediction models which primarily rely solely on reanalysis data may lead to challenges in intensity underestimation in long-term forecasts,reducing the forecasting skills.To this end,we propose a deep residual-coupled model prediction(Res-CMP)model,which integrates historical reanalysis data and coupled model forecast data for multiyear ENSO prediction.The Res-CMP model is designed as a lightweight model that leverages only short-term reanalysis data and nudging assimilation prediction results of the Community Earth System Model(CESM)for effective prediction of the Niño 3.4 index.We also developed a transfer learning strategy for this model to overcome the limitations of inadequate forecast data.After determining the optimal configuration,which included selecting a suitable transfer learning rate during training,along with input variables and CESM forecast lengths,Res-CMP demonstrated a high correlation ability for 19-month lead time predictions(correlation coefficients exceeding 0.5).The Res-CMP model also alleviated the spring predictability barrier(SPB).When validated against actual ENSO events,Res-CMP successfully captured the temporal evolution of the Niño 3.4 index during La Niña events(1998/99 and 2020/21)and El Niño events(2009/10 and 2015/16).Our proposed model has the potential to further enhance ENSO prediction performance by using coupled models to assist deep learning methods.展开更多
The integration of renewable energy sources(RESs)with inverter interfaces has fundamentally reshaped power system dynamics,challenging traditional stability analysis frameworks designed for synchronous generator-domin...The integration of renewable energy sources(RESs)with inverter interfaces has fundamentally reshaped power system dynamics,challenging traditional stability analysis frameworks designed for synchronous generator-dominated grids.Conventional classifica-tions,which decouple voltage,frequency,and rotor angle stability,fail to address the emerging strong voltage‒angle coupling effects caused by RES dynamics.This coupling introduces complex oscillation modes and undermines system robustness,neces-sitating novel stability assessment tools.Recent studies focus on eigenvalue distributions and damping redistribution but lack quantitative criteria and interpretative clarity for coupled stability.This work proposes a transient energy-based framework to resolve these gaps.By decomposing transient energy into subsystem-dissipated components and coupling-induced energy exchange,the method establishes stability criteria compatible with a broad variety of inverter-interfaced devices while offering an intuitive energy-based interpretation for engineers.The coupling strength is also quantified by defining the relative coupling strength index,which is directly related to the transient energy interpretation of the coupled stability.Angle‒voltage coupling may induce instability by injecting transient energy into the system,even if the individual phase angle and voltage dynamics themselves are stable.The main contributions include a systematic stability evaluation framework and an energy decomposition approach that bridges theoretical analysis with practical applicability,addressing the urgent need for tools for managing modern power system evolving stability challenges.展开更多
A unified theoretical aeroservoelastic stability analysis framework for flexible aircraft is established in this paper. This linearized state space model for stability analysis is based on nonlinear coupled dynamic eq...A unified theoretical aeroservoelastic stability analysis framework for flexible aircraft is established in this paper. This linearized state space model for stability analysis is based on nonlinear coupled dynamic equations, in which rigid and elastic motions of aircraft are both considered.The common body coordinate system is utilized as the reference frame in the deduction of dynamic equations, and significant deformations of flexible aircraft are also fully concerned without any excessive assumptions. Therefore, the obtained nonlinear coupled dynamic models can well reflect the special dynamic coupling mechanics of flexible aircraft. For aeroservoelastic stability analysis,the coupled dynamic equations are linearized around the nonlinear equilibrium state and together with a control system model to establish a state space model in the time domain. The methodology in this paper can be easily integrated into the industrial design process and complex structures.Numerical results for a complex flexible aircraft indicate the necessity to consider the nonlinear coupled dynamics and large deformation when dealing with aeroservoelastic stability for flexible aircraft.展开更多
The locomotive traction motor is described as a rotor-bearing system coupling the kinetic equations of the traction shaft and its support bearings with the determination of their elastic deformations in this study.Und...The locomotive traction motor is described as a rotor-bearing system coupling the kinetic equations of the traction shaft and its support bearings with the determination of their elastic deformations in this study.Under the effect of excitations induced by the dynamic rotor eccentric distance and time-varying mesh stiffness,the elastic structure deformations of the shaft and support bearings are formulated in the vibration environment of the locomotive.In addition,the nonlinear contact forces between the components of the rolling bearing,the lubricating oil film,and radial clearance are comprehensively considered in this study.The results indicate that the elastic deformations of the shaft and bearings can change the dynamic responses of the traction motor and its support bearings.There are large differences between the ranges of the rotor motion calculated by the rigid and the flexible traction motor models when the intensified wheel-rail interaction is considered.With the increase of the rotor eccentricity,the results underscore the role of the elasticity of traction shaft and support bearings in dynamic researches of the traction motor.The critical value of the initial eccentric distance for the rub-impact phenomenon decreases from 1.23 mm to 1.15 mm considering the flexible effect of the shaft and bearings.This dynamics model of the traction motor can provide more accurate and reasonable simulation results for correlational dynamic researches.展开更多
Employing theory on vehicle-track coupled dynamics, the equation of motion of a vehicle-track vertical coupled system was established by combining frequency analysis and symplectic mathematics. The frequency response ...Employing theory on vehicle-track coupled dynamics, the equation of motion of a vehicle-track vertical coupled system was established by combining frequency analysis and symplectic mathematics. The frequency response of the vehicle-track vertical coupled system was calculated under the excitation of the German low-interfer- ence spectrum, and the effects of the vehicle speed, vehicle suspension parameters, and track support parameters on the frequency response of the coupled system were studied. Results show that, under the excitation of the German low- interference spectrum, the vertical vibration of the car body is mainly concentrated in the low-frequency band, while that of the bogie has a wide frequency distribution, being strong from several Hertz to dozens of Hertz. The vertical vibrations of the wheel-rail force, wheelset, and track structure mainly occur at a frequency of dozens of Hertz. In general, the vertical vibration of the vehicle-track coupled system increases with vehicle speed, and the vertical vibrations of the car body and bogie obviously shift to higher frequency. Increasing the vehicle suspension stiffness increases the low- frequency vibrations of the vehicle system and track struc- ture. With an increase in vehicle suspension damping, the low-frequency vibrations of the car body and bogie and the vibrations of the wheel-rail vertical force and track structure decrease at 50-80 Hz, while the mid-frequency and high- frequency vibrations of the car body and bogie increase. Similarly, an increase in track stiffness amplifies the vertical vibrations of the wheel-rail force and track structure, while an increase in track damping effectively reduces the vertical vibrations of the wheel-rail vertical force and track structure.展开更多
The deep fissured rock mass is affected by coupled effects of initial ground stress and external dynamic disturbance.In order to study the effect of internal flaw on pre-stressed rock mechanical responses and failure ...The deep fissured rock mass is affected by coupled effects of initial ground stress and external dynamic disturbance.In order to study the effect of internal flaw on pre-stressed rock mechanical responses and failure behavior under impact loading,intact granite specimens and specimens with different flaw inclinations are tested by a modified split Hopkinson pressure bar(SHPB)and digital image correlation(DIC)method.The results show that peak strain and dynamic strength of intact specimens and specimens with different flaw angles(α)decrease with the increase of axial static pressure.The 90°flaw has weak reduction effect on peak strain,dynamic strength and combined strength,while 45°and 0°flaws have remarkable reduction effect.Specimens with 90°flaw are suffered combined shear and tensile failure under middle and low axial static pre-stresses,and suffered shear failure under high axial static pre-stresses.Specimens with 45°and 0°flaws are suffered oblique shear failure caused by pre-existing flaw under different axial static pre-stresses.Besides,based on digital image correlation method,it is found that micro-cracks before formation of macro fractures(include shear and tensile fractures)belong to tensile cracks.Tensile and shear strain localizations at pre-existing flaw tip for specimen with 45°and 0°flaws are produced much earlier than that at other positions.展开更多
This paper presents a coupled dynamic response analysis of a multi-column tension-leg-type floating wind turbine(Wind Star TLP system) under normal operation and parked conditions. Wind-only load cases, wave-only lo...This paper presents a coupled dynamic response analysis of a multi-column tension-leg-type floating wind turbine(Wind Star TLP system) under normal operation and parked conditions. Wind-only load cases, wave-only load cases and combined wind and wave load cases were analyzed separately for the Wind Star TLP system to identify the dominant excitation loads. Comparisons between an NREL offshore 5-MW baseline wind turbine installed on land and the Wind Star TLP system were performed. Statistics of selected response variables in specified design load cases(DLCs) were obtained and analyzed. It is found that the proposed Wind Star TLP system has small dynamic responses to environmental loads and it thus has almost the same mean generator power output under operating conditions as the land-based system. The tension mooring system has a sufficient safety factor, and the minimum tendon tension is always positive in all selected DLCs. The ratio of ultimate load of the tower base fore-aft bending moment for the Wind Star TLP system versus the land-based system can be as high as 1.9 in all of the DLCs considered. These results will help elucidate the dynamic characteristics of the proposed Wind Star TLP system, identify the difference in load effect between it and land-based systems, and thus make relevant modifications to the initial design for the Wind Star TLP system.展开更多
In this paper, the synchronization problem of three homodromy coupled exciters in a non-resonant vibrating system of plane motion is studied. By introducing the average method of modified small parameters, we deduced ...In this paper, the synchronization problem of three homodromy coupled exciters in a non-resonant vibrating system of plane motion is studied. By introducing the average method of modified small parameters, we deduced dimensionless coupling equation of three exciters, which converted the problem of synchronization into that of the existence and stability of zero solutions for the average differential equations of the small parameters. Based on the dimensionless coupling torques and characteristics of the cor- responding limited functions, the synchronization criterion for three exciters was derived as the absolute value of dimensionless residual torque difference between arbitrary two motors being less than the maximum of their dimensionless coupling torques. The stability criterion of its synchronous state lies in the double-condition that the inertia coupling matrix is positive definite and all its elements are positive as well. The synchronization determinants are the coefficients of synchronization ability, also called as the general dynamical symmetry coefficients. The double-equilibrium state of the vibrating system is manifested by numeric method, and the numeric and simulation results derived thereof indicate the indispensable and crucial role the structural parameters of the vibrating system play in the stability criterion of synchronous operation. Besides, by adjusting its structural parameters, the elliptical motion of the vibrating system successfully met the requirements in engineering applications.展开更多
In this paper,four novel evaluation indices and corresponding hierarchical optimization strategies are proposed for a deployable solar array system considering panel flexibility and joint clearance.The deployable sola...In this paper,four novel evaluation indices and corresponding hierarchical optimization strategies are proposed for a deployable solar array system considering panel flexibility and joint clearance.The deployable solar array model consists of a rigid main-body,two panels and four key mechanisms,containing torsion spring mechanism,closed cable loop mechanism,latch mechanism and attitude adjustment mechanism.Rigid and flexible components are established by Nodal Coordinate Formulation and Absolute Nodal Coordinate Formulation,respectively.The clearance joint model is described by nonlinear contact force model and amendatory Coulomb friction model.The latch time,stabilization time,maximum contact force and impulse sum of the contact force of the solar array system are selected as the four novel evaluation indices to represent the complex dynamic responses of a deployable solar array with clearance joints instead of the lock torque widely used in conventional works.To eliminate the gross errors caused by the nonlinear and nonsmooth mechanical properties,a hierarchical optimization strategy based on an adaptive simulated annealing algorithm and a nondominated sorting genetic algorithm is adopted for the solar array system with clearance joints.Results indicate that the effects of panel flexibility on the evaluation index responses and design optimization of the solar array system cannot be neglected.Besides,increasing the weight factor of the stabilization time index of the rigid system may compensate for the differences in optimal results of the rigid–flexible coupling system.That may provide some references for optimization design of deployable space mechanisms considering clearance joints.展开更多
基金the National Natural Science Foundation of China(Nos.10572022,10772026)
文摘Nonlinear coupled dynamics of a liquid-filled spherical container in microgravity are investigated. The governing equations of the low-gravity liquid sloshing in a convex axisymmetrical container subjected to lateral excitation is obtained by the variational principle and solved with a modal analysis method. The variational formulas are transformed into a frequency equation in the form of a standard eigenvalue problem by the Galerkin method, in which admissible functions for the velocity potential and the liquid flee surface displacement are determined analytically in terms of the Gaussian hypergeometric series. The coupled dynamic equations of the liquid-filled container are derived using the Lagrange's method and are numerically solved. The time histories of the modal solutions are obtained in numerical simulations.
文摘Accurate prediction of the offshore structure motion response and associate mooring line tension is important in both technical applications and scientific research. In our study, a truss spar platform, operated in Gulf of Mexico, is numerically simulated and analyzed by an in-house numerical code 'COUPLE'. Both the platform motion responses and associated mooring line tension are calculated and investigated through a time domain nonlinear coupled dynamic analysis. Satisfactory agreement between the simulation and corresponding field measurements is in general reached, indicating that the numerical code can be used to conduct the time-domain analysis of a truss spar interacting with its mooting and riser system. Based on the comparison between linear and nonlinear results, the relative importance of nonlinearity in predicting the platform motion response and mooring line tensions is assessed and presented. Through the coupled and quasi-static analysis, the importance of the dynamic coupling effect between the platform hull and the mooting/riser system in predicting the mooting line tension and platform motions is quantified. These results may provide essential information pertaining to facilitate the numerical simulation and design of the large scale offshore structures.
基金supported by the National Science Foundation of China(61703437,52232014,61690210,61690212)。
文摘Inspired by the integrated guidance and control design for endo-atmospheric aircraft,the integrated position and attitude control of spacecraft has attracted increasing attention and gradually induced a wide variety of study results in last over two decades,fully incorporating control requirements and actuator characteristics of space missions.This paper presents a novel and comprehensive survey to the coupled position and attitude motions of spacecraft from the perspective of dynamics and control.To this end,a systematic analysis is firstly conducted in details to show the position and attitude mutual couplings of spacecraft.Particularly,in terms of the time discrepancy between spacecraft position and attitude motions,space missions can be categorized into two types:space proximity operation and space orbital maneuver.Based on this classification,the studies on the coupled dynamic modeling and the integrated control design for position and attitude motions of spacecraft are sequentially summarized and analyzed.On the one hand,various coupled position and dynamic formulations of spacecraft based on various mathematical tools are reviewed and compared from five aspects,including mission applicability,modeling simplicity,physical clearance,information matching and expansibility.On the other hand,the development of the integrated position and attitude control of spacecraft is analyzed for two space missions,and especially,five distinctive development trends are captured for space operation missions.Finally,insightful prospects on future development of the integrated position and attitude control technology of spacecraft are proposed,pointing out current primary technical issues and possible feasible solutions.
基金financially supported by the Project of fundamental Commonweal Research of Zhejiang Province(Grant No.LGG18E050004)the National Natural Science Foundation of China(Grant No.51305403 and No.51675486)
文摘The transmission systems of the differential velocity vane pumps (DVVP) have periodic vibrations under loads. And it is not easy to find the reason. In order to optimize the performance of the pump, the authors proposed DVVP driven by the hybrid Higher-order Fourier non-circular gears and tested it. There were also simi- lar periodic vibrations and noises under loads. Taking into account this phenomenon, the paper proposes fluid mechanics and solid mechanics simulation methodology to analyze the coupling dynamics between fluid and transmission system and reveals the reason. The results show that the pump has the reverse drive phenomenon, which is that the blades drive the non-circular gears when the suction and discharge is alternating. The reverse drive phenomenon leads the sign of the shaft torque to be changed in positive and negative way. So the transmis- sion system produces torsional vibrations. In order to confirm the simulation results, micro strains of the input shaft of the pump impeller are measured by the Wheatstone bridge and wireless sensor technology. The relation- ships between strain and torque are obtained by experimental calibration, and then the (rue torque of input shaft is calculated indirectly. The experimental results are consistent to the simulation results. It is proven that the peri- odic vibrations are mainly caused by fluid solid coupling, which leads to periodic torsional vibration of the trans- mission system.
基金financially supported by the National Natural Science Foundation of China(Grant No.51379095)
文摘With the floating structures pushing their activities to the ultra-deep water, model tests have presented a challenge due to the limitation of the existing wave basins. Therefore, the concept of truncated mooring system is implemented to replace the full depth mooring system in the model tests, which aims to have the same dynamic responses as the full depth system. The truncated mooring system plays such a significant role that extra attention should be paid to the mooring systems with large truncation factor. Three different types of large truncation factor mooring system are being employed in the simulations, including the homogenously truncated mooring system, non-homogenously truncated mooring system and simplified truncated mooring system. A catenary moored semi-submersible operating at 1000 m water depth is presented. In addition, truncated mooring systems are proposed at the truncated water depth of 200 m. In order to explore the applicability of these truncated mooring systems, numerical simulations of the platform’s surge free decay interacting with three different styles of truncated mooring systems are studied in calm water. Furthermore, the mooring-induced damping of the truncated mooring systems is simulated in the regular wave. Finally, the platform motion responses and mooring line dynamics are simulated in irregular wave. All these simulations are implemented by employing full time domain coupled dynamic analysis, and the results are compared with those of the full depth simulations in the same cases. The results show that the mooring-induced damping plays a significant role in platform motion responses, and all truncated mooring systems are suitable for model tests with appropriate truncated mooring line diameters. However, a large diameter is needed for simplified truncated mooring lines. The suggestions are given to the selection of truncated mooring system for different situations as well as to the truncated mooring design criteria.
基金support for the research:National Natural Science Foundation of China(Grant No.11872257 and 11572358)Key Project of Natural Science Foundation of Hebei Province(Grant No.A2020210008)Hebei Provincial Department of Education Youth Top Talents Project(Grant No.BJK2023018).
文摘The dynamic cumulative damage of rigid-flexible coupling model of high-speed train with flexible bogie frame is performed by using the coupled scheme of elastic and multibody dynamics theories.The motion equations of the present problem are firstly established by integrating the finite element method and floating frame of reference approach based on the virtual power principle and D'Alembert principle.The process of condensing the elastic DOFs of the obtained finite element model involving the incorporation of the substructure technique and sparse approximate inverse method is tentatively carried out.Then,the motion equations are further solved by virtue of the generalized α method and the Jacobian-free Newton-Krylov technologies.And the superiority of coupled scheme is proven by comparing with the traditional approach.Finally,besides the dynamic behaviors of the considered vehicle model,the time-variations of stresses on the elastic bogie frame's dangerous nodes and the distributions of stresses of bogie frame at some specified moments are synchronously calculated and analyzed.More importantly,the real-time and time-varying cumulative damages of some typical nodes on bogie frame are investigated.
基金Supported by the National Natural Science Foundation of China under Grant Nos 11174254 and 11474256
文摘Dynamics of quantum entanglement of two qubits in two identical quantum Rabi models is studied analytically in the framework of corrections to the rotating-wave approximations. A closed-form expression for the entanglement dynamics initiated from the well-known Bell states is derived, which is very close to the numerical exact results up to the ultrastrong coupling regime. It is found that the vanishing entanglement can be purely induced by the counter-rotating terms, and can be enhanced with the atom-cavity coupling.
基金funded by the National Natural Science Founda-tion of China(52071109).
文摘Unlike conventional spherical charges,a shaped charge generates not only a strong shock wave and a pulsating bubble,but also a high strain rate metal jet and a ballistic wave during the underwater explosion.They show significant characteristic differences and couple each other.This paper designs and conducts experiments with shaped charges to analyze the complicated process.The effects of liner angle and weight of shaped charge on the characteristics of metal jets,waves,and bubbles are discussed.It is found that in underwater explosions,the shaped charge generates the metal jet accompanied by the ballistic wave.Then,the shock wave propagates and superimposes with the ballistic wave,and the generated bubble pulsates periodically.It is revealed that the maximum head velocity of the metal jet versus the liner angle a and length-to-diameter ratio k of the shaped charge follows the laws of 1/(α/180°)^(0.55)andλ^(0.16),respectively.The head shape and velocity of the metal jet determine the curvature and propagation speed of the initial ballistic wave,thus impacting the superposition time and region with the shock wave.Our findings also reveal that the metal jet carries away some explosion products,which hinders the bubble development,causing an inward depression of the bubble wall near the metal jet.Therefore,the maximum bubble radius and pulsation period are 5.2%and 3.9%smaller than the spherical charge with the same weight.In addition,the uneven axial energy distribution of the shaped charge leads to an oblique bubble jet formation.
基金supported by Higher Education Commis- sion of Pakistan,National Natural Science Foundation of China(11072030)Ph.D.Programs Foundation of Ministry of Education of China(20080070011)+1 种基金Scientific Research Foundation of Ministry of Education of China for Returned Scholars(20080732040)Program of Beijing Municipal Key Discipline Construction
文摘This paper presents a canonical Hamiltonian model of liquid sloshing for the container coupled with spacecraft. Elliptical shape of rigid body is considered as spacecraft structure. Hamiltonian system is an important form of mechanical system. It mostly used to stabilize the potential shaping of dynamical system. Free surface movement of liquid inside the container is called sloshing. If there is uncontrolled resonance between the motion of tank and liquid-frequency inside the tank then such sloshing can be a reason of attitude disturbance or structural damage of spacecraft. Equivalent mechanical model of simple pendulum or mass attached with spring for sloshing is used by many researchers. Mass attached with spring is used as an equivalent model of sloshing to derive the mathematical equations in terms of Hamiltonian model. Analytical method of Lyapunov function with Casimir energy function is used to find the stability for spacecraft dynamics. Vertical axial rotation is taken as the major axial steady rotation for the moving rigid body.
文摘Optical tweezers technology utilizes the optical potential well generated by a focused laser beam to achieve precise manipulation of micro and nanoparticles.Based on the optical tweezers platform,the motion behavior and dynamic laws of particles are deeply studied,which can reveal the transport mechanism of complex systems.Based on summarizing the principles and experimental methods of optical tweezers technology,this article systematically summarizes the typical force characteristics of particles in optical tweezers,focusing on the dynamic research progress of single particle non-equilibrium state,double particle coupling,and multi-particle cluster system,laying a theoretical foundation for expanding the application of optical tweezers technology in physics,chemistry,biology,and other fields.
基金financially supported in part by the General Program of the National Natural Science Foundation of China (Grant No.12272221)the State Key Laboratory of Ocean Engineering (Shanghai Jiao Tong University)(Grant No. GKZD010087)。
文摘The integrated systems of unmanned surface vehicles(USVs) and remotely operated vehicles(ROVs) have been extensively applied in marine exploration and seabed coverage. However, the simultaneous navigation of USV-ROV systems is frequently limited by strong disturbances induced by waves or currents. This paper develops a novel rigidflexible coupling multibody dynamic model that incorporates disturbances of variable-length marine cables with geometrically nonlinear motion. A hybrid Lagrangian-Eulerian absolute nodal coordinate formulation(ANCF) element is developed to accurately model subsea cables which undergo significant overall motion, substantial deformation,and mass flow during the deployment of underwater equipment. Furthermore, the governing equations of the coupled USV-umbilical-ROV system are derived, considering wave-induced forces and current disturbances. A numerical solver based on the Newmark-beta method is proposed, along with an adaptive meshing technique near the release point. After validating three experimental cases, the cable disturbances at both the USV and ROV ends—caused by ocean currents, heave motion, and simultaneous navigation—are comprehensively compared and evaluated. Finally,it is demonstrated that a PD controller with disturbance compensation can enhance the simultaneous navigation performance of USV-ROV systems.
基金The National Key Research and Development Program of China under contract Nos 2024YFF0808900,2023YFF0805300,and 2020YFA0608804the Civilian Space Programme of China under contract No.D040305.
文摘The El Niño-Southern Oscillation(ENSO)is a naturally recurring interannual climate fluctuation that affects the global climate system.The advent of deep learning-based approaches has led to transformative changes in ENSO forecasts,resulting in significant progress.Most deep learning-based ENSO prediction models which primarily rely solely on reanalysis data may lead to challenges in intensity underestimation in long-term forecasts,reducing the forecasting skills.To this end,we propose a deep residual-coupled model prediction(Res-CMP)model,which integrates historical reanalysis data and coupled model forecast data for multiyear ENSO prediction.The Res-CMP model is designed as a lightweight model that leverages only short-term reanalysis data and nudging assimilation prediction results of the Community Earth System Model(CESM)for effective prediction of the Niño 3.4 index.We also developed a transfer learning strategy for this model to overcome the limitations of inadequate forecast data.After determining the optimal configuration,which included selecting a suitable transfer learning rate during training,along with input variables and CESM forecast lengths,Res-CMP demonstrated a high correlation ability for 19-month lead time predictions(correlation coefficients exceeding 0.5).The Res-CMP model also alleviated the spring predictability barrier(SPB).When validated against actual ENSO events,Res-CMP successfully captured the temporal evolution of the Niño 3.4 index during La Niña events(1998/99 and 2020/21)and El Niño events(2009/10 and 2015/16).Our proposed model has the potential to further enhance ENSO prediction performance by using coupled models to assist deep learning methods.
基金supported by the Science and Technology Project of China Southern Power Grid Co.,Ltd under Grant 036000KC23090004(GDKJXM20231026).
文摘The integration of renewable energy sources(RESs)with inverter interfaces has fundamentally reshaped power system dynamics,challenging traditional stability analysis frameworks designed for synchronous generator-dominated grids.Conventional classifica-tions,which decouple voltage,frequency,and rotor angle stability,fail to address the emerging strong voltage‒angle coupling effects caused by RES dynamics.This coupling introduces complex oscillation modes and undermines system robustness,neces-sitating novel stability assessment tools.Recent studies focus on eigenvalue distributions and damping redistribution but lack quantitative criteria and interpretative clarity for coupled stability.This work proposes a transient energy-based framework to resolve these gaps.By decomposing transient energy into subsystem-dissipated components and coupling-induced energy exchange,the method establishes stability criteria compatible with a broad variety of inverter-interfaced devices while offering an intuitive energy-based interpretation for engineers.The coupling strength is also quantified by defining the relative coupling strength index,which is directly related to the transient energy interpretation of the coupled stability.Angle‒voltage coupling may induce instability by injecting transient energy into the system,even if the individual phase angle and voltage dynamics themselves are stable.The main contributions include a systematic stability evaluation framework and an energy decomposition approach that bridges theoretical analysis with practical applicability,addressing the urgent need for tools for managing modern power system evolving stability challenges.
基金supported by the National Key Research and Development Program of China(No.2016YFB0200703)
文摘A unified theoretical aeroservoelastic stability analysis framework for flexible aircraft is established in this paper. This linearized state space model for stability analysis is based on nonlinear coupled dynamic equations, in which rigid and elastic motions of aircraft are both considered.The common body coordinate system is utilized as the reference frame in the deduction of dynamic equations, and significant deformations of flexible aircraft are also fully concerned without any excessive assumptions. Therefore, the obtained nonlinear coupled dynamic models can well reflect the special dynamic coupling mechanics of flexible aircraft. For aeroservoelastic stability analysis,the coupled dynamic equations are linearized around the nonlinear equilibrium state and together with a control system model to establish a state space model in the time domain. The methodology in this paper can be easily integrated into the industrial design process and complex structures.Numerical results for a complex flexible aircraft indicate the necessity to consider the nonlinear coupled dynamics and large deformation when dealing with aeroservoelastic stability for flexible aircraft.
基金National Natural Science Foundation of China(Grant Nos.52022083,51775453,and 51735012).
文摘The locomotive traction motor is described as a rotor-bearing system coupling the kinetic equations of the traction shaft and its support bearings with the determination of their elastic deformations in this study.Under the effect of excitations induced by the dynamic rotor eccentric distance and time-varying mesh stiffness,the elastic structure deformations of the shaft and support bearings are formulated in the vibration environment of the locomotive.In addition,the nonlinear contact forces between the components of the rolling bearing,the lubricating oil film,and radial clearance are comprehensively considered in this study.The results indicate that the elastic deformations of the shaft and bearings can change the dynamic responses of the traction motor and its support bearings.There are large differences between the ranges of the rotor motion calculated by the rigid and the flexible traction motor models when the intensified wheel-rail interaction is considered.With the increase of the rotor eccentricity,the results underscore the role of the elasticity of traction shaft and support bearings in dynamic researches of the traction motor.The critical value of the initial eccentric distance for the rub-impact phenomenon decreases from 1.23 mm to 1.15 mm considering the flexible effect of the shaft and bearings.This dynamics model of the traction motor can provide more accurate and reasonable simulation results for correlational dynamic researches.
文摘Employing theory on vehicle-track coupled dynamics, the equation of motion of a vehicle-track vertical coupled system was established by combining frequency analysis and symplectic mathematics. The frequency response of the vehicle-track vertical coupled system was calculated under the excitation of the German low-interfer- ence spectrum, and the effects of the vehicle speed, vehicle suspension parameters, and track support parameters on the frequency response of the coupled system were studied. Results show that, under the excitation of the German low- interference spectrum, the vertical vibration of the car body is mainly concentrated in the low-frequency band, while that of the bogie has a wide frequency distribution, being strong from several Hertz to dozens of Hertz. The vertical vibrations of the wheel-rail force, wheelset, and track structure mainly occur at a frequency of dozens of Hertz. In general, the vertical vibration of the vehicle-track coupled system increases with vehicle speed, and the vertical vibrations of the car body and bogie obviously shift to higher frequency. Increasing the vehicle suspension stiffness increases the low- frequency vibrations of the vehicle system and track struc- ture. With an increase in vehicle suspension damping, the low-frequency vibrations of the car body and bogie and the vibrations of the wheel-rail vertical force and track structure decrease at 50-80 Hz, while the mid-frequency and high- frequency vibrations of the car body and bogie increase. Similarly, an increase in track stiffness amplifies the vertical vibrations of the wheel-rail force and track structure, while an increase in track damping effectively reduces the vertical vibrations of the wheel-rail vertical force and track structure.
基金Project(2019JJ20028)supported by the Outstanding Youth Science Foundations of Hunan Province of ChinaProject(51774321)supported by the National Natural Science Foundation of ChinaProject(2018YFC0604606)supported by the State Key Research Development Program of China。
文摘The deep fissured rock mass is affected by coupled effects of initial ground stress and external dynamic disturbance.In order to study the effect of internal flaw on pre-stressed rock mechanical responses and failure behavior under impact loading,intact granite specimens and specimens with different flaw inclinations are tested by a modified split Hopkinson pressure bar(SHPB)and digital image correlation(DIC)method.The results show that peak strain and dynamic strength of intact specimens and specimens with different flaw angles(α)decrease with the increase of axial static pressure.The 90°flaw has weak reduction effect on peak strain,dynamic strength and combined strength,while 45°and 0°flaws have remarkable reduction effect.Specimens with 90°flaw are suffered combined shear and tensile failure under middle and low axial static pre-stresses,and suffered shear failure under high axial static pre-stresses.Specimens with 45°and 0°flaws are suffered oblique shear failure caused by pre-existing flaw under different axial static pre-stresses.Besides,based on digital image correlation method,it is found that micro-cracks before formation of macro fractures(include shear and tensile fractures)belong to tensile cracks.Tensile and shear strain localizations at pre-existing flaw tip for specimen with 45°and 0°flaws are produced much earlier than that at other positions.
基金financially supported by the National Basic Research Program of China(973 Program,Grant No.2014CB046205)
文摘This paper presents a coupled dynamic response analysis of a multi-column tension-leg-type floating wind turbine(Wind Star TLP system) under normal operation and parked conditions. Wind-only load cases, wave-only load cases and combined wind and wave load cases were analyzed separately for the Wind Star TLP system to identify the dominant excitation loads. Comparisons between an NREL offshore 5-MW baseline wind turbine installed on land and the Wind Star TLP system were performed. Statistics of selected response variables in specified design load cases(DLCs) were obtained and analyzed. It is found that the proposed Wind Star TLP system has small dynamic responses to environmental loads and it thus has almost the same mean generator power output under operating conditions as the land-based system. The tension mooring system has a sufficient safety factor, and the minimum tendon tension is always positive in all selected DLCs. The ratio of ultimate load of the tower base fore-aft bending moment for the Wind Star TLP system versus the land-based system can be as high as 1.9 in all of the DLCs considered. These results will help elucidate the dynamic characteristics of the proposed Wind Star TLP system, identify the difference in load effect between it and land-based systems, and thus make relevant modifications to the initial design for the Wind Star TLP system.
基金supported by the National Key Technology R&D Program (2009BAG12A01-F01-3)the National Natural Science Foundation of China (51075063)
文摘In this paper, the synchronization problem of three homodromy coupled exciters in a non-resonant vibrating system of plane motion is studied. By introducing the average method of modified small parameters, we deduced dimensionless coupling equation of three exciters, which converted the problem of synchronization into that of the existence and stability of zero solutions for the average differential equations of the small parameters. Based on the dimensionless coupling torques and characteristics of the cor- responding limited functions, the synchronization criterion for three exciters was derived as the absolute value of dimensionless residual torque difference between arbitrary two motors being less than the maximum of their dimensionless coupling torques. The stability criterion of its synchronous state lies in the double-condition that the inertia coupling matrix is positive definite and all its elements are positive as well. The synchronization determinants are the coefficients of synchronization ability, also called as the general dynamical symmetry coefficients. The double-equilibrium state of the vibrating system is manifested by numeric method, and the numeric and simulation results derived thereof indicate the indispensable and crucial role the structural parameters of the vibrating system play in the stability criterion of synchronous operation. Besides, by adjusting its structural parameters, the elliptical motion of the vibrating system successfully met the requirements in engineering applications.
基金supported by the National Natural Science Foundation of China(No.U1637207)Beijing Natural Science Foundation of China(No.1204040)。
文摘In this paper,four novel evaluation indices and corresponding hierarchical optimization strategies are proposed for a deployable solar array system considering panel flexibility and joint clearance.The deployable solar array model consists of a rigid main-body,two panels and four key mechanisms,containing torsion spring mechanism,closed cable loop mechanism,latch mechanism and attitude adjustment mechanism.Rigid and flexible components are established by Nodal Coordinate Formulation and Absolute Nodal Coordinate Formulation,respectively.The clearance joint model is described by nonlinear contact force model and amendatory Coulomb friction model.The latch time,stabilization time,maximum contact force and impulse sum of the contact force of the solar array system are selected as the four novel evaluation indices to represent the complex dynamic responses of a deployable solar array with clearance joints instead of the lock torque widely used in conventional works.To eliminate the gross errors caused by the nonlinear and nonsmooth mechanical properties,a hierarchical optimization strategy based on an adaptive simulated annealing algorithm and a nondominated sorting genetic algorithm is adopted for the solar array system with clearance joints.Results indicate that the effects of panel flexibility on the evaluation index responses and design optimization of the solar array system cannot be neglected.Besides,increasing the weight factor of the stabilization time index of the rigid system may compensate for the differences in optimal results of the rigid–flexible coupling system.That may provide some references for optimization design of deployable space mechanisms considering clearance joints.