期刊文献+
共找到121篇文章
< 1 2 7 >
每页显示 20 50 100
Tangent response in coupled dynamical systems
1
作者 闫华 魏平 肖先赐 《Chinese Physics B》 SCIE EI CAS CSCD 2010年第9期217-225,共9页
We construct new unidirectional coupling schemes for autonomous and nonautonomous drive systems, respectively. Each of these schemes makes the state of the response system asymptotically approach the first-order deriv... We construct new unidirectional coupling schemes for autonomous and nonautonomous drive systems, respectively. Each of these schemes makes the state of the response system asymptotically approach the first-order derivative of the state of the driver. From the point of view of geometry, the first-order derivative of the state of the driver can be viewed as a tangent vector of the trajectory of the driver, so the proposed schemes are named tangent response schemes. Numerical simulations of the Lorenz system and the forced Duffing oscillator verify the validity of the tangent response schemes. We further point out that the tangent response can be interpreted as a special kind of generalised synchronisation, thereby explaining why the response system can exhibit rich geometrical structures in its state space. 展开更多
关键词 tangent response generalised synchronisation coupled dynamical systems
原文传递
Synchronization of three homodromy coupled exciters in a non-resonant vibrating system of plane motion 被引量:6
2
作者 Xue-Liang Zhang Bang-Chun Wen Chun-Yu Zhao 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2012年第5期1424-1435,共12页
In this paper, the synchronization problem of three homodromy coupled exciters in a non-resonant vibrating system of plane motion is studied. By introducing the average method of modified small parameters, we deduced ... In this paper, the synchronization problem of three homodromy coupled exciters in a non-resonant vibrating system of plane motion is studied. By introducing the average method of modified small parameters, we deduced dimensionless coupling equation of three exciters, which converted the problem of synchronization into that of the existence and stability of zero solutions for the average differential equations of the small parameters. Based on the dimensionless coupling torques and characteristics of the cor- responding limited functions, the synchronization criterion for three exciters was derived as the absolute value of dimensionless residual torque difference between arbitrary two motors being less than the maximum of their dimensionless coupling torques. The stability criterion of its synchronous state lies in the double-condition that the inertia coupling matrix is positive definite and all its elements are positive as well. The synchronization determinants are the coefficients of synchronization ability, also called as the general dynamical symmetry coefficients. The double-equilibrium state of the vibrating system is manifested by numeric method, and the numeric and simulation results derived thereof indicate the indispensable and crucial role the structural parameters of the vibrating system play in the stability criterion of synchronous operation. Besides, by adjusting its structural parameters, the elliptical motion of the vibrating system successfully met the requirements in engineering applications. 展开更多
关键词 SYNCHRONIZATION Vibrating system Stability Coupling dynamic - Vibratory synchronization transmission
在线阅读 下载PDF
Dynamics of Large-Truncated Mooring Systems Coupled with A Catenary Moored Semi-Submersible 被引量:2
3
作者 徐胜 嵇春艳 《China Ocean Engineering》 SCIE EI CSCD 2014年第2期149-162,共14页
With the floating structures pushing their activities to the ultra-deep water, model tests have presented a challenge due to the limitation of the existing wave basins. Therefore, the concept of truncated mooring syst... With the floating structures pushing their activities to the ultra-deep water, model tests have presented a challenge due to the limitation of the existing wave basins. Therefore, the concept of truncated mooring system is implemented to replace the full depth mooring system in the model tests, which aims to have the same dynamic responses as the full depth system. The truncated mooring system plays such a significant role that extra attention should be paid to the mooring systems with large truncation factor. Three different types of large truncation factor mooring system are being employed in the simulations, including the homogenously truncated mooring system, non-homogenously truncated mooring system and simplified truncated mooring system. A catenary moored semi-submersible operating at 1000 m water depth is presented. In addition, truncated mooring systems are proposed at the truncated water depth of 200 m. In order to explore the applicability of these truncated mooring systems, numerical simulations of the platform’s surge free decay interacting with three different styles of truncated mooring systems are studied in calm water. Furthermore, the mooring-induced damping of the truncated mooring systems is simulated in the regular wave. Finally, the platform motion responses and mooring line dynamics are simulated in irregular wave. All these simulations are implemented by employing full time domain coupled dynamic analysis, and the results are compared with those of the full depth simulations in the same cases. The results show that the mooring-induced damping plays a significant role in platform motion responses, and all truncated mooring systems are suitable for model tests with appropriate truncated mooring line diameters. However, a large diameter is needed for simplified truncated mooring lines. The suggestions are given to the selection of truncated mooring system for different situations as well as to the truncated mooring design criteria. 展开更多
关键词 CATENARY SEMI-SUBMERSIBLE truncated mooring system large truncated full coupled dynamic analysis mooring-induced damping
在线阅读 下载PDF
Uncertainty quantification of mechanism motion based on coupled mechanism—motor dynamic model for ammunition delivery system 被引量:1
4
作者 Jinsong Tang Linfang Qian +3 位作者 Longmiao Chen Guangsong Chen Mingming Wang Guangzu Zhou 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第3期125-133,共9页
In this paper,a dynamic modeling method of motor driven electromechanical system is presented,and the uncertainty quantification of mechanism motion is investigated based on this method.The main contribution is to pro... In this paper,a dynamic modeling method of motor driven electromechanical system is presented,and the uncertainty quantification of mechanism motion is investigated based on this method.The main contribution is to propose a novel mechanism-motor coupling dynamic modeling method,in which the relationship between mechanism motion and motor rotation is established according to the geometric coordination of the system.The advantages of this include establishing intuitive coupling between the mechanism and motor,facilitating the discussion for the influence of both mechanical and electrical parameters on the mechanism,and enabling dynamic simulation with controller to take the randomness of the electric load into account.Dynamic simulation considering feedback control of ammunition delivery system is carried out,and the feasibility of the model is verified experimentally.Based on probability density evolution theory,we comprehensively discuss the effects of system parameters on mechanism motion from the perspective of uncertainty quantization.Our work can not only provide guidance for engineering design of ammunition delivery mechanism,but also provide theoretical support for modeling and uncertainty quantification research of mechatronics system. 展开更多
关键词 Ammunition delivery system Electromechanical coupling dynamics Uncertainty quantification Generalized probability density evolution
在线阅读 下载PDF
THE COUPLING DYNAMICAL MODELING THEORY OF FLEXIBLE MULTIBODY SYSTEM
5
作者 Jiang, LZ Hong, JZ 《Acta Mechanica Solida Sinica》 SCIE EI 1999年第4期365-372,共8页
Based on the deformation theory of elastic beams, the coupling effect between the coupling displacements of a point on the middle line of beam and large overall motion is presented. The 'coupling matrix library... Based on the deformation theory of elastic beams, the coupling effect between the coupling displacements of a point on the middle line of beam and large overall motion is presented. The 'coupling matrix library' and Jourdain's variation principle and single direction recursive formulation method are used to establish the general coupling dynamical equations of flexible multibody system. Two typical examples show the coupling effect between coupling displacements and large overall motion on the dynamics of flexible multibody system consisting of beams. 展开更多
关键词 coupling displacement coupling dynamical modeling theory large overall motion single direction recursive formulation flexible multibody system
在线阅读 下载PDF
Distribution characteristics and influencing factors of the frequency-domain response of a vehicle–track vertical coupled system
6
作者 Jinhui Xu Biao Wang +1 位作者 Li Wang Ping Wang 《Journal of Modern Transportation》 2016年第3期166-176,共11页
Employing theory on vehicle-track coupled dynamics, the equation of motion of a vehicle-track vertical coupled system was established by combining frequency analysis and symplectic mathematics. The frequency response ... Employing theory on vehicle-track coupled dynamics, the equation of motion of a vehicle-track vertical coupled system was established by combining frequency analysis and symplectic mathematics. The frequency response of the vehicle-track vertical coupled system was calculated under the excitation of the German low-interfer- ence spectrum, and the effects of the vehicle speed, vehicle suspension parameters, and track support parameters on the frequency response of the coupled system were studied. Results show that, under the excitation of the German low- interference spectrum, the vertical vibration of the car body is mainly concentrated in the low-frequency band, while that of the bogie has a wide frequency distribution, being strong from several Hertz to dozens of Hertz. The vertical vibrations of the wheel-rail force, wheelset, and track structure mainly occur at a frequency of dozens of Hertz. In general, the vertical vibration of the vehicle-track coupled system increases with vehicle speed, and the vertical vibrations of the car body and bogie obviously shift to higher frequency. Increasing the vehicle suspension stiffness increases the low- frequency vibrations of the vehicle system and track struc- ture. With an increase in vehicle suspension damping, the low-frequency vibrations of the car body and bogie and the vibrations of the wheel-rail vertical force and track structure decrease at 50-80 Hz, while the mid-frequency and high- frequency vibrations of the car body and bogie increase. Similarly, an increase in track stiffness amplifies the vertical vibrations of the wheel-rail force and track structure, while an increase in track damping effectively reduces the vertical vibrations of the wheel-rail vertical force and track structure. 展开更多
关键词 Vehicle-track coupled dynamics Frequencyresponse Distribution characteristic Influencing factors
在线阅读 下载PDF
Nonlinear Dynamics of Variable-Length Marine Cables with Applications in the Simultaneous Navigation of USV-ROV Systems
7
作者 WANG Jian-ming LEI Bo +2 位作者 HUANG Bo-lun YANG Qi LIU Jin-yang 《China Ocean Engineering》 2025年第3期410-425,共16页
The integrated systems of unmanned surface vehicles(USVs) and remotely operated vehicles(ROVs) have been extensively applied in marine exploration and seabed coverage. However, the simultaneous navigation of USV-ROV s... The integrated systems of unmanned surface vehicles(USVs) and remotely operated vehicles(ROVs) have been extensively applied in marine exploration and seabed coverage. However, the simultaneous navigation of USV-ROV systems is frequently limited by strong disturbances induced by waves or currents. This paper develops a novel rigidflexible coupling multibody dynamic model that incorporates disturbances of variable-length marine cables with geometrically nonlinear motion. A hybrid Lagrangian-Eulerian absolute nodal coordinate formulation(ANCF) element is developed to accurately model subsea cables which undergo significant overall motion, substantial deformation,and mass flow during the deployment of underwater equipment. Furthermore, the governing equations of the coupled USV-umbilical-ROV system are derived, considering wave-induced forces and current disturbances. A numerical solver based on the Newmark-beta method is proposed, along with an adaptive meshing technique near the release point. After validating three experimental cases, the cable disturbances at both the USV and ROV ends—caused by ocean currents, heave motion, and simultaneous navigation—are comprehensively compared and evaluated. Finally,it is demonstrated that a PD controller with disturbance compensation can enhance the simultaneous navigation performance of USV-ROV systems. 展开更多
关键词 variable-length marine cable ANCF rigid-flexible coupling multibody dynamics PD controller with disturbance compensation USV-ROV system
在线阅读 下载PDF
Stability assessment of inverter-dominated power systems considering coupling between phase angle and voltage dynamics
8
作者 Cong Fu Shuiping Zhang +1 位作者 Shun Li Feng Liu 《iEnergy》 2025年第3期157-164,共8页
The integration of renewable energy sources(RESs)with inverter interfaces has fundamentally reshaped power system dynamics,challenging traditional stability analysis frameworks designed for synchronous generator-domin... The integration of renewable energy sources(RESs)with inverter interfaces has fundamentally reshaped power system dynamics,challenging traditional stability analysis frameworks designed for synchronous generator-dominated grids.Conventional classifica-tions,which decouple voltage,frequency,and rotor angle stability,fail to address the emerging strong voltage‒angle coupling effects caused by RES dynamics.This coupling introduces complex oscillation modes and undermines system robustness,neces-sitating novel stability assessment tools.Recent studies focus on eigenvalue distributions and damping redistribution but lack quantitative criteria and interpretative clarity for coupled stability.This work proposes a transient energy-based framework to resolve these gaps.By decomposing transient energy into subsystem-dissipated components and coupling-induced energy exchange,the method establishes stability criteria compatible with a broad variety of inverter-interfaced devices while offering an intuitive energy-based interpretation for engineers.The coupling strength is also quantified by defining the relative coupling strength index,which is directly related to the transient energy interpretation of the coupled stability.Angle‒voltage coupling may induce instability by injecting transient energy into the system,even if the individual phase angle and voltage dynamics themselves are stable.The main contributions include a systematic stability evaluation framework and an energy decomposition approach that bridges theoretical analysis with practical applicability,addressing the urgent need for tools for managing modern power system evolving stability challenges. 展开更多
关键词 Power system stability dynamic coupling inverter-interfaced device stability criteria phase angle dynamics voltage dynamics
在线阅读 下载PDF
A deep residual intelligent model for ENSO prediction by incorporating coupled model forecast data
9
作者 Chunyang Song Xuefeng Zhang +3 位作者 Xingrong Chen Hua Jiang Liang Zhang Yongyong Huang 《Acta Oceanologica Sinica》 2025年第8期133-142,共10页
The El Niño-Southern Oscillation(ENSO)is a naturally recurring interannual climate fluctuation that affects the global climate system.The advent of deep learning-based approaches has led to transformative changes... The El Niño-Southern Oscillation(ENSO)is a naturally recurring interannual climate fluctuation that affects the global climate system.The advent of deep learning-based approaches has led to transformative changes in ENSO forecasts,resulting in significant progress.Most deep learning-based ENSO prediction models which primarily rely solely on reanalysis data may lead to challenges in intensity underestimation in long-term forecasts,reducing the forecasting skills.To this end,we propose a deep residual-coupled model prediction(Res-CMP)model,which integrates historical reanalysis data and coupled model forecast data for multiyear ENSO prediction.The Res-CMP model is designed as a lightweight model that leverages only short-term reanalysis data and nudging assimilation prediction results of the Community Earth System Model(CESM)for effective prediction of the Niño 3.4 index.We also developed a transfer learning strategy for this model to overcome the limitations of inadequate forecast data.After determining the optimal configuration,which included selecting a suitable transfer learning rate during training,along with input variables and CESM forecast lengths,Res-CMP demonstrated a high correlation ability for 19-month lead time predictions(correlation coefficients exceeding 0.5).The Res-CMP model also alleviated the spring predictability barrier(SPB).When validated against actual ENSO events,Res-CMP successfully captured the temporal evolution of the Niño 3.4 index during La Niña events(1998/99 and 2020/21)and El Niño events(2009/10 and 2015/16).Our proposed model has the potential to further enhance ENSO prediction performance by using coupled models to assist deep learning methods. 展开更多
关键词 ENSO prediction deep learning dynamical coupled model data incorporating
在线阅读 下载PDF
Motion stability dynamics for spacecraft coupled with partially filled liquid container
10
作者 Salman Ahmad Baozeng Yue 《Theoretical & Applied Mechanics Letters》 2012年第1期77-80,共4页
This paper presents a canonical Hamiltonian model of liquid sloshing for the container coupled with spacecraft. Elliptical shape of rigid body is considered as spacecraft structure. Hamiltonian system is an important ... This paper presents a canonical Hamiltonian model of liquid sloshing for the container coupled with spacecraft. Elliptical shape of rigid body is considered as spacecraft structure. Hamiltonian system is an important form of mechanical system. It mostly used to stabilize the potential shaping of dynamical system. Free surface movement of liquid inside the container is called sloshing. If there is uncontrolled resonance between the motion of tank and liquid-frequency inside the tank then such sloshing can be a reason of attitude disturbance or structural damage of spacecraft. Equivalent mechanical model of simple pendulum or mass attached with spring for sloshing is used by many researchers. Mass attached with spring is used as an equivalent model of sloshing to derive the mathematical equations in terms of Hamiltonian model. Analytical method of Lyapunov function with Casimir energy function is used to find the stability for spacecraft dynamics. Vertical axial rotation is taken as the major axial steady rotation for the moving rigid body. 展开更多
关键词 coupled dynamical system Lyapunov stability Hamiltonian dynamics equivalent mechanical model Casimir functions sloshing of fluid
在线阅读 下载PDF
Mechanical properties and failure behavior of rock with different flaw inclinations under coupled static and dynamic loads 被引量:31
11
作者 XIAO Peng LI Di-yuan +3 位作者 ZHAO Guo-yan ZHU Quan-qi LIU Huan-xin ZHANG Chun-shun 《Journal of Central South University》 SCIE EI CAS CSCD 2020年第10期2945-2958,共14页
The deep fissured rock mass is affected by coupled effects of initial ground stress and external dynamic disturbance.In order to study the effect of internal flaw on pre-stressed rock mechanical responses and failure ... The deep fissured rock mass is affected by coupled effects of initial ground stress and external dynamic disturbance.In order to study the effect of internal flaw on pre-stressed rock mechanical responses and failure behavior under impact loading,intact granite specimens and specimens with different flaw inclinations are tested by a modified split Hopkinson pressure bar(SHPB)and digital image correlation(DIC)method.The results show that peak strain and dynamic strength of intact specimens and specimens with different flaw angles(α)decrease with the increase of axial static pressure.The 90°flaw has weak reduction effect on peak strain,dynamic strength and combined strength,while 45°and 0°flaws have remarkable reduction effect.Specimens with 90°flaw are suffered combined shear and tensile failure under middle and low axial static pre-stresses,and suffered shear failure under high axial static pre-stresses.Specimens with 45°and 0°flaws are suffered oblique shear failure caused by pre-existing flaw under different axial static pre-stresses.Besides,based on digital image correlation method,it is found that micro-cracks before formation of macro fractures(include shear and tensile fractures)belong to tensile cracks.Tensile and shear strain localizations at pre-existing flaw tip for specimen with 45°and 0°flaws are produced much earlier than that at other positions. 展开更多
关键词 split Hopkinson pressure bar(SHPB)system digital image correlation(DIC) coupled static and dynamic loads FLAW crack propagation
在线阅读 下载PDF
Coupled Dynamic Response Analysis of A Multi-Column Tension-Leg-Type Floating Wind Turbine 被引量:7
12
作者 赵永生 杨建民 +1 位作者 何炎平 顾敏童 《China Ocean Engineering》 SCIE EI CSCD 2016年第4期505-520,共16页
This paper presents a coupled dynamic response analysis of a multi-column tension-leg-type floating wind turbine(Wind Star TLP system) under normal operation and parked conditions. Wind-only load cases, wave-only lo... This paper presents a coupled dynamic response analysis of a multi-column tension-leg-type floating wind turbine(Wind Star TLP system) under normal operation and parked conditions. Wind-only load cases, wave-only load cases and combined wind and wave load cases were analyzed separately for the Wind Star TLP system to identify the dominant excitation loads. Comparisons between an NREL offshore 5-MW baseline wind turbine installed on land and the Wind Star TLP system were performed. Statistics of selected response variables in specified design load cases(DLCs) were obtained and analyzed. It is found that the proposed Wind Star TLP system has small dynamic responses to environmental loads and it thus has almost the same mean generator power output under operating conditions as the land-based system. The tension mooring system has a sufficient safety factor, and the minimum tendon tension is always positive in all selected DLCs. The ratio of ultimate load of the tower base fore-aft bending moment for the Wind Star TLP system versus the land-based system can be as high as 1.9 in all of the DLCs considered. These results will help elucidate the dynamic characteristics of the proposed Wind Star TLP system, identify the difference in load effect between it and land-based systems, and thus make relevant modifications to the initial design for the Wind Star TLP system. 展开更多
关键词 floating wind turbine windStar TLP coupled dynamic response operating andparked condition
在线阅读 下载PDF
Vibration analysis of maglev three-span continuous guideway considering control system 被引量:6
13
作者 Yan-feng TENG Nian-guan TENG Xinojian KOU 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2008年第1期8-14,共7页
The dynamic interaction between maglev vehicle and three-span continuous guideway is discussed. With the consideration of control system, the dynamic interaction model has been developed. Numerical simulation has been... The dynamic interaction between maglev vehicle and three-span continuous guideway is discussed. With the consideration of control system, the dynamic interaction model has been developed. Numerical simulation has been performed to study dynamic characteristics of the guideway. The results show that bending rigidity, vehicle speed, span ratio and primary frequency all have important influences on the dynamic characteristics of the guideway and there is no distinct trend towards resonance vibration when fl/(v/l) equals 1.0. The definite way is to control impact coefficient and acceleration of the guideway. The conclusions can serve the design of high-speed maglev three-span continuous guideway. 展开更多
关键词 Maglev transportation system Three-span continuous guideway Coupling dynamics Feedback control Numerical simulation
在线阅读 下载PDF
Aeroservoelastic stability analysis for flexible aircraft based on a nonlinear coupled dynamic model 被引量:6
14
作者 Yi LIU Changchuan XIE 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2018年第12期2185-2198,共14页
A unified theoretical aeroservoelastic stability analysis framework for flexible aircraft is established in this paper. This linearized state space model for stability analysis is based on nonlinear coupled dynamic eq... A unified theoretical aeroservoelastic stability analysis framework for flexible aircraft is established in this paper. This linearized state space model for stability analysis is based on nonlinear coupled dynamic equations, in which rigid and elastic motions of aircraft are both considered.The common body coordinate system is utilized as the reference frame in the deduction of dynamic equations, and significant deformations of flexible aircraft are also fully concerned without any excessive assumptions. Therefore, the obtained nonlinear coupled dynamic models can well reflect the special dynamic coupling mechanics of flexible aircraft. For aeroservoelastic stability analysis,the coupled dynamic equations are linearized around the nonlinear equilibrium state and together with a control system model to establish a state space model in the time domain. The methodology in this paper can be easily integrated into the industrial design process and complex structures.Numerical results for a complex flexible aircraft indicate the necessity to consider the nonlinear coupled dynamics and large deformation when dealing with aeroservoelastic stability for flexible aircraft. 展开更多
关键词 Aeroservoelasticity Flexible aircraft Geometric nonlinearity Nonlinear coupled dynamics Stability control
原文传递
Dynamic Analysis of Turret-Moored FPSO System in Freak Wave 被引量:5
15
作者 唐友刚 李焱 +2 位作者 王宾 刘树晓 朱龙欢 《China Ocean Engineering》 SCIE EI CSCD 2016年第4期521-534,共14页
Freak wave is the common wave which has significant wave height and irregular wave shape, and it is easy to damage offshore structure extremely. The FPSOs(Floating Production Storage and Offloading) suffer from the ... Freak wave is the common wave which has significant wave height and irregular wave shape, and it is easy to damage offshore structure extremely. The FPSOs(Floating Production Storage and Offloading) suffer from the environment loads, including the freak wave. The freak waves were generated based on the improved phase modulation model, and the coupling model of FPSO-SPM(Single Point Mooring) was established by considering internal-turret FPSO and its mooring system. The dynamic response characteristics of both FPSO and SPM affected by the freak wave were analyzed in the time domain. According to the results, the freak waves generated by original phase modulation model mainly affect the 2nd-order wave loads. However, the freak waves which are generated by random frequencies phase modulation model affect both 1st-order and 2nd-order wave loads on FPSO. What is more, compared with the irregular waves, the dynamic responses of mooring system are larger in the freak waves, but its amplitude lags behind the peak of the freak wave. 展开更多
关键词 turret-moored FPSO freak wave phase modulation internal turret couple dynamic analysis
在线阅读 下载PDF
The bond graph model of planar flexible multibody mechanical systems and its dynamic principle 被引量:5
16
作者 王中双 陆念力 陈集 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2006年第1期6-11,共6页
In order to increase the efficiency and reliability of the dynamic analysis for flexible planar linkage containing the coupling of multi-energy domains, a method based on bond graph is introduced. From the viewpoint o... In order to increase the efficiency and reliability of the dynamic analysis for flexible planar linkage containing the coupling of multi-energy domains, a method based on bond graph is introduced. From the viewpoint of power conservation, the peculiar property of bond graph multiport element MTF is discussed. The procedure of modeling planar flexible muhibody mechanical systems by bond graphs and its dynamic principle are deseribed. To overcome the algebraic difficulty brought by differential causality anti nonlinear junction structure, the constraint forces at joints can be considered as unknown effort sources and added to the corresponding O-junctions of system bond graph model. As a result, the automatic modeling on a computer is realized. The validity of the procedure is illustrated by a practical example. 展开更多
关键词 flexible multibody system coupling dynamics bond graph dynamic principle
在线阅读 下载PDF
Characteristic analysis of mechanical thermal coupling model for bearing rotor system of high-speed train 被引量:3
17
作者 Yongqiang LIU Baosen WANG +2 位作者 Shaopu YANG Yingying LIAO Tao GUO 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2022年第9期1381-1398,共18页
Based on Newton’s second law and the thermal network method,a mechanical thermal coupling model of the bearing rotor system of high-speed trains is established to study the interaction between the bearing vibration a... Based on Newton’s second law and the thermal network method,a mechanical thermal coupling model of the bearing rotor system of high-speed trains is established to study the interaction between the bearing vibration and temperature.The influence of lubrication on the vibration and temperature characteristics of the system is considered in the model,and the real-time relationship between them is built up by using the transient temperature field model.After considering the lubrication,the bearing outer ring vibration acceleration and node temperature considering grease are lower,which shows the necessity of adding the lubrication model.The corresponding experiments for characteristics of vibration and temperature of the model are respectively conducted.In the envelope spectrum obtained from the simulation signal and the experimental signal,the frequency values corresponding to the peaks are close to the theoretical calculation results,and the error is very small.In the three stages of the temperature characteristic experiment,the node temperature change of the simulation model is consistent with the experiment.The good agreement between simulation and experiments proves the effectiveness of the model.By studying the influence of the bearing angular and fault size on the system node temperature,as well as the change law of bearing lubrication characteristics and temperature,it is found that the worse the working condition is,the higher the temperature is.When the ambient temperature is low,the viscosity of grease increases,and the oil film becomes thicker,which increases the sliding probability of the rolling element,thus affecting the normal operation of the bearing,which explains the phenomenon of frequent bearing faults of high-speed trains in the low-temperature area of Northeast China.Further analysis shows that faults often occur in the early stage of train operation in the low-temperature environment. 展开更多
关键词 high-speed train coupling dynamic model thermal network method track irregularity(TI) low temperature
在线阅读 下载PDF
Parameter optimization for torsion spring of deployable solar array system with multiple clearance joints considering rigid–flexible coupling dynamics 被引量:3
18
作者 Yuanyuan LI Meng LI +2 位作者 Yufei LIU Xinyu GENG Chengbo CUI 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2022年第3期509-524,共16页
In this paper,four novel evaluation indices and corresponding hierarchical optimization strategies are proposed for a deployable solar array system considering panel flexibility and joint clearance.The deployable sola... In this paper,four novel evaluation indices and corresponding hierarchical optimization strategies are proposed for a deployable solar array system considering panel flexibility and joint clearance.The deployable solar array model consists of a rigid main-body,two panels and four key mechanisms,containing torsion spring mechanism,closed cable loop mechanism,latch mechanism and attitude adjustment mechanism.Rigid and flexible components are established by Nodal Coordinate Formulation and Absolute Nodal Coordinate Formulation,respectively.The clearance joint model is described by nonlinear contact force model and amendatory Coulomb friction model.The latch time,stabilization time,maximum contact force and impulse sum of the contact force of the solar array system are selected as the four novel evaluation indices to represent the complex dynamic responses of a deployable solar array with clearance joints instead of the lock torque widely used in conventional works.To eliminate the gross errors caused by the nonlinear and nonsmooth mechanical properties,a hierarchical optimization strategy based on an adaptive simulated annealing algorithm and a nondominated sorting genetic algorithm is adopted for the solar array system with clearance joints.Results indicate that the effects of panel flexibility on the evaluation index responses and design optimization of the solar array system cannot be neglected.Besides,increasing the weight factor of the stabilization time index of the rigid system may compensate for the differences in optimal results of the rigid–flexible coupling system.That may provide some references for optimization design of deployable space mechanisms considering clearance joints. 展开更多
关键词 Clearance joint Deployable solar array Evaluation index Parameter optimization Rigid-flexible coupling dynamics
原文传递
Experiment Study of Dynamics Response for Wind Turbine System of Floating Foundation 被引量:3
19
作者 唐友刚 宋凯 王宾 《China Ocean Engineering》 SCIE EI CSCD 2015年第6期835-846,共12页
The floating foundation is designed to support a 1.5 MW wind turbine in 30 m water depth. With consideration of the viscous damping of foundation and heave plates, the amplitude-frequency response characteristics of t... The floating foundation is designed to support a 1.5 MW wind turbine in 30 m water depth. With consideration of the viscous damping of foundation and heave plates, the amplitude-frequency response characteristics of the foundation are studied. By taking into account the elastic effect of blades and tower, the classic quasi-steady blade-element/momentum(BEM) theory is used to calculate the aerodynamic elastic loads. A coupled dynamic model of the turbine-foundationmooring lines is established to calculate the motion response of floating foundation under Kaimal wind spectrum and regular wave by using the FAST codes. The model experiment is carried out to test damping characteristics and natural motion behaviors of the wind turbine system. The dynamics response is tested by considering only waves and the joint action of wind and waves. It is shown that the wind turbine system can avoid resonances under the action of wind and waves. In addition, the heave motion of the floating foundation is induced by waves and the surge motion is induced by wind. The action of wind and waves is of significance for pitch. 展开更多
关键词 offshore wind turbine semi-submersible floating foundation coupled dynamic model model experiment
在线阅读 下载PDF
Roll System and Stock's Multi-parameter Coupling Dynamic Modeling Based on the Shape Control of Steel Strip 被引量:3
20
作者 Yang ZHANG Yan PENG +1 位作者 Jianliang SUN Yong ZANG 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2017年第3期614-624,共11页
The existence of rolling deformation area in the rolling mill system is the main characteristic which dis- tinguishes the other machinery. In order to analyze the dynamic property of roll system's flexural deformatio... The existence of rolling deformation area in the rolling mill system is the main characteristic which dis- tinguishes the other machinery. In order to analyze the dynamic property of roll system's flexural deformation, it is necessary to consider the transverse periodic movement of stock in the rolling deformation area which is caused by the flexural deformation movement of roll system simul- taneously. Therefore, the displacement field of roll system and flow of metal in the deformation area is described by kinematic analysis in the dynamic system. Through intro- ducing the lateral displacement function of metal in the deformation area, the dynamic variation of per unit width rolling force can be determined at the same time. Then the coupling law caused by the co-effect of rigid movement and flexural deformation of the system structural elements is determined. Furthermore, a multi-parameter coupling dynamic model of the roll system and stock is established by the principle of virtual work. More explicitly, the cou- pled motion modal analysis was made for the roll system. Meanwhile, the analytical solutions for the flexural defor- mation movement's mode shape functions of rolls are discussed. In addition, the dynamic characteristic of the lateral flow of metal in the rolling deformation area has been analyzed at the same time. The establishment ofdynamic lateral displacement function of metal in the deformation area makes the foundation for analyzing the coupling law between roll system and rolling deformation area, and provides a theoretical basis for the realization of the dynamic shape control of steel strip. 展开更多
关键词 Roll system Rolling deformation area Coupling dynamic model Mode shape function - Lateraldisplacement function
在线阅读 下载PDF
上一页 1 2 7 下一页 到第
使用帮助 返回顶部