Vacancy defects,as fundamental disruptions in metallic lattices,play an important role in shaping the mechanical and electronic properties of aluminum crystals.However,the influence of vacancy position under coupled t...Vacancy defects,as fundamental disruptions in metallic lattices,play an important role in shaping the mechanical and electronic properties of aluminum crystals.However,the influence of vacancy position under coupled thermomechanical fields remains insufficiently understood.In this study,transmission and scanning electron microscopy were employed to observe dislocation structures and grain boundary heterogeneities in processed aluminum alloys,suggesting stress concentrations and microstructural inhomogeneities associated with vacancy accumulation.To complement these observations,first-principles calculations and molecular dynamics simulations were conducted for seven single-vacancy configurations in face-centered cubic aluminum.The stress response,total energy,density of states(DOS),and differential charge density were examined under varying compressive strain(ε=0–0.1)and temperature(0–600 K).The results indicate that face-centered vacancies tend to reduce mechanical strength and perturb electronic states near the Fermi level,whereas corner and edge vacancies appear to have weaker effects.Elevated temperatures may partially restore electronic uniformity through thermal excitation.Overall,these findings suggest that vacancy position exerts a critical but position-dependent influence on coupled structure-property relationships,offering theoretical insights and preliminary experimental support for defect-engineered aluminum alloy design.展开更多
The global rise in energy demand, particularly in remote and sparsely populated regions, necessitates innovative and cost-effective electrical distribution solutions. Traditional Rural Electrification (RE) methods, li...The global rise in energy demand, particularly in remote and sparsely populated regions, necessitates innovative and cost-effective electrical distribution solutions. Traditional Rural Electrification (RE) methods, like Conventional Rural Electrification (CRE), have proven economically unfeasible in such areas due to high infrastructure costs and low electricity demand. Consequently, Unconventional Rural Electrification (URE) technologies, such as Capacitor Coupled Substations (CCS), are gaining attention as viable alternatives. This study presents the design and simulation of an 80 kW CCS system, which taps power directly from a 132 kV transmission line to supply low-voltage consumers. The critical components of the CCS, the capacitors are calculated, then a MATLAB/Simulink model with the attained results is executed. Mathematical representation and state-space representation for maintaining the desired tapped voltage area also developed. The research further explores the feasibility and operational performance of this CCS configuration, aiming to address the challenges of rural electrification by offering a sustainable and scalable solution. The results show that the desired value of the tapped voltage can be achieved at any level of High Voltage (HV) with the selection of capacitors that are correctly rated. With an adequately designed control strategy, the research also shows that tapped voltage can be attained under both steady-state and dynamic loads. By leveraging CCS technology, the study demonstrates the potential for delivering reliable electricity to underserved areas, highlighting the system’s practicality and effectiveness in overcoming the limitations of conventional distribution methods.展开更多
Ferroelectric film materials have attracted significant interest due to their potential for harvesting various forms ofclean energy from natural environmental sources.However,the photoelectric performance of these mat...Ferroelectric film materials have attracted significant interest due to their potential for harvesting various forms ofclean energy from natural environmental sources.However,the photoelectric performance of these materials isfrequently constrained by heat generation during light absorption,resulting in significant thermal losses.Most offerroelectric films produce photocurrent and thermocurrent with opposite polarity,thus weakening the coupledphoto-thermoelectric output of the devices.Here we report on a LaNiO_(3)/BiMn_(2)O_(5)(BMO)/ITO ferroelectric film toproduce photocurrent and thermocurrent with the same polarity.The polarity of the photocurrent generated bythe BMO film is shown to be determined solely by the direction of spontaneous polarization,overcoming thedetrimental effect of Schottky barrier for energy harvesting in device.We propose a new strategy to enhance thecoupling factor,thereby offering valuable new insights for optimizing the utilization of ferroelectric materials inboth light and heat energy applications.展开更多
This study presents an experimental investigation of the coupled caloric effect driven by dual-fields in metamagnetic alloy ErCo_(2) with strong magneto-structural coupling.Magnetic measurements were conducted under d...This study presents an experimental investigation of the coupled caloric effect driven by dual-fields in metamagnetic alloy ErCo_(2) with strong magneto-structural coupling.Magnetic measurements were conducted under different pressures,revealing that the application of hydrostatic pressure stabilizes a small volume of paramagnetism(PM) phase,resulting in a shift of the phase transition temperature towards the low-temperature region.This shift is opposite to the temperature associated with the magnetic field-driven phase transition.As pressure increases,the metamagnetic transition in ErCo_(2) is suppressed,and the hysteresis disappears.However,the produced cross-coupling caloric effect compensates the decrease in entropy change caused by the disappearance of the metamagnetic transition.As a result,a reversible giant magnetocaloric effect of 46.2 J/(kg·K) without hysteresis is achieved at a pressure of 0.910 GPa.Moreover,we propose that the temperature span of ErCo_(2) can be significantly widened by optimizing the thermodynamic pathway of the magnetic and pressure fields,overcoming the defect of a narrow temperature range.展开更多
We investigate electron mesoscopic transport in a three-terminal setup with coupled quantum dots and a magnetic flux.By mapping the original transport problem into a non-Hermitian Hamiltonian form,we study the interpl...We investigate electron mesoscopic transport in a three-terminal setup with coupled quantum dots and a magnetic flux.By mapping the original transport problem into a non-Hermitian Hamiltonian form,we study the interplay between the coherent couplings between quantum dots,the magnetic flux,and the dissipation due to the tunnel coupling with the reservoirs.展开更多
The uneven distribution of medical resources has led to increasingly frequent patient mobility;however, the interaction between this phenomenon and the healthcare supply-demand relationship remains underexplored. The ...The uneven distribution of medical resources has led to increasingly frequent patient mobility;however, the interaction between this phenomenon and the healthcare supply-demand relationship remains underexplored. The present study constructed the 2023Cross-City Patient Mobility Network in China using one million patient mobility data records obtained from online healthcare platforms. We applied urban network analysis to uncover mobility patterns and used the coupling coordination degree model to assess healthcare supply-demand relationships before and after patient mobility. Explainable machine learning further revealed the impact of supply-demand coupling on patient mobility. The results indicated the following: Patient mobility followed administrative boundaries, although megacities serve areas beyond provincial borders;The scale of healthcare supply and demand displayed a multi-centric spatial pattern with a general decline from east to west, and these characteristics of demand distribution were further solidified by patient mobility;Cities with low supply-demand coupling and undersupply experienced patient outflows, while cities with high coupling and oversupply attracted them. In turn, patient mobility helped balance healthcare supply and demand, optimising the coupling relationship across cities. Thus, this research not only provides a methodological reference for understanding the interaction between patient mobility and healthcare systems but also offers empirical insights for public health policy.展开更多
We report a theoretical analysis of magnon–magnon coupling in a noncollinear magnetic sandwiched structure with interlayer exchange interaction,which consists of two ferromagnetic layers with perpendicular and in-pla...We report a theoretical analysis of magnon–magnon coupling in a noncollinear magnetic sandwiched structure with interlayer exchange interaction,which consists of two ferromagnetic layers with perpendicular and in-plane magnetic anisotropy,respectively.Based on the Landau–Lifshitz equation,the spin wave dispersion is derived,and then the frequency gap is observed due to the magnon–magnon coupling effect induced by symmetry breaking.The influence of saturation magnetization,exchange coupling interaction,perpendicular magnetic anisotropy,and wave vector on the coupling strength is studied in detail.We find that the coupling strength is strongly dependent on the saturation magnetization and a small saturation magnetization can lead to strong coupling strength.By selecting the appropriate magnetic materials,the ultra-strong coupling regime can be achieved.The precession information in time domain is solved and the alternating change of the precession components in two ferromagnetic layers implies the exchange of energy and information.展开更多
Besides equilibrium behavior,exploring the spin–phonon coupling in multiferroic materials under non-equilibrium conditions is crucial for a deep understanding of the mechanisms as well as their high-frequency applica...Besides equilibrium behavior,exploring the spin–phonon coupling in multiferroic materials under non-equilibrium conditions is crucial for a deep understanding of the mechanisms as well as their high-frequency applications.Here,by utilizing time-resolved refectance spectroscopy,we demonstrate ultrafast spin–phonon coupling dynamics in multiferroic 0.58BiFeO_(3)-0.42Bi_(0.5)K_(0.5)TiO_(3)(BF-BKT)single crystals.With ultrafast laser pumping,coherent acoustic phonons with low damping are created in BF-BKT.Temperature-dependent results indicate that both the frequency and amplitude of laser-induced coherent phonons are sensitive to the emergence of antiferromagnetic order.Moreover,the spin state change driven by external magnetic felds can enhance the oscillation amplitude of the coherent acoustic phonons even above the magnetic Néel temperature.These fndings experimentally confrm that spin–phonon coupling in multiferroic materials exists not only in the spin-ordered state but also in the spin-disordered state,and not only in the equilibrium state but also in the non-equilibrium state excited by ultrafast lasers,suggesting their promising applications in high-frequency devices.展开更多
Edge couplers,widely recognized for their efficiency and broad bandwidth,have gained significant attention as optical fiber-to-chip couplers.Silicon waveguides exhibit strong birefringence properties,resulting in subs...Edge couplers,widely recognized for their efficiency and broad bandwidth,have gained significant attention as optical fiber-to-chip couplers.Silicon waveguides exhibit strong birefringence properties,resulting in substantial polarization-dependent loss for edge couplers in the O-band.We introduce a bilayer and double-tip edge coupler designed to efficiently couple both transverse electric(TE)and transverse magnetic(TM)modes while maintaining compatibility with standard manufacturing processes used in commercial silicon photonics foundries.We have successfully designed and fabricated this edge coupler,achieving coupling losses of<1.52 dB∕facet for TE mode and 2 dB∕facet for TM mode when coupled with a lensed optical fiber[4-μmmode field diameter(MFD)]within the wavelength range of 1260 to 1360 nm.展开更多
Vibrational strong coupling(VSC)provides a promising way towards not only enhanced control of infrared light but also reshaping of molecular properties,which opens up unprecedented opportunities in ultrasensitive infr...Vibrational strong coupling(VSC)provides a promising way towards not only enhanced control of infrared light but also reshaping of molecular properties,which opens up unprecedented opportunities in ultrasensitive infrared spectroscopy,modification of chemical reactions,and exploration of nonlinear quantum effects.Surface plasmon resonance,excited on simple plasmonic resonators in the infrared,has been demonstrated as a means to realize VSC,but suffers from either limited quality factor for realizing large Rabi splitting or poor reconfigurability for precise detuning control.Here we propose and experimentally demonstrate,for the first time,an on-chip plasmonic resonator based on degeneracy breaking of Wood’s anomaly for VSC.Leveraging the low damping rate of the surface state induced by this degeneracy breaking,we achieve a plasmonic resonance with a high-Q factor exceeding~110,resulting in a Rabi splitting up to~112 cm^(-1) with a subwavelength molecular layer.Additionally,the dispersion of the surface state allows for precise control over VSC detuning by simply adjusting the incident angle of excitation light,even in the absence of photons,enabling a broad detuning range up to 300 cm^(-1).These experimental results align well with our analytical model and numerical simulation.This work provides a promising integrated platform for VSC,with various potential applications in on-chip spectroscopy,polariton chemistry,and polariton devices.展开更多
Oxidative coupling of methane(OCM)is a catalytic partial oxidation process that directly converts methane into C_(2) products.For this high temperature reaction,understanding the radical behavior through experimental ...Oxidative coupling of methane(OCM)is a catalytic partial oxidation process that directly converts methane into C_(2) products.For this high temperature reaction,understanding the radical behavior through experimental investigation is important in correlating the catalytic activity and the products.In this work,a spatial resolution online mass spectrometry(MS)system was developed and applied to a Mn-Na_(2)WO_(4)/SiO_(2) catalyzed OCM system.In addition to the residue gas analysis,the system obtained the distribution information of the reactants and products in the reactor.At various setting temperatures,all species online MS signals were collected at different positions,mapping the reaction activity covering parameters including temperature,time and space.The distribution behavior of the catalytic activity,selectivity,and apparent activation energy were kinetically analyzed.Selectivity and additional carbon balance analysis strongly supported the radical coupling model of OCM and indicated that after the catalytic bed layer,there is a significant length in the reactor(>2 mm)filled with radicals.Based on the result,a designed new method by tuning the temperature field in the reactor was found effectively to improve the catalytic activity,especially the C_(2) yield from 702 to 773℃.展开更多
The coupled nonlocal nonlinear Schrödinger equations with variable coefficients are researched using the nonstandard Hirota bilinear method.The two-soliton and double-hump one-soliton solutions for the equations ...The coupled nonlocal nonlinear Schrödinger equations with variable coefficients are researched using the nonstandard Hirota bilinear method.The two-soliton and double-hump one-soliton solutions for the equations are first obtained.By assigning different functions to the variable coefficients,we obtain V-shaped,Y-shaped,wave-type,exponential solitons,and so on.Next,we reveal the influence of the real and imaginary parts of the wave numbers on the double-hump structure based on the soliton solutions.Finally,by setting different wave numbers,we can change the distance and transmission direction of the solitons to analyze their dynamic behavior during collisions.This study establishes a theoretical framework for controlling the dynamics of optical fiber in nonlocal nonlinear systems.展开更多
Pyridyl-based ketones and 1,6-diketones are both attractive and invaluable scaffolds which play pivotal roles in the construction and structural modification of a plethora of synthetically paramount natural products,p...Pyridyl-based ketones and 1,6-diketones are both attractive and invaluable scaffolds which play pivotal roles in the construction and structural modification of a plethora of synthetically paramount natural products,pharmaceuticals,organic materials and fine chemicals.In this context,we herein demonstrate an unprecedented,robust and generally applicable synthetically strategy to deliver these two crucial ketone frameworks via visible-light-induced ring-opening coupling reactions of cycloalcohols with vinylazaarenes and enones,respectively.A plausible mechanism involves the selectiveβ-C-C bond cleavage of cycloalcohols enabled by proton-coupled electron transfer and ensuing Giese-type addition followed by single electron reduction and protonation.The synthetic methodology exhibits broad substrate scope,excellent functional group compatibility as well as operational simplicity and environmental friendliness.展开更多
Defects-rich heterointerfaces integrated with adjustable crystalline phases and atom vacancies,as well as veiled dielectric-responsive character,are instrumental in electromagnetic dissipation.Conventional methods,how...Defects-rich heterointerfaces integrated with adjustable crystalline phases and atom vacancies,as well as veiled dielectric-responsive character,are instrumental in electromagnetic dissipation.Conventional methods,however,constrain their delicate constructions.Herein,an innovative alternative is proposed:carrageenan-assistant cations-regulated(CACR)strategy,which induces a series of sulfides nanoparticles rooted in situ on the surface of carbon matrix.This unique configuration originates from strategic vacancy formation energy of sulfides and strong sulfides-carbon support interaction,benefiting the delicate construction of defects-rich heterostructures in M_(x)S_(y)/carbon composites(M-CAs).Impressively,these generated sulfur vacancies are firstly found to strengthen electron accumulation/consumption ability at heterointerfaces and,simultaneously,induct local asymmetry of electronic structure to evoke large dipole moment,ultimately leading to polarization coupling,i.e.,defect-type interfacial polarization.Such“Janus effect”(Janus effect means versatility,as in the Greek two-headed Janus)of interfacial sulfur vacancies is intuitively confirmed by both theoretical and experimental investigations for the first time.Consequently,the sulfur vacancies-rich heterostructured Co/Ni-CAs displays broad absorption bandwidth of 6.76 GHz at only 1.8 mm,compared to sulfur vacancies-free CAs without any dielectric response.Harnessing defects-rich heterostructures,this one-pot CACR strategy may steer the design and development of advanced nanomaterials,boosting functionality across diverse application domains beyond electromagnetic response.展开更多
The occurrence of top-down(TD)cracking has gradually become a prevalent issue in semi-rigid base asphalt pavements after prolonged service.A coupled simulation model integrating the finite difference method(FDM)and di...The occurrence of top-down(TD)cracking has gradually become a prevalent issue in semi-rigid base asphalt pavements after prolonged service.A coupled simulation model integrating the finite difference method(FDM)and discrete element method(DEM)was employed to investigate the mechanical behavior of asphalt pavement containing a pre-existing TD crack.The mesoscopic parameters of the model were calibrated based on the mixture modulus and the static mechanical response on the MLS66 test road.Finally,an analysis was performed to assess how variations in TD crack depth and longitudinal length affect the distribution patterns of transverse tensile stress,vertical shear stress,and vertical compressive stress.The results indicate that the vertical propagation of TD crack significantly increases both the tensile stress value and range on the middle surface,while the longitudinal development of TD crack has minimal impact.This phenomenon may result in more severe fatigue failure on the middle surface.With the vertical and longitudinal development of TD crack,the vertical shear stress and compressive stress show obvious"two-stage"characteristics.When the crack's vertical length reaches 40 mm,there is a sharp increase in stress on the upper surface.As the crack continues to propagate vertically,the growth of stress on the upper surface becomes negligible,while the stress in the middle and lower layers increased significantly.Conversely,for longitudinal development of TD crack,any changes in stress are insignificant when their length is less than 180 mm;however,as they continue to develop longitudinally beyond this threshold,there is a sharp increase in stress levels.These findings hold great significance for understanding pavement structure deterioration and maintenance behavior associated with TD crack.展开更多
This study investigates the coordination between regional economic growth and ecological sustainability within the context of high-quality town economy development.To address the challenges of balancing economic expan...This study investigates the coordination between regional economic growth and ecological sustainability within the context of high-quality town economy development.To address the challenges of balancing economic expansion with environmental protection,a comprehensive evaluation index system is constructed,encompassing two key dimensions:regional economy and ecological environment.Using panel data from 2013 to 2022,the coupling coordination degree model is employed to quantify the interactions and synergy between these dimensions.Additionally,spatial econometric methods are applied to calculate both global and local Moran’s Index,revealing spatial clustering patterns,regional disparities,and heterogeneity.The relative development model further identifies critical factors influencing regional coordination,with a focus on the lagging development of basic infrastructure and public services.The findings demonstrate a positive temporal trend toward improved regional coordination and reduced development gaps,with a spatial pattern characterized by higher coupling degrees in eastern and central regions compared to western areas.Based on these results,this study proposes actionable strategies to enhance coordinated development,emphasizing ecological conservation,the establishment of green production and consumption systems,ecological restoration,and strengthened municipal collaboration.This revised abstract emphasizes the study’s purpose,methods,and key findings more clearly while maintaining a professional and concise tone.Finally,based on the above analysis results,the corresponding coordinated development suggestions of regional economy and ecological environment are given from the aspects of ecological environment protection measures,green production and consumption system construction,ecological environment restoration and municipal coordination.展开更多
Electrochemical conversion of lignin for the production of high-value heterocyclic aromatic compounds has great potential.We demonstrate the targeted synthesis and cation modulation of NiCo_(2)O_(4)spinel nanoboxes,sy...Electrochemical conversion of lignin for the production of high-value heterocyclic aromatic compounds has great potential.We demonstrate the targeted synthesis and cation modulation of NiCo_(2)O_(4)spinel nanoboxes,synthesized via cation exchange and calcination oxidation.These catalysts exhibit excellent efficacy in the electrocatalytic conversion of lignin model compounds,specifically 2-phenoxy-1-phenylethanol,into nitrogen-containing aromatics,achieving high conversion rates and selectivities.These catalysts were synthesized via a cation exchange and calcination oxidation process,using Prussian blue nanocubes as precursors.The porous architecture and polymetallic composition of the NiCo_(2)O_(4)spinel demonstrated superior performance in electrocatalytic oxidative coupling,achieving a 99.2 wt%conversion rate of the 2-phenoxy-1-phenylethanol with selectivities of 37.5 wt%for quinoline derivatives and 31.5 wt%for phenol.Key innovations include the development of a sustainable one-pot synthesis method for quinoline derivatives,the elucidation of a multistage reaction pathway involving CAO bond cleavage,hydroxyaldol condensation,and CAN bond formation,and a deeper mechanistic understanding derived from DFT simulations.This work establishes a new strategy for lignin valorization,offering a sustainable route to produce high-value nitrogen-containing aromatics from renewable biomass under mild conditions,without the need for additional reagents.展开更多
Dislocations and disclinations are fundamental topological defects within crystals,which determine the mechanical properties of metals and alloys.Despite their important roles in multiple physical mechanisms,e.g.,dyna...Dislocations and disclinations are fundamental topological defects within crystals,which determine the mechanical properties of metals and alloys.Despite their important roles in multiple physical mechanisms,e.g.,dynamic recovery and grain boundary mediated plasticity,the intrinsic coupling and correlation between disclinations and dislocations,and their impacts on the deformation behavior of metallic materials still remain obscure,partially due to the lack of a theoretical tool to capture the rotational nature of disclinations.By using a Lie-algebra-based theoretical framework,we obtain a general equation to quantify the intrinsic coupling of disclinations and dislocations.Through quasi in-situ electron backscatter diffraction characterizations and disclination/dislocation density analyses in Mg alloys,the generation,coevolution and reactions of disclinations and dislocations during dynamic recovery and superplastic deformation have been quantitatively analyzed.It has been demonstrated that the obtained governing equation can capture multiple physical processes associated with mechanical deformation of metals,e.g.,grain rotation and grain boundary migration,at both room temperature and high temperature.By establishing the disclination-dislocation coupling equation within a Lie algebra description,our work provides new insights for exploring the coevolution and reaction of disclinations/dislocations,with profound implications for elucidating the microstructure-property relationship and underlying deformation mechanisms in metallic materials.展开更多
Deep tight reservoirs exhibit complex stress and seepage fields due to varying pore structures,thus the seepage characteristics are significant for enhancing oil production.This study conducted triaxial compression an...Deep tight reservoirs exhibit complex stress and seepage fields due to varying pore structures,thus the seepage characteristics are significant for enhancing oil production.This study conducted triaxial compression and permeability tests to investigate the mechanical and seepage properties of tight sandstone.A digital core of tight sandstone was built using Computed Tomography(CT)scanning,which was divided into matrix and pore phases by a pore equivalent diameter threshold.A fluid-solid coupling model was established to investigate the seepage characteristics at micro-scale.The results showed that increasing the confining pressure decreased porosity,permeability,and flow velocity,with the pore phase becoming the dominant seepage channel.Cracks and large pores closed first under increasing pressure,resulted in a steep drop in permeability.However,permeability slightly decreased under high confining pressure,which followed a first-order exponential function.Flow velocity increased with seepage pressure.And the damage mainly occurred in stress-concentration regions under low seepage pressure.Seepage behavior followed linear Darcy flow,the damage emerged at seepage entrances under high pressure,which decreased rock elastic modulus and significantly increased permeability.展开更多
The gear transmission system directly affects the operational performance of high-speed trains(HST).However,current research on gear transmission systems of HST often overlooks the effects of gear eccentricity and run...The gear transmission system directly affects the operational performance of high-speed trains(HST).However,current research on gear transmission systems of HST often overlooks the effects of gear eccentricity and running resistance,and the dynamic models of gear transmission system are not sufficiently comprehensive.This paper aims to establish an electromechanical coupling dynamic model of HST traction transmission system and study its electromechanical coupling vibration characteristics,in which the internal excitation factors such as gear eccentricity,time-varying meshing stiffness,backlash,meshing error,and external excitation factors such as electromagnetic torque and running resistance are stressed.The research results indicate that gear eccentricity and running resistance have a significant impact on the stability of the system,and gear eccentricity leads to intensified system vibration and decreased anti-interference ability.In addition,the characteristic frequency of gear eccentricity can be extracted from mechanical signals and current signals as a preliminary basis for eccentricity detection,and electrical signals can also be used to monitor changes in train running resistance in real time.The results of this study provide some useful insights into designing dynamic performance parameters for HST transmission systems and monitoring train operational states.展开更多
基金supported by the Research Project on Strengthening the Construction of an Important Ecological Security Barrier in Northern China by Higher Education Institutions in the Inner Mongolia Autonomous Region(STAQZX202313)the Inner Mongolia Autonomous Region Education Science‘14th Five-Year Plan’2024 Annual Research Project(NGJGH2024635).
文摘Vacancy defects,as fundamental disruptions in metallic lattices,play an important role in shaping the mechanical and electronic properties of aluminum crystals.However,the influence of vacancy position under coupled thermomechanical fields remains insufficiently understood.In this study,transmission and scanning electron microscopy were employed to observe dislocation structures and grain boundary heterogeneities in processed aluminum alloys,suggesting stress concentrations and microstructural inhomogeneities associated with vacancy accumulation.To complement these observations,first-principles calculations and molecular dynamics simulations were conducted for seven single-vacancy configurations in face-centered cubic aluminum.The stress response,total energy,density of states(DOS),and differential charge density were examined under varying compressive strain(ε=0–0.1)and temperature(0–600 K).The results indicate that face-centered vacancies tend to reduce mechanical strength and perturb electronic states near the Fermi level,whereas corner and edge vacancies appear to have weaker effects.Elevated temperatures may partially restore electronic uniformity through thermal excitation.Overall,these findings suggest that vacancy position exerts a critical but position-dependent influence on coupled structure-property relationships,offering theoretical insights and preliminary experimental support for defect-engineered aluminum alloy design.
文摘The global rise in energy demand, particularly in remote and sparsely populated regions, necessitates innovative and cost-effective electrical distribution solutions. Traditional Rural Electrification (RE) methods, like Conventional Rural Electrification (CRE), have proven economically unfeasible in such areas due to high infrastructure costs and low electricity demand. Consequently, Unconventional Rural Electrification (URE) technologies, such as Capacitor Coupled Substations (CCS), are gaining attention as viable alternatives. This study presents the design and simulation of an 80 kW CCS system, which taps power directly from a 132 kV transmission line to supply low-voltage consumers. The critical components of the CCS, the capacitors are calculated, then a MATLAB/Simulink model with the attained results is executed. Mathematical representation and state-space representation for maintaining the desired tapped voltage area also developed. The research further explores the feasibility and operational performance of this CCS configuration, aiming to address the challenges of rural electrification by offering a sustainable and scalable solution. The results show that the desired value of the tapped voltage can be achieved at any level of High Voltage (HV) with the selection of capacitors that are correctly rated. With an adequately designed control strategy, the research also shows that tapped voltage can be attained under both steady-state and dynamic loads. By leveraging CCS technology, the study demonstrates the potential for delivering reliable electricity to underserved areas, highlighting the system’s practicality and effectiveness in overcoming the limitations of conventional distribution methods.
基金supported by the National Natural Science Foundation of China(grant no.52072041)the Beijing Natural Science Foundation(grant no.JQ21007).
文摘Ferroelectric film materials have attracted significant interest due to their potential for harvesting various forms ofclean energy from natural environmental sources.However,the photoelectric performance of these materials isfrequently constrained by heat generation during light absorption,resulting in significant thermal losses.Most offerroelectric films produce photocurrent and thermocurrent with opposite polarity,thus weakening the coupledphoto-thermoelectric output of the devices.Here we report on a LaNiO_(3)/BiMn_(2)O_(5)(BMO)/ITO ferroelectric film toproduce photocurrent and thermocurrent with the same polarity.The polarity of the photocurrent generated bythe BMO film is shown to be determined solely by the direction of spontaneous polarization,overcoming thedetrimental effect of Schottky barrier for energy harvesting in device.We propose a new strategy to enhance thecoupling factor,thereby offering valuable new insights for optimizing the utilization of ferroelectric materials inboth light and heat energy applications.
基金supported by the National Key R&D Program of China (2021YFB3501202,2021YFB3501204,2019YFA0704900,2020YFA0711500,2023YFA1406003,2022YFB3505201)the National Natural Science Foundation of China (52088101,U23A20550,92263202,22361132534)the Strategic Priority Research Program of the Chinese Academy of Sciences (XDB33030200)。
文摘This study presents an experimental investigation of the coupled caloric effect driven by dual-fields in metamagnetic alloy ErCo_(2) with strong magneto-structural coupling.Magnetic measurements were conducted under different pressures,revealing that the application of hydrostatic pressure stabilizes a small volume of paramagnetism(PM) phase,resulting in a shift of the phase transition temperature towards the low-temperature region.This shift is opposite to the temperature associated with the magnetic field-driven phase transition.As pressure increases,the metamagnetic transition in ErCo_(2) is suppressed,and the hysteresis disappears.However,the produced cross-coupling caloric effect compensates the decrease in entropy change caused by the disappearance of the metamagnetic transition.As a result,a reversible giant magnetocaloric effect of 46.2 J/(kg·K) without hysteresis is achieved at a pressure of 0.910 GPa.Moreover,we propose that the temperature span of ErCo_(2) can be significantly widened by optimizing the thermodynamic pathway of the magnetic and pressure fields,overcoming the defect of a narrow temperature range.
基金supported by the National Key R&D Program of China(Grant No.2022YFA1404400)the National Natural Science Foundation of China(Grant No.12125504 and 12305050)+2 种基金Zhejiang Provincial Natural Science Foundation of China(Grant No.LZ25A050001)the Hundred Talents Program of the Chinese Academy of Sciencesthe Natural Science Foundation of Jiangsu Higher Education Institutions of China(Grant No.23KJB140017)。
文摘We investigate electron mesoscopic transport in a three-terminal setup with coupled quantum dots and a magnetic flux.By mapping the original transport problem into a non-Hermitian Hamiltonian form,we study the interplay between the coherent couplings between quantum dots,the magnetic flux,and the dissipation due to the tunnel coupling with the reservoirs.
基金Humanities and Social Sciences Fund of Ministry of Education of China,No.24YJA630097National Natural Science Foundation of China,No.42471304。
文摘The uneven distribution of medical resources has led to increasingly frequent patient mobility;however, the interaction between this phenomenon and the healthcare supply-demand relationship remains underexplored. The present study constructed the 2023Cross-City Patient Mobility Network in China using one million patient mobility data records obtained from online healthcare platforms. We applied urban network analysis to uncover mobility patterns and used the coupling coordination degree model to assess healthcare supply-demand relationships before and after patient mobility. Explainable machine learning further revealed the impact of supply-demand coupling on patient mobility. The results indicated the following: Patient mobility followed administrative boundaries, although megacities serve areas beyond provincial borders;The scale of healthcare supply and demand displayed a multi-centric spatial pattern with a general decline from east to west, and these characteristics of demand distribution were further solidified by patient mobility;Cities with low supply-demand coupling and undersupply experienced patient outflows, while cities with high coupling and oversupply attracted them. In turn, patient mobility helped balance healthcare supply and demand, optimising the coupling relationship across cities. Thus, this research not only provides a methodological reference for understanding the interaction between patient mobility and healthcare systems but also offers empirical insights for public health policy.
基金supported by the National Natural Science Foundation of China(Grant No.52201290)the Natural Science Foundation of Gansu Province(Grant No.24JRRA402)the 9th Research Institute of China Electronics Technology Group Corporation’s open projects(Grant No.2024SK-001-4).
文摘We report a theoretical analysis of magnon–magnon coupling in a noncollinear magnetic sandwiched structure with interlayer exchange interaction,which consists of two ferromagnetic layers with perpendicular and in-plane magnetic anisotropy,respectively.Based on the Landau–Lifshitz equation,the spin wave dispersion is derived,and then the frequency gap is observed due to the magnon–magnon coupling effect induced by symmetry breaking.The influence of saturation magnetization,exchange coupling interaction,perpendicular magnetic anisotropy,and wave vector on the coupling strength is studied in detail.We find that the coupling strength is strongly dependent on the saturation magnetization and a small saturation magnetization can lead to strong coupling strength.By selecting the appropriate magnetic materials,the ultra-strong coupling regime can be achieved.The precession information in time domain is solved and the alternating change of the precession components in two ferromagnetic layers implies the exchange of energy and information.
基金supported by the National Key R&D Program of China(Grant No.2021YFA1600200)the National Natural Science Foundation of China(Grant Nos.U2032218 and 12111530283)。
文摘Besides equilibrium behavior,exploring the spin–phonon coupling in multiferroic materials under non-equilibrium conditions is crucial for a deep understanding of the mechanisms as well as their high-frequency applications.Here,by utilizing time-resolved refectance spectroscopy,we demonstrate ultrafast spin–phonon coupling dynamics in multiferroic 0.58BiFeO_(3)-0.42Bi_(0.5)K_(0.5)TiO_(3)(BF-BKT)single crystals.With ultrafast laser pumping,coherent acoustic phonons with low damping are created in BF-BKT.Temperature-dependent results indicate that both the frequency and amplitude of laser-induced coherent phonons are sensitive to the emergence of antiferromagnetic order.Moreover,the spin state change driven by external magnetic felds can enhance the oscillation amplitude of the coherent acoustic phonons even above the magnetic Néel temperature.These fndings experimentally confrm that spin–phonon coupling in multiferroic materials exists not only in the spin-ordered state but also in the spin-disordered state,and not only in the equilibrium state but also in the non-equilibrium state excited by ultrafast lasers,suggesting their promising applications in high-frequency devices.
基金supported by the National Key R&D Program of China(Grant No.2023YFB2806600)the National Natural Science Foundation of China(Grant Nos.62125503,62261160388,and 62105115)+4 种基金the Natural Science Foundation of Hubei Province of China(Grant No.2023AFA028)the Major Program(JD)of Hubei Province(Grant No.2023BAA012)the High Quality Development Special Project of the Ministry of Industry and Information Technology,the Key Research and Development Program of Hubei Province(Grant No.2021BAA004)the Open Project Program of SJTU-Pinghu Institute of Intelligent Optoelectronics(Grant No.2022SPIOE102)the Innovation Project of Optics Valley Laboratory(Grant No.OVL2023ZD004).
文摘Edge couplers,widely recognized for their efficiency and broad bandwidth,have gained significant attention as optical fiber-to-chip couplers.Silicon waveguides exhibit strong birefringence properties,resulting in substantial polarization-dependent loss for edge couplers in the O-band.We introduce a bilayer and double-tip edge coupler designed to efficiently couple both transverse electric(TE)and transverse magnetic(TM)modes while maintaining compatibility with standard manufacturing processes used in commercial silicon photonics foundries.We have successfully designed and fabricated this edge coupler,achieving coupling losses of<1.52 dB∕facet for TE mode and 2 dB∕facet for TM mode when coupled with a lensed optical fiber[4-μmmode field diameter(MFD)]within the wavelength range of 1260 to 1360 nm.
基金supported by the National Key Research and Development Program of China(Grant No.2024YFE0105200)the National Nature Science Foundation of China(Grant No.62405284)+2 种基金the Key Research and Development Program of Henan Province(Grant No.241111220600)the JSPS KAKENHI(Grant No.JP20K14785)the Murata Science Foundation.
文摘Vibrational strong coupling(VSC)provides a promising way towards not only enhanced control of infrared light but also reshaping of molecular properties,which opens up unprecedented opportunities in ultrasensitive infrared spectroscopy,modification of chemical reactions,and exploration of nonlinear quantum effects.Surface plasmon resonance,excited on simple plasmonic resonators in the infrared,has been demonstrated as a means to realize VSC,but suffers from either limited quality factor for realizing large Rabi splitting or poor reconfigurability for precise detuning control.Here we propose and experimentally demonstrate,for the first time,an on-chip plasmonic resonator based on degeneracy breaking of Wood’s anomaly for VSC.Leveraging the low damping rate of the surface state induced by this degeneracy breaking,we achieve a plasmonic resonance with a high-Q factor exceeding~110,resulting in a Rabi splitting up to~112 cm^(-1) with a subwavelength molecular layer.Additionally,the dispersion of the surface state allows for precise control over VSC detuning by simply adjusting the incident angle of excitation light,even in the absence of photons,enabling a broad detuning range up to 300 cm^(-1).These experimental results align well with our analytical model and numerical simulation.This work provides a promising integrated platform for VSC,with various potential applications in on-chip spectroscopy,polariton chemistry,and polariton devices.
文摘Oxidative coupling of methane(OCM)is a catalytic partial oxidation process that directly converts methane into C_(2) products.For this high temperature reaction,understanding the radical behavior through experimental investigation is important in correlating the catalytic activity and the products.In this work,a spatial resolution online mass spectrometry(MS)system was developed and applied to a Mn-Na_(2)WO_(4)/SiO_(2) catalyzed OCM system.In addition to the residue gas analysis,the system obtained the distribution information of the reactants and products in the reactor.At various setting temperatures,all species online MS signals were collected at different positions,mapping the reaction activity covering parameters including temperature,time and space.The distribution behavior of the catalytic activity,selectivity,and apparent activation energy were kinetically analyzed.Selectivity and additional carbon balance analysis strongly supported the radical coupling model of OCM and indicated that after the catalytic bed layer,there is a significant length in the reactor(>2 mm)filled with radicals.Based on the result,a designed new method by tuning the temperature field in the reactor was found effectively to improve the catalytic activity,especially the C_(2) yield from 702 to 773℃.
基金supported by the National Key R&D Program of China(Grant No.2022YFA1604200)the National Natural Science Foundation of China(Grant No.12261131495)Institute of Systems Science,Beijing Wuzi University(Grant No.BWUISS21).
文摘The coupled nonlocal nonlinear Schrödinger equations with variable coefficients are researched using the nonstandard Hirota bilinear method.The two-soliton and double-hump one-soliton solutions for the equations are first obtained.By assigning different functions to the variable coefficients,we obtain V-shaped,Y-shaped,wave-type,exponential solitons,and so on.Next,we reveal the influence of the real and imaginary parts of the wave numbers on the double-hump structure based on the soliton solutions.Finally,by setting different wave numbers,we can change the distance and transmission direction of the solitons to analyze their dynamic behavior during collisions.This study establishes a theoretical framework for controlling the dynamics of optical fiber in nonlocal nonlinear systems.
基金financial support from National Natural Science Foundation of China(Nos.21801129,22078153 and22378201)National Key Research and Development Program of China(No.2022YFB3805603)+3 种基金Natural science research projects in Jiangsu Higher Education Institutions(No.18KJB150018)Open Research Fund of School of Chemistry and Chemical EngineeringHenan Normal University(No.2024Y16)Nanjing Tech University(Start-up Grant Nos.39837137,39837101 and 3827401739)for financial support。
文摘Pyridyl-based ketones and 1,6-diketones are both attractive and invaluable scaffolds which play pivotal roles in the construction and structural modification of a plethora of synthetically paramount natural products,pharmaceuticals,organic materials and fine chemicals.In this context,we herein demonstrate an unprecedented,robust and generally applicable synthetically strategy to deliver these two crucial ketone frameworks via visible-light-induced ring-opening coupling reactions of cycloalcohols with vinylazaarenes and enones,respectively.A plausible mechanism involves the selectiveβ-C-C bond cleavage of cycloalcohols enabled by proton-coupled electron transfer and ensuing Giese-type addition followed by single electron reduction and protonation.The synthetic methodology exhibits broad substrate scope,excellent functional group compatibility as well as operational simplicity and environmental friendliness.
基金financially supported by the National Natural Science Foundation of China(Grants nos.62201411,62371378,22205168,52302150 and 62304171)the China Postdoctoral Science Foundation(2022M722500)+1 种基金the Fundamental Research Funds for the Central Universities(Grants nos.ZYTS2308 and 20103237929)Startup Foundation of Xidian University(10251220001).
文摘Defects-rich heterointerfaces integrated with adjustable crystalline phases and atom vacancies,as well as veiled dielectric-responsive character,are instrumental in electromagnetic dissipation.Conventional methods,however,constrain their delicate constructions.Herein,an innovative alternative is proposed:carrageenan-assistant cations-regulated(CACR)strategy,which induces a series of sulfides nanoparticles rooted in situ on the surface of carbon matrix.This unique configuration originates from strategic vacancy formation energy of sulfides and strong sulfides-carbon support interaction,benefiting the delicate construction of defects-rich heterostructures in M_(x)S_(y)/carbon composites(M-CAs).Impressively,these generated sulfur vacancies are firstly found to strengthen electron accumulation/consumption ability at heterointerfaces and,simultaneously,induct local asymmetry of electronic structure to evoke large dipole moment,ultimately leading to polarization coupling,i.e.,defect-type interfacial polarization.Such“Janus effect”(Janus effect means versatility,as in the Greek two-headed Janus)of interfacial sulfur vacancies is intuitively confirmed by both theoretical and experimental investigations for the first time.Consequently,the sulfur vacancies-rich heterostructured Co/Ni-CAs displays broad absorption bandwidth of 6.76 GHz at only 1.8 mm,compared to sulfur vacancies-free CAs without any dielectric response.Harnessing defects-rich heterostructures,this one-pot CACR strategy may steer the design and development of advanced nanomaterials,boosting functionality across diverse application domains beyond electromagnetic response.
基金supported by National Key R&D Program of China(Grant No.2021YFB2601200)Open Fund of National Engineering Research Center of Highway Maintenance Technology(Changsha University of Science&Technology)(No.kfj230207).
文摘The occurrence of top-down(TD)cracking has gradually become a prevalent issue in semi-rigid base asphalt pavements after prolonged service.A coupled simulation model integrating the finite difference method(FDM)and discrete element method(DEM)was employed to investigate the mechanical behavior of asphalt pavement containing a pre-existing TD crack.The mesoscopic parameters of the model were calibrated based on the mixture modulus and the static mechanical response on the MLS66 test road.Finally,an analysis was performed to assess how variations in TD crack depth and longitudinal length affect the distribution patterns of transverse tensile stress,vertical shear stress,and vertical compressive stress.The results indicate that the vertical propagation of TD crack significantly increases both the tensile stress value and range on the middle surface,while the longitudinal development of TD crack has minimal impact.This phenomenon may result in more severe fatigue failure on the middle surface.With the vertical and longitudinal development of TD crack,the vertical shear stress and compressive stress show obvious"two-stage"characteristics.When the crack's vertical length reaches 40 mm,there is a sharp increase in stress on the upper surface.As the crack continues to propagate vertically,the growth of stress on the upper surface becomes negligible,while the stress in the middle and lower layers increased significantly.Conversely,for longitudinal development of TD crack,any changes in stress are insignificant when their length is less than 180 mm;however,as they continue to develop longitudinally beyond this threshold,there is a sharp increase in stress levels.These findings hold great significance for understanding pavement structure deterioration and maintenance behavior associated with TD crack.
基金support from Guangdong Science and Technology(20230505)Guangdong Provincial Philosophy and Social Science Planning Project(GD20SQ25)Guangdong Provincial Special Fund for Science and Technology Innovation Strategy in 2024(Cultivation of College Students’Science and Technology Innovation)(pdjh2024a391)during preparation of this manuscript.
文摘This study investigates the coordination between regional economic growth and ecological sustainability within the context of high-quality town economy development.To address the challenges of balancing economic expansion with environmental protection,a comprehensive evaluation index system is constructed,encompassing two key dimensions:regional economy and ecological environment.Using panel data from 2013 to 2022,the coupling coordination degree model is employed to quantify the interactions and synergy between these dimensions.Additionally,spatial econometric methods are applied to calculate both global and local Moran’s Index,revealing spatial clustering patterns,regional disparities,and heterogeneity.The relative development model further identifies critical factors influencing regional coordination,with a focus on the lagging development of basic infrastructure and public services.The findings demonstrate a positive temporal trend toward improved regional coordination and reduced development gaps,with a spatial pattern characterized by higher coupling degrees in eastern and central regions compared to western areas.Based on these results,this study proposes actionable strategies to enhance coordinated development,emphasizing ecological conservation,the establishment of green production and consumption systems,ecological restoration,and strengthened municipal collaboration.This revised abstract emphasizes the study’s purpose,methods,and key findings more clearly while maintaining a professional and concise tone.Finally,based on the above analysis results,the corresponding coordinated development suggestions of regional economy and ecological environment are given from the aspects of ecological environment protection measures,green production and consumption system construction,ecological environment restoration and municipal coordination.
基金National Natural Science Foundation of China (U23A6005 and 22078069)Project funded by China Postdoctoral Science Foundation (GZB20230172 and 2023M740748)。
文摘Electrochemical conversion of lignin for the production of high-value heterocyclic aromatic compounds has great potential.We demonstrate the targeted synthesis and cation modulation of NiCo_(2)O_(4)spinel nanoboxes,synthesized via cation exchange and calcination oxidation.These catalysts exhibit excellent efficacy in the electrocatalytic conversion of lignin model compounds,specifically 2-phenoxy-1-phenylethanol,into nitrogen-containing aromatics,achieving high conversion rates and selectivities.These catalysts were synthesized via a cation exchange and calcination oxidation process,using Prussian blue nanocubes as precursors.The porous architecture and polymetallic composition of the NiCo_(2)O_(4)spinel demonstrated superior performance in electrocatalytic oxidative coupling,achieving a 99.2 wt%conversion rate of the 2-phenoxy-1-phenylethanol with selectivities of 37.5 wt%for quinoline derivatives and 31.5 wt%for phenol.Key innovations include the development of a sustainable one-pot synthesis method for quinoline derivatives,the elucidation of a multistage reaction pathway involving CAO bond cleavage,hydroxyaldol condensation,and CAN bond formation,and a deeper mechanistic understanding derived from DFT simulations.This work establishes a new strategy for lignin valorization,offering a sustainable route to produce high-value nitrogen-containing aromatics from renewable biomass under mild conditions,without the need for additional reagents.
基金Financial supports from the National Natural Science Foundation of China(Nos.52171116,U22A20109,52334010 and T2325013)are greatly acknowledgedPartial financial support came from The Program for the Central University Youth Innovation Team,and the Fundamental Research Funds for the Central Universities,JLU.
文摘Dislocations and disclinations are fundamental topological defects within crystals,which determine the mechanical properties of metals and alloys.Despite their important roles in multiple physical mechanisms,e.g.,dynamic recovery and grain boundary mediated plasticity,the intrinsic coupling and correlation between disclinations and dislocations,and their impacts on the deformation behavior of metallic materials still remain obscure,partially due to the lack of a theoretical tool to capture the rotational nature of disclinations.By using a Lie-algebra-based theoretical framework,we obtain a general equation to quantify the intrinsic coupling of disclinations and dislocations.Through quasi in-situ electron backscatter diffraction characterizations and disclination/dislocation density analyses in Mg alloys,the generation,coevolution and reactions of disclinations and dislocations during dynamic recovery and superplastic deformation have been quantitatively analyzed.It has been demonstrated that the obtained governing equation can capture multiple physical processes associated with mechanical deformation of metals,e.g.,grain rotation and grain boundary migration,at both room temperature and high temperature.By establishing the disclination-dislocation coupling equation within a Lie algebra description,our work provides new insights for exploring the coevolution and reaction of disclinations/dislocations,with profound implications for elucidating the microstructure-property relationship and underlying deformation mechanisms in metallic materials.
基金financially supported by the National Natural Science Foundation of China(Nos.42272153 and 42472195)the Research Fund of PetroChina Tarim Oilfield Company(No.671023060003)the Research Fund of China National Petroleum Corporation Limited(No.2023ZZ16YJ04).
文摘Deep tight reservoirs exhibit complex stress and seepage fields due to varying pore structures,thus the seepage characteristics are significant for enhancing oil production.This study conducted triaxial compression and permeability tests to investigate the mechanical and seepage properties of tight sandstone.A digital core of tight sandstone was built using Computed Tomography(CT)scanning,which was divided into matrix and pore phases by a pore equivalent diameter threshold.A fluid-solid coupling model was established to investigate the seepage characteristics at micro-scale.The results showed that increasing the confining pressure decreased porosity,permeability,and flow velocity,with the pore phase becoming the dominant seepage channel.Cracks and large pores closed first under increasing pressure,resulted in a steep drop in permeability.However,permeability slightly decreased under high confining pressure,which followed a first-order exponential function.Flow velocity increased with seepage pressure.And the damage mainly occurred in stress-concentration regions under low seepage pressure.Seepage behavior followed linear Darcy flow,the damage emerged at seepage entrances under high pressure,which decreased rock elastic modulus and significantly increased permeability.
基金supported by Sichuan Science and Technology Program(Grant No.2020YFH0080)the National Natural Science Foundation of China(Grant No.51475386)the National Basic Research Project of China(973 Program,Grant No.2015CB654801).
文摘The gear transmission system directly affects the operational performance of high-speed trains(HST).However,current research on gear transmission systems of HST often overlooks the effects of gear eccentricity and running resistance,and the dynamic models of gear transmission system are not sufficiently comprehensive.This paper aims to establish an electromechanical coupling dynamic model of HST traction transmission system and study its electromechanical coupling vibration characteristics,in which the internal excitation factors such as gear eccentricity,time-varying meshing stiffness,backlash,meshing error,and external excitation factors such as electromagnetic torque and running resistance are stressed.The research results indicate that gear eccentricity and running resistance have a significant impact on the stability of the system,and gear eccentricity leads to intensified system vibration and decreased anti-interference ability.In addition,the characteristic frequency of gear eccentricity can be extracted from mechanical signals and current signals as a preliminary basis for eccentricity detection,and electrical signals can also be used to monitor changes in train running resistance in real time.The results of this study provide some useful insights into designing dynamic performance parameters for HST transmission systems and monitoring train operational states.