期刊文献+
共找到7,670篇文章
< 1 2 250 >
每页显示 20 50 100
Soliton Interactions and Collision Dynamics in a Variable-Coefficient Coupled Nonlocal Nonlinear Schrödinger Systems
1
作者 Xinnan Cui Zhiyang Zhang +2 位作者 Muwei Liu Fenghua Qi Wenjun Liu 《Chinese Physics Letters》 2025年第10期68-74,共7页
The coupled nonlocal nonlinear Schrödinger equations with variable coefficients are researched using the nonstandard Hirota bilinear method.The two-soliton and double-hump one-soliton solutions for the equations ... The coupled nonlocal nonlinear Schrödinger equations with variable coefficients are researched using the nonstandard Hirota bilinear method.The two-soliton and double-hump one-soliton solutions for the equations are first obtained.By assigning different functions to the variable coefficients,we obtain V-shaped,Y-shaped,wave-type,exponential solitons,and so on.Next,we reveal the influence of the real and imaginary parts of the wave numbers on the double-hump structure based on the soliton solutions.Finally,by setting different wave numbers,we can change the distance and transmission direction of the solitons to analyze their dynamic behavior during collisions.This study establishes a theoretical framework for controlling the dynamics of optical fiber in nonlocal nonlinear systems. 展开更多
关键词 two soliton solutions soliton interactions assigning different functions collision dynamics nonstandard hirota bilinear methodthe nonstandard hirota bilinear method variable coefficient coupled nonlocal nonlinear schr dinger systems coupled nonlocal nonlinear schr dinger equations variable coefficients
原文传递
Coupled thermo-hydro-mechanical analysis of porous rocks:Candidate of surrounding rocks for deep geological repositories 被引量:1
2
作者 Tao Meng Zaobao Liu +6 位作者 Fengbiao Wu Zhijiang Zhang Xufeng Liang Yi He Xiaomeng Wu Yizhang Yang Haoran Gao 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第5期3073-3092,共20页
Deep geological sequestration is widely recognized as a reliable method for nuclear waste management,with expanded applications in thermal energy storage and adiabatic compressed air energy storage systems.This study ... Deep geological sequestration is widely recognized as a reliable method for nuclear waste management,with expanded applications in thermal energy storage and adiabatic compressed air energy storage systems.This study evaluated the suitability of granite,basalt,and marble as reservoir rocks capable of withstanding extreme high-temperature and high-pressure conditions.Using a custom-designed triaxial testing apparatus for thermal-hydro-mechanical(THM)coupling,we subjected rock samples to temperatures ranging from 20℃to 800℃,triaxial stresses up to 25 MPa,and seepage pressures of 0.6 MPa.After THM treatment,the specimens were analyzed using a Real-Time Load-Synchronized Micro-Computed Tomography(MCT)Scanner under a triaxial stress of 25 MPa,allowing for high-resolution insights into pore and fissure responses.Our findings revealed distinct thermal stability profiles and microscopic parameter changes across three phasesdslow growth,slow decline,and rapid growthdwith critical temperature thresholds observed at 500℃for granite,600℃for basalt,and 300℃for marble.Basalt showed minimal porosity changes,increasing gradually from 3.83%at 20℃to 12.45%at 800℃,indicating high structural integrity and resilience under extreme THM conditions.Granite shows significant increases in porosity due to thermally induced microcracking,while marble rapidly deteriorated beyond 300℃due to carbonate decomposition.Consequently,basalt,with its minimal porosity variability,high thermal stability,and robust mechanical properties,emerges as an optimal candidate for nuclear waste repositories and other high-temperature geological engineering applications,offering enhanced reliability,structural stability,and long-term safety in such settings. 展开更多
关键词 Deep geological repository coupled thermal-hydro-mechanical environment Pore structure Microcomputer tomography 3D reconstruction
在线阅读 下载PDF
Coupled Urban Risks:A Complex Systems Perspective with a People-Centric Focus 被引量:1
3
作者 Min Ouyang Zekai Cheng +2 位作者 Jiaxin Ma Hongwei Wang Stergios Aristoteles Mitoulis 《Engineering》 2025年第1期44-50,共7页
The complexity of coupled risks,which refer to the compounded effects of interacting uncertainties across multiple interdependent objectives,is inherent to cities functioning as dynamic,interdependent systems.A disrup... The complexity of coupled risks,which refer to the compounded effects of interacting uncertainties across multiple interdependent objectives,is inherent to cities functioning as dynamic,interdependent systems.A disruption in one domain ripples across various urban systems,often with unforeseen consequences.Central to this complexity are people,whose behaviors,needs,and vulnerabilities shape risk evolution and response effectiveness.Realizing cities as complex systems centered on human needs and behaviors is essential to understanding the complexities of coupled urban risks.This paper adopts a complex systems perspective to examine the intricacies of coupled urban risks,emphasizing the critical role of human decisions and behavior in shaping these dynamics.We focus on two key dimensions:cascading hazards in urban environments and cascading failures across interdependent exposed systems in cities.Existing risk assessment models often fail to capture the complexity of these processes,particularly when factoring in human decision-making.To tackle these challenges,we advocate for a standardized taxonomy of cascading hazards,urban components,and their interactions.At its core is a people-centric perspective,emphasizing the bidirectional interactions between people and the systems that serve them.Building on this foundation,we argue the need for an integrated,people-centric risk assessment framework that evaluates event impacts in relation to the hierarchical needs of people and incorporates their preparedness and response capacities.By leveraging real-time data,advanced simulations,and innovative validation methods,this framework aims to enhance the accuracy of coupled urban risk modeling.To effectively manage coupled urban risks,cities can draw from proven strategies in real complex systems.However,given the escalating uncertainties and complexities associated with climate change,prioritizing people-centric strategies is crucial.This approach will empower cities to build resilience not only against known hazards but also against evolving and unforeseen challenges in an increasingly uncertain world. 展开更多
关键词 coupled urban risks People-centric Risk management
在线阅读 下载PDF
Regional Storm Surge Forecast Method Based on a Neural Network and the Coupled ADCIRC-SWAN Model 被引量:1
4
作者 Yuan SUN Po HU +2 位作者 Shuiqing LI Dongxue MO Yijun HOU 《Advances in Atmospheric Sciences》 2025年第1期129-145,共17页
Timely and accurate forecasting of storm surges can effectively prevent typhoon storm surges from causing large economic losses and casualties in coastal areas.At present,numerical model forecasting consumes too many ... Timely and accurate forecasting of storm surges can effectively prevent typhoon storm surges from causing large economic losses and casualties in coastal areas.At present,numerical model forecasting consumes too many resources and takes too long to compute,while neural network forecasting lacks regional data to train regional forecasting models.In this study,we used the DUAL wind model to build typhoon wind fields,and constructed a typhoon database of 75 processes in the northern South China Sea using the coupled Advanced Circulation-Simulating Waves Nearshore(ADCIRC-SWAN)model.Then,a neural network with a Res-U-Net structure was trained using the typhoon database to forecast the typhoon processes in the validation dataset,and an excellent storm surge forecasting effect was achieved in the Pearl River Estuary region.The storm surge forecasting effect of stronger typhoons was improved by adding a branch structure and transfer learning. 展开更多
关键词 regional storm surge forecast coupled ADCIRC-SWAN model neural network Res-U-Net structure
在线阅读 下载PDF
Soliton Solutions of a Coupled KdV System via Backlund Transformation
5
作者 CAO Xifang WU Yiheng +2 位作者 LU Yi XU Wenjing XIA Yutong 《应用数学》 北大核心 2025年第1期211-216,共6页
In this paper we use Böcklund transformation to construct soliton solutions for a coupled KdV system.This system was first proposed by Wang in 2010.First we generalize the well-known Bäcklund transformation ... In this paper we use Böcklund transformation to construct soliton solutions for a coupled KdV system.This system was first proposed by Wang in 2010.First we generalize the well-known Bäcklund transformation for the KdV equation to such coupled KdV system.Then from a trivial seed solution,we construct soliton solutions.We also give a nonlinear superposition formula,which allows us to generate multi-soliton solutions. 展开更多
关键词 KdV equation coupled KdV system B¨acklund transformation SOLITON
在线阅读 下载PDF
Experimental study on coupled caloric effect driven by dual fields in metamagnetic alloy ErCo_(2)
6
作者 Liming Wu Bingjie Wang +11 位作者 Fengxia Hu Zhaojun Mo Houbo Zhou Zhengying Tian Yangyang Fan Zhuo Yin Zibing Yu Jing Wang Yunzhong Chen Jirong Sun Tongyun Zhao Baogen Shen 《Journal of Rare Earths》 2025年第4期752-757,I0005,共7页
This study presents an experimental investigation of the coupled caloric effect driven by dual-fields in metamagnetic alloy ErCo_(2) with strong magneto-structural coupling.Magnetic measurements were conducted under d... This study presents an experimental investigation of the coupled caloric effect driven by dual-fields in metamagnetic alloy ErCo_(2) with strong magneto-structural coupling.Magnetic measurements were conducted under different pressures,revealing that the application of hydrostatic pressure stabilizes a small volume of paramagnetism(PM) phase,resulting in a shift of the phase transition temperature towards the low-temperature region.This shift is opposite to the temperature associated with the magnetic field-driven phase transition.As pressure increases,the metamagnetic transition in ErCo_(2) is suppressed,and the hysteresis disappears.However,the produced cross-coupling caloric effect compensates the decrease in entropy change caused by the disappearance of the metamagnetic transition.As a result,a reversible giant magnetocaloric effect of 46.2 J/(kg·K) without hysteresis is achieved at a pressure of 0.910 GPa.Moreover,we propose that the temperature span of ErCo_(2) can be significantly widened by optimizing the thermodynamic pathway of the magnetic and pressure fields,overcoming the defect of a narrow temperature range. 展开更多
关键词 Rare earths Magnetocaloric materials coupled caloric effect Metamagnetic behavior Dual fields Magnetic-structure coupling
原文传递
Nitrogen-based redox couple regulated anionic redox to long-term cycling stability of Li and Mn-rich layered oxide cathode for Li-ion batteries
7
作者 Zhijun Wu Chenchen Li +9 位作者 Panyu Gao Xin Zhang Yue Lin Xuebin Yu Yongfeng Liu Wenping Sun Yinzhu Jiang Mingxia Gao Hongge Pan Yaxiong Yang 《Journal of Materials Science & Technology》 2025年第12期157-166,共10页
Lithium and manganese-rich layered oxides(LMROs)have attracted extensive attention and are promising cathode materials for next-generation lithium ion batteries due to their high capacities and high energy densities.H... Lithium and manganese-rich layered oxides(LMROs)have attracted extensive attention and are promising cathode materials for next-generation lithium ion batteries due to their high capacities and high energy densities.However,LMRO cathode suffers from severe capacity and voltage fading originating from irreversible surface oxygen evolution.Herein,we propose a facile redox couple strategy by introducing nitroxyl radicals species to regulate the surface anionic redox reaction of LMRO cathode.Differential electrochemical mass spectroscopy,X-ray photoelectron spectroscopy and Fourier transform infrared spectroscopy analyses demonstrate that during charge process,the peroxide ion O_(2)^(2−)on the surface generated from the oxidation of lattice O^(2-)could be reduced back to stable O^(2-)by redox couple in time,thus avoiding oxygen evolution and structure degradation,as well as enhancing bulk oxygen redox activity.The enhanced LMRO electrode delivers a high capacity of 220.3 mAh g^(−1)at 1 C.An excellent cycling stability with a capacity retention of 94.4%is achieved after 500 cycles,as well as a suppressed voltage decay with only 1.12 mV per cycle. 展开更多
关键词 Nitroxyl radicals Redox couple 2 2 6 6-tetramethylpiperidinooxy Cycling stability Li and Mn-rich layered oxides
原文传递
A granular thermodynamic framework-based coupled multiphasesubstance flow model considering temperature driving effect
8
作者 Bing Bai Haiyan Wu +2 位作者 Rui Zhou Nan Wu Bixia Zhang 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第9期5816-5828,共13页
Based on the energy dissipation caused by consolidation deformation of the porous media under external force and migration of the internal suspended substances,a coupled multiphase-substance flow(CMF)model was establi... Based on the energy dissipation caused by consolidation deformation of the porous media under external force and migration of the internal suspended substances,a coupled multiphase-substance flow(CMF)model was established.This model introduced the new concepts,such as particle temperature and particle entropy,to describe energy dissipation at meso-level.This model used a potential energy density function and migration coefficients to establish the corresponding connection between the dissipative force and dissipative flow.This viewpoint unifies the deformation,seepage,and suspended substance migration of geotechnical materials under the framework of granular thermodynamics.It can reflect the evolution of effective stress in the solid matrix of multi-components in a particle-reorganized state,and considers the temperature driving effect.The proposed CMF model is validated using the experimental results under coupled migration of heavy metal ions(HMs)and suspended particles(SPs).The calculation results demonstrated that the CMF model can describe the flow process under the conditions of arbitrary changes in different suspended substance types,injection concentrations,and injection velocities. 展开更多
关键词 GROUNDWATER Granular thermodynamics Multiphase substance coupled migration Consolidation deformation
在线阅读 下载PDF
Turing instability-induced oscillations in coupled reaction-diffusion systems
9
作者 Nan Wang Yuan Tong +3 位作者 Fucheng Liu Xiaoxuan Li Yafeng He Weili Fan 《Chinese Physics B》 2025年第3期541-548,共8页
A new type of localized oscillatory pattern is presented in a two-layer coupled reaction-diffusion system under conditions in which no Hopf instability can be discerned in either layer.The transitions from stationary ... A new type of localized oscillatory pattern is presented in a two-layer coupled reaction-diffusion system under conditions in which no Hopf instability can be discerned in either layer.The transitions from stationary patterns to asynchronous and synchronous oscillatory patterns are obtained.A novel method based on decomposing coupled systems into two associated subsystems has been proposed to elucidate the mechanism of formation of oscillating patterns.Linear stability analysis of the associated subsystems reveals that the Turing pattern in one layer induces the other layer locally,undergoes a supercritical Hopf bifurcation and gives rise to localized oscillations.It is found that the sizes and positions of oscillations are determined by the spatial distribution of the Turing patterns.When the size is large,localized traveling waves such as spirals and targets emerge.These results may be useful for deeper understanding of pattern formation in complex systems,particularly multilayered systems. 展开更多
关键词 OSCILLATIONS localized oscillatory pattern Turing instability coupled reaction-diffusion system
原文传递
O-band low loss and polarization insensitivity bilayer and double-tip edge coupler
10
作者 Yuanjian Wan Yu Zhang Jian Wang 《Advanced Photonics Nexus》 2025年第2期31-38,共8页
Edge couplers,widely recognized for their efficiency and broad bandwidth,have gained significant attention as optical fiber-to-chip couplers.Silicon waveguides exhibit strong birefringence properties,resulting in subs... Edge couplers,widely recognized for their efficiency and broad bandwidth,have gained significant attention as optical fiber-to-chip couplers.Silicon waveguides exhibit strong birefringence properties,resulting in substantial polarization-dependent loss for edge couplers in the O-band.We introduce a bilayer and double-tip edge coupler designed to efficiently couple both transverse electric(TE)and transverse magnetic(TM)modes while maintaining compatibility with standard manufacturing processes used in commercial silicon photonics foundries.We have successfully designed and fabricated this edge coupler,achieving coupling losses of<1.52 dB∕facet for TE mode and 2 dB∕facet for TM mode when coupled with a lensed optical fiber[4-μmmode field diameter(MFD)]within the wavelength range of 1260 to 1360 nm. 展开更多
关键词 edge coupler integrated photonics optical fiber-to-chip coupling O-band optical communication
在线阅读 下载PDF
Coupled Hydrodynamics and FEM Simulation of Catamaran Pontoon
11
作者 Ocid Mursid Karno Malau +5 位作者 Hartono Yudo Tuswan Muhammad Luqman Hakim Ahmad Firdhaus Andi Trimulyono Muhammad Iqbal 《China Ocean Engineering》 2025年第1期179-189,共11页
Shallow water infrastructure needs to support increased activity on the shores of Semarang.This study chooses several pontoons because of their good stability,rolling motion,and more expansive space.A coupled simulati... Shallow water infrastructure needs to support increased activity on the shores of Semarang.This study chooses several pontoons because of their good stability,rolling motion,and more expansive space.A coupled simulation method consisting of hydrodynamic and structural calculations has been used to evaluate a catamaran pontoon’s motion and structural integrity.Four different space sizes are set for the pontoon system:5 m,5.5 m,6 m,and 6.5 m.The frequency domain shows that the pontoon space affects the RAO in wave periods ranging from 3 s to 5 s.At wave periods of 3 s,4 s,and 5 s,the pontoon space significantly affects the maximum motion and chain tension parameter values,which are evaluated via time domain simulation.The critical stress of the pontoon is shown at a wave period of 5 s for 5 m and 5.5 m of pontoon space,which shows that the stress can reach 248 MPa. 展开更多
关键词 coupled simulation working pontoon HYDRODYNAMICS finite element method
在线阅读 下载PDF
Coupled aeroelastic analysis of a panel in supersonic flow with add-on acoustic black hole
12
作者 Zhuogeng ZHANG Hongli JI +2 位作者 Jinhao QIU Kaihua YUAN Li CHENG 《Chinese Journal of Aeronautics》 2025年第5期121-133,共13页
This study introduces a novel approach for coupled aeroelastic analysis of panel subjected to supersonic airflow,utilizing Add-On Acoustic Black Hole(AABH)to mitigate panel flutter.Employing Galerkin's method to d... This study introduces a novel approach for coupled aeroelastic analysis of panel subjected to supersonic airflow,utilizing Add-On Acoustic Black Hole(AABH)to mitigate panel flutter.Employing Galerkin's method to discretize aeroelastic equation of panel and leveraging finite element method to derive a reduced discrete model of AABH,this study effectively couples two substructures via interface displacement.Investigation into the interactive force highlights the modal effective mass,frequency discrepancy between oscillation and AABH mode,and modal damping ratio as critical factors influencing individual AABH mode in flutter suppression.The selection of effective AABH modes,closely linked to these factors,directly influences the accuracy of simulations.The results reveal that AABH notably enhances the panel's critical flutter boundary by14.6%,a significant improvement over the 3.6%increase afforded by equivalent mass.Furthermore,AABH outperforms both the tuned mass damper and nonlinear energy sink in flutter suppression efficacy.By adjusting the AABH's geometrical parameters to increase the accumulative modal effective mass within the pertinent frequency range,or choosing a suitable installation position for AABH,its performance in flutter suppression is further optimized.These findings not only underscore the AABH's potential in enhancing aeroelastic stability but also provide a foundation for its optimal design. 展开更多
关键词 Panel flutter Acoustic black hole Flutter suppression coupled analysis Aeroelastic
原文传递
Multi-component decompositions,linear superpositions,and new nonlinear integrable coupled KdV-type systems
13
作者 Xiazhi Hao S Y Lou 《Communications in Theoretical Physics》 2025年第2期1-12,共12页
In the realm of nonlinear integrable systems,the presence of decompositions facilitates the establishment of linear superposition solutions and the derivation of novel coupled systems exhibiting nonlinear integrabilit... In the realm of nonlinear integrable systems,the presence of decompositions facilitates the establishment of linear superposition solutions and the derivation of novel coupled systems exhibiting nonlinear integrability.By focusing on single-component decompositions within the potential BKP hierarchy,it has been observed that specific linear superpositions of decomposition solutions remain consistent with the underlying equations.Moreover,through the implementation of multi-component decompositions within the potential BKP hierarchy,successful endeavors have been undertaken to formulate linear superposition solutions and novel coupled Kd V-type systems that resist decoupling via alterations in dependent variables. 展开更多
关键词 integrable system single-component decomposition multi-component decomposition linear superposition integrable coupled KdV-type system
原文传递
Non-planar vibration characteristics and buckling behaviors of two fluid-conveying pipes coupled with an intermediate spring
14
作者 Dali WANG Tianli JIANG +1 位作者 Huliang DAI Lin WANG 《Applied Mathematics and Mechanics(English Edition)》 2025年第10期1829-1850,共22页
This study investigates the dynamical behavior of two parallel fluid-conveying pipes by developing a non-planar dynamical model of the two pipes coupled with an intermediate spring. A systematic analysis is conducted ... This study investigates the dynamical behavior of two parallel fluid-conveying pipes by developing a non-planar dynamical model of the two pipes coupled with an intermediate spring. A systematic analysis is conducted to evaluate the effects of spring parameters on the non-planar vibration characteristics and buckling behaviors of the coupled system. The nonlinear governing equations are derived with Hamilton's principle,subsequently discretized through Galerkin's method, and finally numerically solved by the Runge-Kutta algorithm. Based on the linearized equations, an eigenvalue analysis is performed to obtain the coupled frequencies, modal shapes, and critical flow velocities for buckling instability. Quantitative assessments further elucidate the effects of the spring position and stiffness coefficient on the coupled frequencies and critical flow velocities.Nonlinear dynamic analyses reveal the evolution of buckling patterns and bifurcation behaviors between the lateral displacements of the two pipes and the flow velocity. Numerical results indicate that the intermediate spring increases the susceptibility to buckling instability in the out-of-plane direction compared with the in-plane direction. Furthermore, synchronized lateral displacements emerge in both pipes when the flow velocity of one pipe exceeds the critical threshold. This work is expected to provide a theoretical foundation for the stability assessment and vibration analysis in coupled fluid-conveying pipe systems. 展开更多
关键词 coupled fluid-conveying pipe system intermediate spring non-planar vibration buckling behavior
在线阅读 下载PDF
Acidic-thermal coupled degradation of tylosin by using magnetic sulfonated resins under microwave irradiation
15
作者 Caitiao Fang Wei Zhang +3 位作者 Chunmei Wang Shiling Li Xiaomin Dou Jun Liu 《Journal of Environmental Sciences》 2025年第9期127-138,共12页
Acidic-and alkalic-hydrolyses are selective in breaking functional bonds and falling off pharmacological moieties of antibiotics in production wastewater in comparison with advanced oxidation processes.Elevating tempe... Acidic-and alkalic-hydrolyses are selective in breaking functional bonds and falling off pharmacological moieties of antibiotics in production wastewater in comparison with advanced oxidation processes.Elevating temperature can accelerate hydrolytic kinetics and improve efficiency.In this work,magnetic sulfonated polypropylene resin(Fe_(3)O_(4)@PS-S)composites were reported for acidic-thermal hydrolysis of tylosin by employing the acidic feature of sulfonic group,the dielectric effect of resin,and the magnetic-loss effect of magnetite under microwave irradiation.As observed,a rapid and complete mitigation 100 mg/L of tylosin was achieved within 15 min by the catalysts.Acidic cleavage of tylosin was fulfilled by sulfonic groups in the composites,and microwave thermal accelerated the hydrolysis reactions due to the dielectric and magnetic-loss effects.Differentiating the dielectric and magnetic-loss effects through electromagnetic analyses indicated that the latter contributed more in converting microwave energy to heat.The interactions under multiple operational conditions were quantitatively fitted using the Behnajady model and visually demonstrated,which indicated that a synergic effect of microwave thermal-and acidichydrolyses contributed to the efficient mitigation of tylosin.The transformation products were identified and the pathways were supposed.Cleaving deoxyaminosugars groups and destructing lactone structures led to reduced antibacterial potential and toxicity reduction.The acute toxicity of tylosin and transformation products to fish,daphnia,and green algae were all classified as non-toxic.This work suggested that this synergistic acid-thermal hydrolytic method is attractive and promising in pretreating tylosin production wastewater in field. 展开更多
关键词 Acidic-thermal coupled hydrolysis Tylosin degradation Microwave irradiation Synergetic effects Sulfonated resins
原文传递
Iterative solution and numerical analysis of vehicle-track-bridge nonlinear coupled vibration considering viscoelasticity of rail pads
16
作者 CUI Wei-tao GAO Liang +3 位作者 XIAO Hong MIAO Shuai-jie NIU Zhen-yu XIAO Yi-xiong 《Journal of Central South University》 2025年第7期2750-2765,共16页
To investigate the effect of rail pad viscoelasticity on vehicle-track-bridge coupled vibration,the fractional Voigt and Maxwell model in parallel(FVMP)was used to characterize the viscoelastic properties of the rail ... To investigate the effect of rail pad viscoelasticity on vehicle-track-bridge coupled vibration,the fractional Voigt and Maxwell model in parallel(FVMP)was used to characterize the viscoelastic properties of the rail pad based on dynamic performance test results.The FVMP model was then incorporated into the vehicle-track-bridge nonlinear coupled model,and its dynamic response was solved using a cross-iteration algorithm with a relaxation factor.Results indicate that the nonlinear coupled model achieves good convergence when the time step is less than 0.001 s,with the cross-iteration algorithm adjusting the wheel-rail force.In particular,the best convergence is achieved when the relaxation factor is within the range of 0.3-0.5.The FVMP model effectively characterizes the viscoelasticity of rail pads across a temperature range of±20℃and a frequency range of 1-1000 Hz.The viscoelasticity of rail pads significantly affects high-frequency vibrations in the coupled system,particularly around 50 Hz,corresponding to the wheel-rail coupled resonance range.Considering rail pad viscoelasticity is essential for accurately predicting track structure vibrations. 展开更多
关键词 high-speed railway rail pads fractional derivative vehicle-track-bridge coupled model iterative algorithm
在线阅读 下载PDF
Comparative modelling of retrogressive landslide runout:2D and 3D random large-deformation analyses using coupled Eulerian-Lagrangian method
17
作者 Xuejian Chen Shunping Ren +4 位作者 Xingsen Guo Yueying Wang Fei Liu Hoang Nguyen Rita Leal Sousa 《International Journal of Mining Science and Technology》 2025年第11期2011-2030,共20页
Retrogressive landslides in sensitive clays pose significant risks to nearby infrastructure,as natural toe erosion or localized disturbances can trigger progressive block failures.While prior studies have largely reli... Retrogressive landslides in sensitive clays pose significant risks to nearby infrastructure,as natural toe erosion or localized disturbances can trigger progressive block failures.While prior studies have largely relied on two-dimensional(2D)large-deformation analyses,such models overlook key three-dimensional(3D)failure mechanisms and variability effects.This study develops a 3D probabilistic framework by integrating the Coupled Eulerian–Lagrangian(CEL)method with random field theory to simulate retrogressive landslides in spatially variable clay.Using Monte Carlo simulations,we compare 2D and 3D random large-deformation models to evaluate failure modes,runout distances,sliding velocities,and influence zones.The 3D analyses captured more complex failure modes—such as lateral retrogression and asynchronous block mobilization across slope width.Additionally,the 3D analyses predict longer mean runout distances(13.76 vs.11.92 m),wider mean influence distance(11.35 vs.8.73 m),and higher mean sliding velocities(4.66 vs.3.94 m/s)than their 2D counterparts.Moreover,3D models exhibit lower coefficients of variation(e.g.,0.10 for runout distance)due to spatial averaging across slope width.Probabilistic hazard assessment shows that 2D models significantly underpredict near-field failure probabilities(e.g.,48.8%vs.89.9%at 12 m from the slope toe).These findings highlight the limitations of 2D analyses and the importance of multi-directional spatial variability for robust geohazard assessments.The proposed 3D framework enables more realistic prediction of landslide mobility and supports the design of safer,risk-informed infrastructure. 展开更多
关键词 Retrogressive landslide coupled Eulerian-Lagrangian approach Spatial variability Runout dynamics Progressive failure Hazard assessment
在线阅读 下载PDF
A deep residual intelligent model for ENSO prediction by incorporating coupled model forecast data
18
作者 Chunyang Song Xuefeng Zhang +3 位作者 Xingrong Chen Hua Jiang Liang Zhang Yongyong Huang 《Acta Oceanologica Sinica》 2025年第8期133-142,共10页
The El Niño-Southern Oscillation(ENSO)is a naturally recurring interannual climate fluctuation that affects the global climate system.The advent of deep learning-based approaches has led to transformative changes... The El Niño-Southern Oscillation(ENSO)is a naturally recurring interannual climate fluctuation that affects the global climate system.The advent of deep learning-based approaches has led to transformative changes in ENSO forecasts,resulting in significant progress.Most deep learning-based ENSO prediction models which primarily rely solely on reanalysis data may lead to challenges in intensity underestimation in long-term forecasts,reducing the forecasting skills.To this end,we propose a deep residual-coupled model prediction(Res-CMP)model,which integrates historical reanalysis data and coupled model forecast data for multiyear ENSO prediction.The Res-CMP model is designed as a lightweight model that leverages only short-term reanalysis data and nudging assimilation prediction results of the Community Earth System Model(CESM)for effective prediction of the Niño 3.4 index.We also developed a transfer learning strategy for this model to overcome the limitations of inadequate forecast data.After determining the optimal configuration,which included selecting a suitable transfer learning rate during training,along with input variables and CESM forecast lengths,Res-CMP demonstrated a high correlation ability for 19-month lead time predictions(correlation coefficients exceeding 0.5).The Res-CMP model also alleviated the spring predictability barrier(SPB).When validated against actual ENSO events,Res-CMP successfully captured the temporal evolution of the Niño 3.4 index during La Niña events(1998/99 and 2020/21)and El Niño events(2009/10 and 2015/16).Our proposed model has the potential to further enhance ENSO prediction performance by using coupled models to assist deep learning methods. 展开更多
关键词 ENSO prediction deep learning dynamical coupled model data incorporating
在线阅读 下载PDF
Coupled oscillation model of spherical bubble cluster in liquid cavity wrapped by elastic shell
19
作者 Xin-Yi Zuo Rui Liu +3 位作者 Zhao-Kang Lei Yu-Ting Wu Xiu-Ru Li Cheng-Hui Wang 《Chinese Physics B》 2025年第10期406-415,共10页
Bubbles within an elastic shell,which undergo ultrasound-driven oscillation to treat tumors and soft tissues,are frequently treated as viscoelastic media.Therefore,studying the dynamic behavior of bubbles wrapped in a... Bubbles within an elastic shell,which undergo ultrasound-driven oscillation to treat tumors and soft tissues,are frequently treated as viscoelastic media.Therefore,studying the dynamic behavior of bubbles wrapped in a viscoelastic medium while considering an elastic shell can provide theoretical support for ultrasound biotherapy.Bubbles are always in the form of clusters.Therefore,a model of spherical bubble clusters in a liquid cavity wrapped by an elastic shell was constructed,the coupled oscillation equations of bubbles were obtained by taking into account the dynamic effects of the elastic shell and the viscoelastic media outside the cavity,and the oscillation behaviors of the bubbles were analyzed.Acoustic waves at 1.5 MHz could cause bubbles with a radius of 1μm to resonate.Increasing the number of bubbles increased the suppressing effect of bubble oscillation caused by bubble interaction.The bubble cluster oscillation caused the elastic shell to oscillate and be stressed,and the stress trend was the inverse of the bubble oscillation trend with maximal tensile and compressive stresses.Bubbles with an equilibrium radius of 2μm exhibited the lowest inertial cavitation threshold,making inertial cavitation more likely under high-frequency acoustic excitation.The inertial cavitation threshold of bubbles was heavily influenced by the acoustic wave frequency,bubble number density,and bubble cluster radius.The nonspherical oscillation stability of bubbles was primarily affected by the driving acoustic pressure amplitude and frequency,bubble initial radius,bubble number density,and bubble cluster radius.The acoustic frequency and amplitude exhibited a synergistic effect,with a minimum unstable driving acoustic pressure threshold of approximately 0.13 MPa.The initial radius within the elastic shell affected the minimum unstable driving acoustic pressure threshold. 展开更多
关键词 spherical bubble cluster elastic shell cavitation bubbles coupled oscillations
原文传递
Coupled Dissolution-Precipitation Mineralized Process in Bailongshan Li Deposit,West Kunlun(NW China),Evidenced by the Mineralogy of Cassiterite,Columbite-Group Minerals and Elbaite
20
作者 Tao Hong ZhangZhang +2 位作者 Zeli Jiang Mingxi Hu Pengli Jiao 《Journal of Earth Science》 2025年第3期1033-1050,共18页
Coupled dissolution-precipitation is one of the critical processes influencing the mineralogical and geochemical evolution of pegmatites.This mechanism involves the simultaneous dissolution of primary mineral phases a... Coupled dissolution-precipitation is one of the critical processes influencing the mineralogical and geochemical evolution of pegmatites.This mechanism involves the simultaneous dissolution of primary mineral phases and the precipitation of secondary phases,driven by changes in the chemical environment,often mediated by hydrothermal fluids.The Bailongshan Li deposit,located in the West Kunlun region of northwest China,is a significant geological formation known for its rich lithium content and associated rare metals such as tantalum,niobium,and tin.This study investigates the coupled dissolution-precipitation processes that have played a crucial role in the mineralization of this deposit,focusing on key minerals,including cassiterite(Cst),columbite-group minerals(CGM),and elbaite(Elb).Using a combination of petrographic analysis,back-scattered electron(BSE)imaging,cathodoluminescence(CL)imaging,and micro X-ray fluorescence(XRF)mapping,we examined the textural and chemical characteristics of these minerals.Our findings reveal intricate patchy zoning patterns and element distributions(indicated by the Nb,Ta,W,Mn,Fe,Hf,Ti for CGM;Hf,Ti Rb,W,Nb,Ta for Cst;Ti,Zn,Fe,W,Hf,Mn,K for Elb)that indicate multiple stages of mineral alteration driven by fluid-mediated processes.The coupled dissolution-precipitation mechanisms observed in the Bailongshan deposit have resulted in significant redistribution and enrichment of economically valuable elements.The study highlights the importance of hydrothermal fluids in altering primary mineral phases and precipitating secondary phases with distinct compositions.These processes not only modified the mineralogical makeup of the pegmatite but also enhanced its economic potential by concentrating rare metals.Signatures of coupled dissolutionprecipitation processes can serve as an essential tool for mineral exploration,guiding the search for high-grade zones within similar pegmatitic formations. 展开更多
关键词 coupled dissolution-precipitation mineralized process West Kunlun MINERALOGY pegmatite Li deposit ore deposits
原文传递
上一页 1 2 250 下一页 到第
使用帮助 返回顶部