期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Almost Cotorsion Modules
1
作者 毛立新 《Northeastern Mathematical Journal》 CSCD 2006年第1期67-72,共6页
In this paper, we introduce the concept of almost cotorsion modules. A module is called almost cotorsion if it is subisomorphic to its cotorsion envelope. Some characterizations of almost cotorsion modules are given. ... In this paper, we introduce the concept of almost cotorsion modules. A module is called almost cotorsion if it is subisomorphic to its cotorsion envelope. Some characterizations of almost cotorsion modules are given. It is also proved that every module is a direct summand of an almost cotorsion module. As an application, perfect rings are characterized in terms of almost cotorsion modules. 展开更多
关键词 cotorsion module almost cotorsion module perfect ring ENVELOPE
在线阅读 下载PDF
On w_(∞)-Warfield Cotorsion Modules and Krull Domains
2
作者 Yongyan Pu Wei Zhao +2 位作者 Gaohua Tang Fanggui Wang Xuelian Xiao 《Algebra Colloquium》 SCIE CSCD 2023年第4期701-712,共12页
Let R be a commutative domain with 1 and Q(≠R)its field of quotients.In this note an R-module M is called w_(∞)-Warfield cotorsion if M∈WC∩P^(⊥)_(w_(∞)),where WC denotes the class of all Warfield cotorsion R-mod... Let R be a commutative domain with 1 and Q(≠R)its field of quotients.In this note an R-module M is called w_(∞)-Warfield cotorsion if M∈WC∩P^(⊥)_(w_(∞)),where WC denotes the class of all Warfield cotorsion R-modules and P_(w_(∞))the class of all w_(∞)-projective R-modules.It is shown that R is a PVMD if and only if all w-cotorsion R-modules are w_(∞)-Warfield cotorsion,and that R is a Krull domain if and only if every w-Matlis cotorsion strong w-module over R is a w_(∞)-Warfield cotorsion w-module. 展开更多
关键词 Krull domainw w_(∞)-Warfield cotorsion module strong w-module w-Matlis cotorsion module
原文传递
Weak Gorenstein Cotorsion Modules 被引量:2
3
作者 Liang Zhao Jiaqun Wei Jiangsheng Hu 《Algebra Colloquium》 SCIE CSCD 2018年第2期265-276,共12页
Let R be a ring and let be the class of strongly Gorenstein fiat right R-modules. We call a right R-module M a weak Gorenstein cotorsion module if M is in the class ⊥. Properties of weak Gorenstein cotorsion modu... Let R be a ring and let be the class of strongly Gorenstein fiat right R-modules. We call a right R-module M a weak Gorenstein cotorsion module if M is in the class ⊥. Properties of weak Gorenstein cotorsion modules are investigated. It is shown that weak Gorenstein cotorsion R-modules over coherent rings are indeed weaker than Gorenstein cotorsion R-modules. Weak Gorenstein cotorsion dimension for modules and rings are also studied. 展开更多
关键词 weak Gorenstein cotorsion module weak Gorenstein cotorsion injective dimension global weak Corenstein cotorsion dimension
原文传递
Relative(n,k)-Weak Cotorsion Modules
4
作者 Mostafa Amini Houda Amzil Driss Bennis 《Algebra Colloquium》 SCIE 2024年第3期481-498,共18页
Let R be a ring and n,k be two non-negative integers.As an extension of several known notions,we introduce and study(n,k)-weak cotorsion modules using the class of right R-modules with n-weak fat dimensions at most k.... Let R be a ring and n,k be two non-negative integers.As an extension of several known notions,we introduce and study(n,k)-weak cotorsion modules using the class of right R-modules with n-weak fat dimensions at most k.Various examples and applications are also given. 展开更多
关键词 (n k)-weak cotorsion module n-weak injective module n-weak fat module n-super finitely presented module
原文传递
Some Remarks on Locally Almost Perfect Domains
5
作者 Xiaolei ZHANG 《Journal of Mathematical Research with Applications》 CSCD 2023年第1期40-48,共9页
An integral domain R is called a locally almost perfect domain provided that Rm is an almost perfect domain for any maximal ideal m of R.In this paper,we give several characterizations of locally almost perfect domain... An integral domain R is called a locally almost perfect domain provided that Rm is an almost perfect domain for any maximal ideal m of R.In this paper,we give several characterizations of locally almost perfect domains in terms of locally perfect rings,almost projective modules,weak-injective modules,almost strongly flat modules and strongly Matlis cotorsion modules. 展开更多
关键词 locally almost perfect domain almost projective module almost strongly flat module strongly Matlis cotorsion module
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部