We describe a new active-set, cutting-plane Constraint Optimal Selection Technique (COST) for solving general linear programming problems. We describe strategies to bound the initial problem and simultaneously add mul...We describe a new active-set, cutting-plane Constraint Optimal Selection Technique (COST) for solving general linear programming problems. We describe strategies to bound the initial problem and simultaneously add multiple constraints. We give an interpretation of the new COST’s selection rule, which considers both the depth of constraints as well as their angles from the objective function. We provide computational comparisons of the COST with existing linear programming algorithms, including other COSTs in the literature, for some large-scale problems. Finally, we discuss conclusions and future research.展开更多
During the use of robotics in applications such as antiterrorism or combat,a motion-constrained pursuer vehicle,such as a Dubins unmanned surface vehicle(USV),must get close enough(within a prescribed zero or positive...During the use of robotics in applications such as antiterrorism or combat,a motion-constrained pursuer vehicle,such as a Dubins unmanned surface vehicle(USV),must get close enough(within a prescribed zero or positive distance)to a moving target as quickly as possible,resulting in the extended minimum-time intercept problem(EMTIP).Existing research has primarily focused on the zero-distance intercept problem,MTIP,establishing the necessary or sufficient conditions for MTIP optimality,and utilizing analytic algorithms,such as root-finding algorithms,to calculate the optimal solutions.However,these approaches depend heavily on the properties of the analytic algorithm,making them inapplicable when problem settings change,such as in the case of a positive effective range or complicated target motions outside uniform rectilinear motion.In this study,an approach employing a high-accuracy and quality-guaranteed mixed-integer piecewise-linear program(QG-PWL)is proposed for the EMTIP.This program can accommodate different effective interception ranges and complicated target motions(variable velocity or complicated trajectories).The high accuracy and quality guarantees of QG-PWL originate from elegant strategies such as piecewise linearization and other developed operation strategies.The approximate error in the intercept path length is proved to be bounded to h^(2)/(4√2),where h is the piecewise length.展开更多
This paper aims to find unit cost of a product for firms. It establishes a linear cost model to find unit cost. Linear goal programs assume a direct relationship between independent variable and dependent variable. De...This paper aims to find unit cost of a product for firms. It establishes a linear cost model to find unit cost. Linear goal programs assume a direct relationship between independent variable and dependent variable. Dependent variable of linear model is unit cost. Independent variables are cost accounting variables. They are supply cost, labor cost, and administration cost. This study assumes a direct relationship between supply-labor-administration costs and unit cost. Therefore, it establishes a linear cost model. The major research question of this study is to apply linear goal programming to cost accounting. The goal of this linear program is to find unit cost of product. This study uses quantitative method and human capital method. The main research result is linear costing model itself.展开更多
Byproduct gas is an important secondary energy in iron and steel industry, and its optimization is vital to cost reduction. With the development of iron and steel industry to be more eco-friendly, it is necessary to c...Byproduct gas is an important secondary energy in iron and steel industry, and its optimization is vital to cost reduction. With the development of iron and steel industry to be more eco-friendly, it is necessary to construct an integrated optimized system, taking economics, energy consumption and environment into consideration. Therefore, the environmental cost caused by pollutants discharge should be factored in total cost when optimizing byproduct gas distribution. A green mixed integer linear programming (MILP) model for the optimization of byproduct gases was established to reduce total cost, including both operation cost and environmental cost. The operation cost included penalty for gas deviation, costs of fuel and water consumption, holder booster trip penalty, and so forth; while the environmental cost consisted of penalties for both direct and indirect pollutants discharge. Case study showed that the proposed model brought an optimum solution and 2.2% of the total cost could be reduced compared with previous one.展开更多
Linear programming(LP)decoding is a classic decoding method for linear block codes,and has attracted recent researches because its potential in joint channel processing.However,for polar codes,LP decoders has long bee...Linear programming(LP)decoding is a classic decoding method for linear block codes,and has attracted recent researches because its potential in joint channel processing.However,for polar codes,LP decoders has long been outperformed by CRCaided successive cancellation list(CA-SCL)decoders.To increase the competitiveness of 5G NR LP polar decoding,it is possible to gain performance improvements by exploiting the cyclic redundancy check(CRC)setup.In this paper,we propose a combined scheme of reduced sparsified factor graph-sparsified CRC(RSFG-SCRC)and augmented generator matrix-CRC(AGM-CRC),for polytope generation in adaptive linear programming(ALP)decoder for 5G polar codes.Augmented generator matrix(AGM)polytope and improved maximum cycle strategy-auxiliary node pairs 4(MCS-ANP-4)algorithm are proposed,to make efficient use of CRC constraints and minimize the constraint size for the decoder.Numerical simulations show that adaptive linear programming decoders with our proposed RSFG-SCRC and AGM-CRC polytopes can achieve significantly better block error rate(BLER)performance than a benchmark CA-SCL-8 decoder especially in harsh low-to-medium SNR regions.展开更多
A multi-objective linear programming problem is made from fuzzy linear programming problem. It is due the fact that it is used fuzzy programming method during the solution. The Multi objective linear programming probl...A multi-objective linear programming problem is made from fuzzy linear programming problem. It is due the fact that it is used fuzzy programming method during the solution. The Multi objective linear programming problem can be converted into the single objective function by various methods as Chandra Sen’s method, weighted sum method, ranking function method, statistical averaging method. In this paper, Chandra Sen’s method and statistical averaging method both are used here for making single objective function from multi-objective function. Two multi-objective programming problems are solved to verify the result. One is numerical example and the other is real life example. Then the problems are solved by ordinary simplex method and fuzzy programming method. It can be seen that fuzzy programming method gives better optimal values than the ordinary simplex method.展开更多
In this paper, the statistical averaging method and the new statistical averaging methods have been used to solve the fuzzy multi-objective linear programming problems. These methods have been applied to form a single...In this paper, the statistical averaging method and the new statistical averaging methods have been used to solve the fuzzy multi-objective linear programming problems. These methods have been applied to form a single objective function from the fuzzy multi-objective linear programming problems. At first, a numerical example of solving fuzzy multi-objective linear programming problem has been provided to validate the maximum risk reduction by the proposed method. The proposed method has been applied to assess the risk of damage due to natural calamities like flood, cyclone, sidor, and storms at the coastal areas in Bangladesh. The proposed method of solving the fuzzy multi-objective linear programming problems by the statistical method has been compared with the Chandra Sen’s method. The numerical results show that the proposed method maximizes the risk reduction capacity better than Chandra Sen’s method.展开更多
To gain superior computational efficiency, it might be necessary to change the underlying philosophy of the simplex method. In this paper, we propose a Phase-1 method along this line. We relax not only the conventiona...To gain superior computational efficiency, it might be necessary to change the underlying philosophy of the simplex method. In this paper, we propose a Phase-1 method along this line. We relax not only the conventional condition that some function value increases monotonically, but also the condition that all feasible variables remain feasible after basis change in Phase-1. That is, taking a purely combinatorial approach to achieving feasibility. This enables us to get rid of ratio test in pivoting, reducing computational cost per iteration to a large extent. Numerical results on a group of problems are encouraging.展开更多
Network virtualization is known as a promising technology to tackle the ossification of current Internet and will play an important role in the future network area. Virtual network embedding(VNE) is a key issue in net...Network virtualization is known as a promising technology to tackle the ossification of current Internet and will play an important role in the future network area. Virtual network embedding(VNE) is a key issue in network virtualization. VNE is NP-hard and former VNE algorithms are mostly heuristic in the literature.VNE exact algorithms have been developed in recent years. However, the constraints of exact VNE are only node capacity and link bandwidth.Based on these, this paper presents an exact VNE algorithm, ILP-LC, which is based on Integer Linear Programming(ILP), for embedding virtual network request with location constraints. This novel algorithm is aiming at mapping virtual network request(VNR) successfully as many as possible and consuming less substrate resources.The topology of each VNR is randomly generated by Waxman model. Simulation results show that the proposed ILP-LC algorithm outperforms the typical heuristic algorithms in terms of the VNR acceptance ratio, at least 15%.展开更多
A method is provided for finding an initial regular solution of a linear programming in this paper. The key to this method is to solve an auxiliary linear programming instead of to introduce any artificial variable or...A method is provided for finding an initial regular solution of a linear programming in this paper. The key to this method is to solve an auxiliary linear programming instead of to introduce any artificial variable or constraint. Compared with the traditional method of achieving the regular solution by introducing an artificial constraint, it has advantages of saving the memories and little computational efforts.展开更多
Barrier coverage of wireless sensor networks is an important issue in the detection of intruders who are attempting to cross a region of interest.However,in certain applications,barrier coverage cannot be satisfied af...Barrier coverage of wireless sensor networks is an important issue in the detection of intruders who are attempting to cross a region of interest.However,in certain applications,barrier coverage cannot be satisfied after random deployment.In this paper,we study how mobile sensors can be efficiently relocated to achieve k-barrier coverage.In particular,two problems are studied:relocation of sensors with minimum number of mobile sensors and formation of k-barrier coverage with minimum energy cost.These two problems were formulated as 0–1 integer linear programming(ILP).The formulation is computationally intractable because of integrality and complicated constraints.Therefore,we relax the integrality and complicated constraints of the formulation and construct a special model known as RELAX-RSMN with a totally unimodular constraint coefficient matrix to solve the relaxed 0–1 ILP rapidly through linear programming.Theoretical analysis and simulation were performed to verify the effectiveness of our approach.展开更多
In this paper, we propose an interactive method for solving the multilevel linear programming problems based on the intuitionistic fuzzy set theory. Firstly, the membership function and the non-membership function are...In this paper, we propose an interactive method for solving the multilevel linear programming problems based on the intuitionistic fuzzy set theory. Firstly, the membership function and the non-membership function are introduced to describe the uncertainty of the decision makers. Secondly, a satisfactory solution is derived by updating the minimum satisfactory degrees with considerations of the overall satisfactory balance among all levels. In addition, the steps of the proposed method are given in this paper. Finally, numerical examples illustrate the feasibility of this method.展开更多
In this paper,weak optimal inverse problems of interval linear programming(IvLP)are studied based on KKT conditions.Firstly,the problem is precisely defined.Specifically,by adjusting the minimum change of the current ...In this paper,weak optimal inverse problems of interval linear programming(IvLP)are studied based on KKT conditions.Firstly,the problem is precisely defined.Specifically,by adjusting the minimum change of the current cost coefficient,a given weak solution can become optimal.Then,an equivalent characterization of weak optimal inverse IvLP problems is obtained.Finally,the problem is simplified without adjusting the cost coefficient of null variable.展开更多
The robust guaranteed cost sampled-data control was studied for a class of uncertain nonlinear systems with time-varying delay. The parameter uncertainties are time-varying norm-bounded and appear in both the state an...The robust guaranteed cost sampled-data control was studied for a class of uncertain nonlinear systems with time-varying delay. The parameter uncertainties are time-varying norm-bounded and appear in both the state and the input control matrices. By applying an input delay approach, the system was transformed into a continuous time-delay system. Attention was focused on the design of a robust guaranteed cost sampled-data control law which guarantees that the closed-loop system is asymptotically stable and the quadratic performance index is less than a certain bound for all admissible uncertainties. By applying Lyapunov stability theory, the theorems were derived to provide sufficient conditions for the existence of robust guaranteed cost sampled-data control law in the form of linear matrix inequalities (LMIs), especially an optimal state-feedback guaranteed cost sampled-data control law which ensures the minimization of the guaranteed cost was given. The effectiveness of the proposed method was illustrated by a simulation example with the asymptotically stable curves of system state under the initial condition of x(0)=[0.679 6 0].展开更多
A new heuristic algorithm is proposed for solving general integer linear programming problems. In the algorithm, the objective function hyperplane is used as a cutting plane, and then by introducing a special set of a...A new heuristic algorithm is proposed for solving general integer linear programming problems. In the algorithm, the objective function hyperplane is used as a cutting plane, and then by introducing a special set of assistant sets, an efficient heuristic search for the solution to the integer linear program is carried out in the sets on the objective function hyperplane. A simple numerical example shows that the algorithm is efficient for some problems, and therefore, of practical interest.展开更多
The problem of guaranteed cost fuzzy controller is studied for a class of nonlinear time-delay neutral sys-tems with norm-bounded uncertainty based on T-S model. The sufficient conditions are first derived for the exi...The problem of guaranteed cost fuzzy controller is studied for a class of nonlinear time-delay neutral sys-tems with norm-bounded uncertainty based on T-S model. The sufficient conditions are first derived for the existenceof guaranteed cost fuzzy controllers. These sufficient conditions are equivalent to a kind of linear matrix inequalities.Furthermore, a convex optimization problem with LMI constraints is formulated to design the optimal guaranteedcost controller.展开更多
Selecting diets by quantitative techniques is becoming increasingly common. Linear programming is the most popular technique for the selection of least cost mixes of food to meet specific nutritional requirements for ...Selecting diets by quantitative techniques is becoming increasingly common. Linear programming is the most popular technique for the selection of least cost mixes of food to meet specific nutritional requirements for a particular group of persons for either general health or disease-related reason. Hypertension is a silent killer and its prevalence rate especially in the developing countries, which has been mostly associated to demographic, environmental and genetic factors, is becoming alarming. The DASH diet has been clinically proven to prevent and control hypertension. In this paper, a model that provides a Daily Optimal (minimum cost) DASH Diet plan for people with hypertension is formulated. The objective is to obtain daily minimum cost diet plans that satisfy the DASH Diets’ nutrients Tolerable Upper and Lower Intake for different daily Calorie Levels. The formulated DASH diet model was further illustrated using real data set with food samples gotten from the DASH eating plan chart. A DASH diet model for a hypertensive person with a 2000-daily-caloric need was formulated and its optimal diet plan for a day obtained with a total cost of 944.41 Naira. Optimal diet plans for other recommended daily calorie levels were also obtained.展开更多
Posterior constraint optimal selection techniques (COSTs) are developed for nonnegative linear programming problems (NNLPs), and a geometric interpretation is provided. The posterior approach is used in both a dynamic...Posterior constraint optimal selection techniques (COSTs) are developed for nonnegative linear programming problems (NNLPs), and a geometric interpretation is provided. The posterior approach is used in both a dynamic and non-dynamic active-set framework. The computational performance of these methods is compared with the CPLEX standard linear programming algorithms, with two most-violated constraint approaches, and with previously developed COST algorithms for large-scale problems.展开更多
Bilevel linear programming, which consists of the objective functions of the upper level and lower level, is a useful tool for modeling decentralized decision problems. Various methods are proposed for solving this pr...Bilevel linear programming, which consists of the objective functions of the upper level and lower level, is a useful tool for modeling decentralized decision problems. Various methods are proposed for solving this problem. Of all the algorithms, the ge- netic algorithm is an alternative to conventional approaches to find the solution of the bilevel linear programming. In this paper, we describe an adaptive genetic algorithm for solving the bilevel linear programming problem to overcome the difficulty of determining the probabilities of crossover and mutation. In addition, some techniques are adopted not only to deal with the difficulty that most of the chromosomes maybe infeasible in solving constrained optimization problem with genetic algorithm but also to improve the efficiency of the algorithm. The performance of this proposed algorithm is illustrated by the examples from references.展开更多
In this paper,the problem of guaranteed cost control for a class of uncertain discrete-time Markovian jump linear systems with mode-dependent time-delays and a given quadratic cost function are investigated. Attention...In this paper,the problem of guaranteed cost control for a class of uncertain discrete-time Markovian jump linear systems with mode-dependent time-delays and a given quadratic cost function are investigated. Attention is focused on designing a memoryless state feedback control law such that the closed-loop system is robust stochastically stable and the closed-loop cost function value is not more than a specified upper bound,for all admissible uncertainties. The key features of the approach include the introduction of a new type of suitable stochastic Lyapunov functional and free weighting matrices techniques. Sufficient conditions for the existence of such controller are obtained in terms of a set of linear matrix inequalities. A numerical example is given to illustrate the less conservatism of the proposed techniques.展开更多
文摘We describe a new active-set, cutting-plane Constraint Optimal Selection Technique (COST) for solving general linear programming problems. We describe strategies to bound the initial problem and simultaneously add multiple constraints. We give an interpretation of the new COST’s selection rule, which considers both the depth of constraints as well as their angles from the objective function. We provide computational comparisons of the COST with existing linear programming algorithms, including other COSTs in the literature, for some large-scale problems. Finally, we discuss conclusions and future research.
基金supported by the National Natural Sci‐ence Foundation of China(Grant No.62306325)。
文摘During the use of robotics in applications such as antiterrorism or combat,a motion-constrained pursuer vehicle,such as a Dubins unmanned surface vehicle(USV),must get close enough(within a prescribed zero or positive distance)to a moving target as quickly as possible,resulting in the extended minimum-time intercept problem(EMTIP).Existing research has primarily focused on the zero-distance intercept problem,MTIP,establishing the necessary or sufficient conditions for MTIP optimality,and utilizing analytic algorithms,such as root-finding algorithms,to calculate the optimal solutions.However,these approaches depend heavily on the properties of the analytic algorithm,making them inapplicable when problem settings change,such as in the case of a positive effective range or complicated target motions outside uniform rectilinear motion.In this study,an approach employing a high-accuracy and quality-guaranteed mixed-integer piecewise-linear program(QG-PWL)is proposed for the EMTIP.This program can accommodate different effective interception ranges and complicated target motions(variable velocity or complicated trajectories).The high accuracy and quality guarantees of QG-PWL originate from elegant strategies such as piecewise linearization and other developed operation strategies.The approximate error in the intercept path length is proved to be bounded to h^(2)/(4√2),where h is the piecewise length.
文摘This paper aims to find unit cost of a product for firms. It establishes a linear cost model to find unit cost. Linear goal programs assume a direct relationship between independent variable and dependent variable. Dependent variable of linear model is unit cost. Independent variables are cost accounting variables. They are supply cost, labor cost, and administration cost. This study assumes a direct relationship between supply-labor-administration costs and unit cost. Therefore, it establishes a linear cost model. The major research question of this study is to apply linear goal programming to cost accounting. The goal of this linear program is to find unit cost of product. This study uses quantitative method and human capital method. The main research result is linear costing model itself.
基金Sponsored by Beijing Social Science Foundation of China(14JGC110)Social Science Research Common Program of Beijing Municipal Commission of Education of China(SM201510038011)CUEB Foundation of China(2014XJG005)
文摘Byproduct gas is an important secondary energy in iron and steel industry, and its optimization is vital to cost reduction. With the development of iron and steel industry to be more eco-friendly, it is necessary to construct an integrated optimized system, taking economics, energy consumption and environment into consideration. Therefore, the environmental cost caused by pollutants discharge should be factored in total cost when optimizing byproduct gas distribution. A green mixed integer linear programming (MILP) model for the optimization of byproduct gases was established to reduce total cost, including both operation cost and environmental cost. The operation cost included penalty for gas deviation, costs of fuel and water consumption, holder booster trip penalty, and so forth; while the environmental cost consisted of penalties for both direct and indirect pollutants discharge. Case study showed that the proposed model brought an optimum solution and 2.2% of the total cost could be reduced compared with previous one.
基金supported by China Postdoctoral Science Foundation(No.2020M670469)National Key Research and Development Program of China(No.2019YFB1803303,No.2020YFB1806702).
文摘Linear programming(LP)decoding is a classic decoding method for linear block codes,and has attracted recent researches because its potential in joint channel processing.However,for polar codes,LP decoders has long been outperformed by CRCaided successive cancellation list(CA-SCL)decoders.To increase the competitiveness of 5G NR LP polar decoding,it is possible to gain performance improvements by exploiting the cyclic redundancy check(CRC)setup.In this paper,we propose a combined scheme of reduced sparsified factor graph-sparsified CRC(RSFG-SCRC)and augmented generator matrix-CRC(AGM-CRC),for polytope generation in adaptive linear programming(ALP)decoder for 5G polar codes.Augmented generator matrix(AGM)polytope and improved maximum cycle strategy-auxiliary node pairs 4(MCS-ANP-4)algorithm are proposed,to make efficient use of CRC constraints and minimize the constraint size for the decoder.Numerical simulations show that adaptive linear programming decoders with our proposed RSFG-SCRC and AGM-CRC polytopes can achieve significantly better block error rate(BLER)performance than a benchmark CA-SCL-8 decoder especially in harsh low-to-medium SNR regions.
文摘A multi-objective linear programming problem is made from fuzzy linear programming problem. It is due the fact that it is used fuzzy programming method during the solution. The Multi objective linear programming problem can be converted into the single objective function by various methods as Chandra Sen’s method, weighted sum method, ranking function method, statistical averaging method. In this paper, Chandra Sen’s method and statistical averaging method both are used here for making single objective function from multi-objective function. Two multi-objective programming problems are solved to verify the result. One is numerical example and the other is real life example. Then the problems are solved by ordinary simplex method and fuzzy programming method. It can be seen that fuzzy programming method gives better optimal values than the ordinary simplex method.
文摘In this paper, the statistical averaging method and the new statistical averaging methods have been used to solve the fuzzy multi-objective linear programming problems. These methods have been applied to form a single objective function from the fuzzy multi-objective linear programming problems. At first, a numerical example of solving fuzzy multi-objective linear programming problem has been provided to validate the maximum risk reduction by the proposed method. The proposed method has been applied to assess the risk of damage due to natural calamities like flood, cyclone, sidor, and storms at the coastal areas in Bangladesh. The proposed method of solving the fuzzy multi-objective linear programming problems by the statistical method has been compared with the Chandra Sen’s method. The numerical results show that the proposed method maximizes the risk reduction capacity better than Chandra Sen’s method.
文摘To gain superior computational efficiency, it might be necessary to change the underlying philosophy of the simplex method. In this paper, we propose a Phase-1 method along this line. We relax not only the conventional condition that some function value increases monotonically, but also the condition that all feasible variables remain feasible after basis change in Phase-1. That is, taking a purely combinatorial approach to achieving feasibility. This enables us to get rid of ratio test in pivoting, reducing computational cost per iteration to a large extent. Numerical results on a group of problems are encouraging.
基金supported by the National Basic Research Program of China(973 Program)under Grant 2013CB329005
文摘Network virtualization is known as a promising technology to tackle the ossification of current Internet and will play an important role in the future network area. Virtual network embedding(VNE) is a key issue in network virtualization. VNE is NP-hard and former VNE algorithms are mostly heuristic in the literature.VNE exact algorithms have been developed in recent years. However, the constraints of exact VNE are only node capacity and link bandwidth.Based on these, this paper presents an exact VNE algorithm, ILP-LC, which is based on Integer Linear Programming(ILP), for embedding virtual network request with location constraints. This novel algorithm is aiming at mapping virtual network request(VNR) successfully as many as possible and consuming less substrate resources.The topology of each VNR is randomly generated by Waxman model. Simulation results show that the proposed ILP-LC algorithm outperforms the typical heuristic algorithms in terms of the VNR acceptance ratio, at least 15%.
文摘A method is provided for finding an initial regular solution of a linear programming in this paper. The key to this method is to solve an auxiliary linear programming instead of to introduce any artificial variable or constraint. Compared with the traditional method of achieving the regular solution by introducing an artificial constraint, it has advantages of saving the memories and little computational efforts.
基金supported by the NSFC(U1536206,61232016,U1405254,61373133,61502242,71401176)BK20150925the PAPD fund
文摘Barrier coverage of wireless sensor networks is an important issue in the detection of intruders who are attempting to cross a region of interest.However,in certain applications,barrier coverage cannot be satisfied after random deployment.In this paper,we study how mobile sensors can be efficiently relocated to achieve k-barrier coverage.In particular,two problems are studied:relocation of sensors with minimum number of mobile sensors and formation of k-barrier coverage with minimum energy cost.These two problems were formulated as 0–1 integer linear programming(ILP).The formulation is computationally intractable because of integrality and complicated constraints.Therefore,we relax the integrality and complicated constraints of the formulation and construct a special model known as RELAX-RSMN with a totally unimodular constraint coefficient matrix to solve the relaxed 0–1 ILP rapidly through linear programming.Theoretical analysis and simulation were performed to verify the effectiveness of our approach.
基金Supported by the National Natural Science Foundation of China(71471140,71171150,71103135)
文摘In this paper, we propose an interactive method for solving the multilevel linear programming problems based on the intuitionistic fuzzy set theory. Firstly, the membership function and the non-membership function are introduced to describe the uncertainty of the decision makers. Secondly, a satisfactory solution is derived by updating the minimum satisfactory degrees with considerations of the overall satisfactory balance among all levels. In addition, the steps of the proposed method are given in this paper. Finally, numerical examples illustrate the feasibility of this method.
基金Supported by the National Natural Science Foundation of China(11971433)First Class Discipline of Zhe-jiang-A(Zhejiang Gongshang University-Statistics,1020JYN4120004G-091),Graduate Scientic Research and Innovation Foundation of Zhejiang Gongshang University.
文摘In this paper,weak optimal inverse problems of interval linear programming(IvLP)are studied based on KKT conditions.Firstly,the problem is precisely defined.Specifically,by adjusting the minimum change of the current cost coefficient,a given weak solution can become optimal.Then,an equivalent characterization of weak optimal inverse IvLP problems is obtained.Finally,the problem is simplified without adjusting the cost coefficient of null variable.
基金Project(12511109) supported by the Science and Technology Studies Foundation of Heilongjiang Educational Committee of 2011, China
文摘The robust guaranteed cost sampled-data control was studied for a class of uncertain nonlinear systems with time-varying delay. The parameter uncertainties are time-varying norm-bounded and appear in both the state and the input control matrices. By applying an input delay approach, the system was transformed into a continuous time-delay system. Attention was focused on the design of a robust guaranteed cost sampled-data control law which guarantees that the closed-loop system is asymptotically stable and the quadratic performance index is less than a certain bound for all admissible uncertainties. By applying Lyapunov stability theory, the theorems were derived to provide sufficient conditions for the existence of robust guaranteed cost sampled-data control law in the form of linear matrix inequalities (LMIs), especially an optimal state-feedback guaranteed cost sampled-data control law which ensures the minimization of the guaranteed cost was given. The effectiveness of the proposed method was illustrated by a simulation example with the asymptotically stable curves of system state under the initial condition of x(0)=[0.679 6 0].
文摘A new heuristic algorithm is proposed for solving general integer linear programming problems. In the algorithm, the objective function hyperplane is used as a cutting plane, and then by introducing a special set of assistant sets, an efficient heuristic search for the solution to the integer linear program is carried out in the sets on the objective function hyperplane. A simple numerical example shows that the algorithm is efficient for some problems, and therefore, of practical interest.
文摘The problem of guaranteed cost fuzzy controller is studied for a class of nonlinear time-delay neutral sys-tems with norm-bounded uncertainty based on T-S model. The sufficient conditions are first derived for the existenceof guaranteed cost fuzzy controllers. These sufficient conditions are equivalent to a kind of linear matrix inequalities.Furthermore, a convex optimization problem with LMI constraints is formulated to design the optimal guaranteedcost controller.
文摘Selecting diets by quantitative techniques is becoming increasingly common. Linear programming is the most popular technique for the selection of least cost mixes of food to meet specific nutritional requirements for a particular group of persons for either general health or disease-related reason. Hypertension is a silent killer and its prevalence rate especially in the developing countries, which has been mostly associated to demographic, environmental and genetic factors, is becoming alarming. The DASH diet has been clinically proven to prevent and control hypertension. In this paper, a model that provides a Daily Optimal (minimum cost) DASH Diet plan for people with hypertension is formulated. The objective is to obtain daily minimum cost diet plans that satisfy the DASH Diets’ nutrients Tolerable Upper and Lower Intake for different daily Calorie Levels. The formulated DASH diet model was further illustrated using real data set with food samples gotten from the DASH eating plan chart. A DASH diet model for a hypertensive person with a 2000-daily-caloric need was formulated and its optimal diet plan for a day obtained with a total cost of 944.41 Naira. Optimal diet plans for other recommended daily calorie levels were also obtained.
文摘Posterior constraint optimal selection techniques (COSTs) are developed for nonnegative linear programming problems (NNLPs), and a geometric interpretation is provided. The posterior approach is used in both a dynamic and non-dynamic active-set framework. The computational performance of these methods is compared with the CPLEX standard linear programming algorithms, with two most-violated constraint approaches, and with previously developed COST algorithms for large-scale problems.
基金the National Natural Science Foundation of China(Nos.60574071 and70771080)
文摘Bilevel linear programming, which consists of the objective functions of the upper level and lower level, is a useful tool for modeling decentralized decision problems. Various methods are proposed for solving this problem. Of all the algorithms, the ge- netic algorithm is an alternative to conventional approaches to find the solution of the bilevel linear programming. In this paper, we describe an adaptive genetic algorithm for solving the bilevel linear programming problem to overcome the difficulty of determining the probabilities of crossover and mutation. In addition, some techniques are adopted not only to deal with the difficulty that most of the chromosomes maybe infeasible in solving constrained optimization problem with genetic algorithm but also to improve the efficiency of the algorithm. The performance of this proposed algorithm is illustrated by the examples from references.
基金Sponsored by the National Defense Basic Research Foundation of China (Grant No. 9140A17030207HT01)
文摘In this paper,the problem of guaranteed cost control for a class of uncertain discrete-time Markovian jump linear systems with mode-dependent time-delays and a given quadratic cost function are investigated. Attention is focused on designing a memoryless state feedback control law such that the closed-loop system is robust stochastically stable and the closed-loop cost function value is not more than a specified upper bound,for all admissible uncertainties. The key features of the approach include the introduction of a new type of suitable stochastic Lyapunov functional and free weighting matrices techniques. Sufficient conditions for the existence of such controller are obtained in terms of a set of linear matrix inequalities. A numerical example is given to illustrate the less conservatism of the proposed techniques.