In this paper diamond like carbon (DLC) /stainless steel biofunctionally gradient coatings have been prepared with two target magnetron cosputtering to solve the poor adhesion of DLC having excellent haemocompatibilit...In this paper diamond like carbon (DLC) /stainless steel biofunctionally gradient coatings have been prepared with two target magnetron cosputtering to solve the poor adhesion of DLC having excellent haemocompatibility to implant stainless steel having high strength and toughness.It has been Known from the experimental results that the adhesion of DLC coated to implant stainless steel have been significantly improved with the gradient interlayers,and biofuntionally gradient materials having excellent haemocompatibilty,strength and toughness have been prepared successively.展开更多
Magnesium ion batteries are emerging as promising alternatives to lithium ion batteries because of their advantages including high energydensity,dendrite-free features and low cost.Nevertheless,one of the major challe...Magnesium ion batteries are emerging as promising alternatives to lithium ion batteries because of their advantages including high energydensity,dendrite-free features and low cost.Nevertheless,one of the major challenges for magnesium ion batteries is the kinetically sluggishmagnesium insertion/extraction and diffusion in electrode materials.Aiming at this issue,biphase eutectic-like bismuth-tin film is designedherein to construct a self-supporting anode with interdigitated phase distribution and hierarchically porous structure,and further fabricated bya facile one-step magnetron cosputtering route.As benchmarked with single-phase bismuth or tin film,the biphase bismuth-tin film delivershigh specific capacity (538 mAh/g at 50 mA/g),excellent rate performance (417 mAh/g at 1,000 mA/g) and good cycling stability (233 mAh/gat the 200th cycle).The superior magnesium storage performance of the sputtered bismuth-tin film could be attributed to the synergetic effectof the interdigitated bismuth/tin phase distribution,hierarchically porous structure and biphase buffering matrices,which could increase ionictransport channels,shorten diffusion lengths and reduce total volume changes.展开更多
InAs-SiO<sub>2</sub> nanocrystal-embedded films were prepared by using radio-frequency cosputtering. The growth behavior of InAs in the composite film has been studied by a transmission electron microscope...InAs-SiO<sub>2</sub> nanocrystal-embedded films were prepared by using radio-frequency cosputtering. The growth behavior of InAs in the composite film has been studied by a transmission electron microscope. It has been found that with the increasing substrate temperature, InAs in the matrix undergoes transitions from an initial dispersed phase to a fractal structure of the InAs phase, then to nucleation, and finally to grain growth. Large blueshift of the optical absorption edges of the films was observed from the optical absorption spectra. The relationship between the blueshift of optical absorption edge and the average size of the nanocrystals has been explained by the effective-mass approximation.展开更多
基金The project is supported by Natural Science Foundation of China
文摘In this paper diamond like carbon (DLC) /stainless steel biofunctionally gradient coatings have been prepared with two target magnetron cosputtering to solve the poor adhesion of DLC having excellent haemocompatibility to implant stainless steel having high strength and toughness.It has been Known from the experimental results that the adhesion of DLC coated to implant stainless steel have been significantly improved with the gradient interlayers,and biofuntionally gradient materials having excellent haemocompatibilty,strength and toughness have been prepared successively.
基金National Natural Science Foundation of China (Nos. 51671115 and 51871133)Department of Science and Technology of Shandong Province for Young Tip-top Talent Support ProjectYoung Tip-top Talent Support Project (the Organization Department of the Central Committee of the CPC).
文摘Magnesium ion batteries are emerging as promising alternatives to lithium ion batteries because of their advantages including high energydensity,dendrite-free features and low cost.Nevertheless,one of the major challenges for magnesium ion batteries is the kinetically sluggishmagnesium insertion/extraction and diffusion in electrode materials.Aiming at this issue,biphase eutectic-like bismuth-tin film is designedherein to construct a self-supporting anode with interdigitated phase distribution and hierarchically porous structure,and further fabricated bya facile one-step magnetron cosputtering route.As benchmarked with single-phase bismuth or tin film,the biphase bismuth-tin film delivershigh specific capacity (538 mAh/g at 50 mA/g),excellent rate performance (417 mAh/g at 1,000 mA/g) and good cycling stability (233 mAh/gat the 200th cycle).The superior magnesium storage performance of the sputtered bismuth-tin film could be attributed to the synergetic effectof the interdigitated bismuth/tin phase distribution,hierarchically porous structure and biphase buffering matrices,which could increase ionictransport channels,shorten diffusion lengths and reduce total volume changes.
文摘InAs-SiO<sub>2</sub> nanocrystal-embedded films were prepared by using radio-frequency cosputtering. The growth behavior of InAs in the composite film has been studied by a transmission electron microscope. It has been found that with the increasing substrate temperature, InAs in the matrix undergoes transitions from an initial dispersed phase to a fractal structure of the InAs phase, then to nucleation, and finally to grain growth. Large blueshift of the optical absorption edges of the films was observed from the optical absorption spectra. The relationship between the blueshift of optical absorption edge and the average size of the nanocrystals has been explained by the effective-mass approximation.