The corticoreticular tract (CRT) is known to be involved in walking and postural control. Using diffusion tensor tractography (DTT), we investigated the relationship between the CRT and gait dysfunction, includ- i...The corticoreticular tract (CRT) is known to be involved in walking and postural control. Using diffusion tensor tractography (DTT), we investigated the relationship between the CRT and gait dysfunction, includ- ing trunk instability, in pediatric patients. Thirty patients with delayed development and 15 age-matched, typically-developed (TD) children were recruited. Fifteen patients with gait dysfunction (bilateral trunk instability) were included in the group A, and the other 15 patients with gait dysfunction (unilateral trunk instability) were included in the group B. The Growth Motor Function Classification System, Functional Ambulation Category scale, and Functional Ambulation Category scale were used for measurement of functional state. Fractional anisotropy, apparent diffusion coefficient, fiber number, and tract integrity of the CRT and corticospinal tract were measured. Diffusion parameters or integrity of corticospinal tract were not significantly different in the three study groups. However, CRT results revealed that both CRTs were disrupted in the group A, whereas CRT disruption in the hemispheres contralateral to clinical mani- festations was observed in the group B. Fractional anisotropy values and fiber numbers in both CRTs were decreased in the group A than in the group TD. The extents of decreases of fractional anisotropy values and fiber numbers on the ipsilateral side relative to those on the contralateral side were greater in the group B than in the group TD. Functional evaluation data and clinical manifestations were found to show strong correlations with CRT status, rather than with corticospinal tract status. These findings suggest that CRT status appears to be clinically important for gait function and trunk stability in pediatric patients and DTT can help assess CRT status in pediatric patients with gait dysfunction.展开更多
The corticoreticular pathway(CRP)mainly mediates proximal and axial muscles and therefore it is an important neural tract for walking(Miyai et al.,2002;Matsuyama et al.,2004;Mendoza and Foundas,2007).Diffusion ten...The corticoreticular pathway(CRP)mainly mediates proximal and axial muscles and therefore it is an important neural tract for walking(Miyai et al.,2002;Matsuyama et al.,2004;Mendoza and Foundas,2007).Diffusion tensor tractography(DTT),derived from diffusion tensor imaging(DTI),展开更多
In clinical practice, it is challenging to elucidate the location of the lesion in a patient's nervous system that is causing the neurologic symptoms, because lesions are often microscopic and cannot be revealed by c...In clinical practice, it is challenging to elucidate the location of the lesion in a patient's nervous system that is causing the neurologic symptoms, because lesions are often microscopic and cannot be revealed by conventional evaluation methods.展开更多
基金supported by Basic Science Research Program through the National Research Foundation of Korea(NRF)funded by the Ministry of Education,Science and Technology(2012-013997)
文摘The corticoreticular tract (CRT) is known to be involved in walking and postural control. Using diffusion tensor tractography (DTT), we investigated the relationship between the CRT and gait dysfunction, includ- ing trunk instability, in pediatric patients. Thirty patients with delayed development and 15 age-matched, typically-developed (TD) children were recruited. Fifteen patients with gait dysfunction (bilateral trunk instability) were included in the group A, and the other 15 patients with gait dysfunction (unilateral trunk instability) were included in the group B. The Growth Motor Function Classification System, Functional Ambulation Category scale, and Functional Ambulation Category scale were used for measurement of functional state. Fractional anisotropy, apparent diffusion coefficient, fiber number, and tract integrity of the CRT and corticospinal tract were measured. Diffusion parameters or integrity of corticospinal tract were not significantly different in the three study groups. However, CRT results revealed that both CRTs were disrupted in the group A, whereas CRT disruption in the hemispheres contralateral to clinical mani- festations was observed in the group B. Fractional anisotropy values and fiber numbers in both CRTs were decreased in the group A than in the group TD. The extents of decreases of fractional anisotropy values and fiber numbers on the ipsilateral side relative to those on the contralateral side were greater in the group B than in the group TD. Functional evaluation data and clinical manifestations were found to show strong correlations with CRT status, rather than with corticospinal tract status. These findings suggest that CRT status appears to be clinically important for gait function and trunk stability in pediatric patients and DTT can help assess CRT status in pediatric patients with gait dysfunction.
基金supported by the National Research Foundation (NRF) of Korea Grant funded by the Korean Government (MSIP),No.2015R1A2A2A01004073
文摘The corticoreticular pathway(CRP)mainly mediates proximal and axial muscles and therefore it is an important neural tract for walking(Miyai et al.,2002;Matsuyama et al.,2004;Mendoza and Foundas,2007).Diffusion tensor tractography(DTT),derived from diffusion tensor imaging(DTI),
文摘In clinical practice, it is challenging to elucidate the location of the lesion in a patient's nervous system that is causing the neurologic symptoms, because lesions are often microscopic and cannot be revealed by conventional evaluation methods.