The corrosivity of the top three metres of the soil along a pipeline route was determined using soil electrical resistivity for the emplacement of a conduit intended to serve as a gas pipeline. Fifty-six Schlumberger ...The corrosivity of the top three metres of the soil along a pipeline route was determined using soil electrical resistivity for the emplacement of a conduit intended to serve as a gas pipeline. Fifty-six Schlumberger vertical electrical soundings (VES) were carried using a maximum current electrode separation ranging between 24 - 100 m at 2.0 km interval. The data was interpreted using a 1D inversion technique software (1X1D, Interpex, USA). Model resistivity values were classified in terms of the degree of corrosivity. Generally, the sub-soil condition along the pipeline route is non-aggressive but being slightly or moderately aggressive in certain areas due to local conditions prevailing at the measuring stations. Based on the corrosivity along the pipeline route, appropriate cathodic protection methods are prescribed.展开更多
This paper evaluate subsoil corrosivity using the electrical resistivity method which was carried out to determine the subsoil resistivity and estimate the degree of corrosion, the resistivity measurements were conduc...This paper evaluate subsoil corrosivity using the electrical resistivity method which was carried out to determine the subsoil resistivity and estimate the degree of corrosion, the resistivity measurements were conducted by using SAS300c resistivity meter. This involves applying a voltage into the soil through metal electrode and measuring the resistance to the flow of electric current. An AC-power supplies current flow (I) between two outer electrodes and the resultant voltage different (V) between two inner electrodes is measured using the Wenner Arrangement. The soil resistance given by R = V/I. This needs to be standardized over a unit length, the resistivity p which measured in ohm-m the equation is, ρ= 2ДdR. There are many factors control the ground resistivity such as soil composition, moisture content, pore water chemistry and pH. The results of the survey show inverse proportion between corrosivity and electrical resistivity, therefore resistivity method is very useful to incipient the corrosion as well as effective, quick, reliable and economic method. Structures such as natural gas, crude oil pipelines and steel constructions were reported to have been affected by soil corrosion all around the world, it can be concluded that sub soil corrosivity around the study area increases southwestern ward with depth.展开更多
The corrosion behavior of pure Magnesium(Mg)in a Mg(OH)2-saturated solution containing different individual constituents of PM2.5 in haze were studied by hydrogen evolution,weight loss and electrochemical experiments....The corrosion behavior of pure Magnesium(Mg)in a Mg(OH)2-saturated solution containing different individual constituents of PM2.5 in haze were studied by hydrogen evolution,weight loss and electrochemical experiments.The results indicated that the corrosivity of these constituents to pure Mg decreased in the following order:(NH4)2SO4>Haze-contaminated-solution>NH4NO3>NH4Cl>NaCl≈KCl≈Na2SO4≈MgCl2≈CaSO4>Mg(OH)2(basic solution)>Ca(NO3)2.Possible mechanisms behind the different corrosion behaviors of Mg in response to these constituents were also briefly discussed in this paper.展开更多
The atmospheric corrosion monitoring(ACM)technique has been widely employed to track the real-time corrosion behavior of metal materials.However,limited studies have applied ACM to the corrosion protection properties ...The atmospheric corrosion monitoring(ACM)technique has been widely employed to track the real-time corrosion behavior of metal materials.However,limited studies have applied ACM to the corrosion protection properties of organic coatings.This study compared a bare epoxy coating with one containing zinc phosphate corrosion inhibitors,both applied on ACM sensors,to observe their corrosion protection properties over time.Coatings with artificial damage via scratches were exposed to immersion and alternating dry and wet environments,which allowed for monitoring galvanic corrosion currents in real-time.Throughout the corrosion tests,the ACM currents of the zinc phosphate/epoxy coating were considerably lower than those of the blank epoxy coating.The trend in ACM current variations closely matched the results obtained from regular electrochemical tests and surface analysis.This alignment highlights the potential of the ACM technique in evaluating the corrosion protection capabilities of organic coatings.Compared with the blank epoxy coating,the zinc phosphate/epoxy coating showed much-decreased ACM current values that confirmed the effective inhibition of zinc phosphate against steel corrosion beneath the damaged coating.展开更多
This study aimed to investigate the effect of varying pyrite(Py)content on copper(Cu)in the presence of different regrinding conditions,which were altered using different types of grinding media:iron,ceramic balls,and...This study aimed to investigate the effect of varying pyrite(Py)content on copper(Cu)in the presence of different regrinding conditions,which were altered using different types of grinding media:iron,ceramic balls,and their mixture,followed by flotation in the cleaner stage.The flotation performance of rough Cu concentrate can be improved by changing the regrinding conditions based on the Py content.Scanning electron microscopy,X-ray spectrometry,ethylenediaminetetraacetic acid disodium salt extraction,and X-ray photoelectron spectroscopy studies illustrated that when the Py content was high,the use of iron media in regrinding promoted the generation of hydrophilic Fe OOH on the surface of Py and improved the Cu grade.The ceramic medium with a low Py content prevented excessive Fe OOH from covering the surface of chalcopyrite(Cpy).Electrochemical studies further showed that the galvanic corrosion current of Cpy-Py increased with the addition of Py and became stronger with the participation of iron media.展开更多
Currently,the demand for electromagnetic wave(EMW)absorbing materials with specific functions and capable of withstanding harsh environments is becoming increasingly urgent.Multi-component interface engineering is con...Currently,the demand for electromagnetic wave(EMW)absorbing materials with specific functions and capable of withstanding harsh environments is becoming increasingly urgent.Multi-component interface engineering is considered an effective means to achieve high-efficiency EMW absorption.However,interface modulation engineering has not been fully discussed and has great potential in the field of EMW absorption.In this study,multi-component tin compound fiber composites based on carbon fiber(CF)substrate were prepared by electrospinning,hydrothermal synthesis,and high-temperature thermal reduction.By utilizing the different properties of different substances,rich heterogeneous interfaces are constructed.This effectively promotes charge transfer and enhances interfacial polarization and conduction loss.The prepared SnS/SnS_(2)/SnO_(2)/CF composites with abundant heterogeneous interfaces have and exhibit excellent EMW absorption properties at a loading of 50 wt%in epoxy resin.The minimum reflection loss(RL)is−46.74 dB and the maximum effective absorption bandwidth is 5.28 GHz.Moreover,SnS/SnS_(2)/SnO_(2)/CF epoxy composite coatings exhibited long-term corrosion resistance on Q235 steel surfaces.Therefore,this study provides an effective strategy for the design of high-efficiency EMW absorbing materials in complex and harsh environments.展开更多
In-situ formed high Mn steel coating reinforced by carbides was formed by laser surface alloying(LSA).Laser alloyed layers on 1Cr18Ni9Ti steel with Mn+W_(2)C(specimen A),Mn+NiWC(specimen B)and Mn+SiC(specimen C)powder...In-situ formed high Mn steel coating reinforced by carbides was formed by laser surface alloying(LSA).Laser alloyed layers on 1Cr18Ni9Ti steel with Mn+W_(2)C(specimen A),Mn+NiWC(specimen B)and Mn+SiC(specimen C)powders were fabricated to improve the wear and corrosion behavior of 1Cr18Ni9Ti steel blades in high speed mixers.Microstructure evolution,phases,element distribution,microhardness,wear and corrosion behavior of the laser alloyed layers were investigated.Results indicated that high Mn steel matrix composites with undissolved W_(2)C,WC and other in-situ formed carbides were formed by LSA with Mn+W_(2)C and Mn+NiWC while SiC totally dissolved into the high Mn matrix when adding Mn+SiC.Ni as the binding phase in Ni-WC powder decreased the crack sensitivity of the alloyed layer as compared with the addition of W_(2)C powder.An improvement in average microhardness was achieved in the matrix in specimen A,B and C,with the value of 615,602 and 277 HV_(0.5),while that of the substrate was 212 HV_(0.5).The increase of microhardness,wear and corrosion resistance is highly corelated to microstructure,formed phases,type and content of carbides,micro-hardness and toughness of the alloyed layers.展开更多
Based on the microstructure characterization,electrochemical impedance spectroscopy,potentiodynamic polarization,and immersion corrosion,this work comparatively analyzed the differences in the electrochemical corrosio...Based on the microstructure characterization,electrochemical impedance spectroscopy,potentiodynamic polarization,and immersion corrosion,this work comparatively analyzed the differences in the electrochemical corrosion morphology and post-foil formation surface morphology of laser beam welded(LBW)sample and spin-formed sample,and compared the corrosion resistance and Cu foil formation ability of two samples in H_(2)SO_(4)/NaCl solution and CuSO_(4) reducing electrolyte.Results show that in H_(2)SO_(4) and NaCl solutions,LBW sample and spin-formed sample exhibit excellent passivation ability and corrosion resistance.Both samples show uniform corrosion morphologies and similar corrosion resistance in the strong acidic solution containing Cl^(-).Meanwhile,the Cu foil formation ability of the welded joint is similar to that of the spin-formed sample,and both samples obtain intact Cu foils with high-quality surfaces and small differences in properties.展开更多
Proton exchange membrane water electrolysis(PEMWE)is one of the most promising strategies to pro-duce green hydrogen energy,and it is crucial to exploit highly conductive and good corrosion-resistant coatings on bipol...Proton exchange membrane water electrolysis(PEMWE)is one of the most promising strategies to pro-duce green hydrogen energy,and it is crucial to exploit highly conductive and good corrosion-resistant coatings on bipolar plates(BPs),one of the core components in PEMWE cells.In this work,NbN coatings are deposited on Ti BPs by magnetron sputtering to improve the corrosion resistance and conductivity,for which the critical process parameters,such as the working pressure,partial nitrogen pressure and de-position temperature are well optimized.It is found that the compact microstructure,highly conductive δ-NbN and uniform nanoparticles play a dominant role in the synergistic improvement of the corrosion resistance and electrical conductivity of NbN coatings.The optimized NbN coatings exhibit excellent cor-rosion resistance with the low corrosion current density of 1.1×10^(-8) A cm^(-2),a high potential value of-0.005 V vs.SCE and a low ICR value of 15.8 mΩcm2@1.5 MPa.Accordingly,NbN coatings can be a promising candidate for the development of the low-cost and high-anti-corrosion Ti BPs of PEMWE.展开更多
Two sets of alloys,Mg-Zn-Ca-xNi(0≤x≤5),have been developed with tunable corrosion and mechanical properties,optimized for fracturing materials.High-zinc artificial aged(T6)Mg-12Zn-0.5Ca-x Ni(0≤x≤5)series,featuring...Two sets of alloys,Mg-Zn-Ca-xNi(0≤x≤5),have been developed with tunable corrosion and mechanical properties,optimized for fracturing materials.High-zinc artificial aged(T6)Mg-12Zn-0.5Ca-x Ni(0≤x≤5)series,featuring a straightforward preparation method and the potential for manufacturing large-scale components,exhibit notable corrosion rates up to 29 mg cm^(-2)h^(-1)at 25℃ and 643 mg cm^(-2)h^(-1)at 93℃.The high corrosion rate is primary due to the Ni–containing second phases,which intensify the galvanic corrosion that overwhelms their corrosion barrier effect.Low-zinc rolled Mg-1.5Zn-0.2Ca-x Ni(0≤x≤5)series,characterizing excellent deformability with an elongation to failure of~26%,present accelerated corrosion rates up to 34 mg cm^(-2)h^(-1)at 25℃ and 942 mg cm^(-2)h^(-1)at 93℃.The elimination of corrosion barrier effect via deformation contributes to the further increase of corrosion rate compared to the T6 series.Additionally,Mg-Zn-Ca-xNi(0≤x≤5)alloys exhibit tunable ultimate tensile strengths ranging from~190 to~237 MPa,depending on their specific composition.The adjustable corrosion rate and mechanical properties render the Mg-Zn-Ca-x Ni(0≤x≤5)alloys suitable for fracturing materials.展开更多
High-entropy materials possess high hardness and strong wear resistance,yet the key bottleneck for their practical applications is the poor corrosion resistance in harsh environments.In this work,the high-entropy nitr...High-entropy materials possess high hardness and strong wear resistance,yet the key bottleneck for their practical applications is the poor corrosion resistance in harsh environments.In this work,the high-entropy nitride(HEN)coatings of(MoNbTaTiZr)1-x Nx(x=0-0.47)were fabricated using a hybrid di-rect current magnetron sputtering technique.The research focus was dedicated to the effect of nitrogen content on the microstructure,mechanical and electrochemical properties.The results showed that the as-deposited coatings exhibited a typical body-centered cubic(BCC)structure without nitrogen,while the amorphous matrix with face-centered cubic(FCC)nanocrystalline grain was observed at x=0.17.Further increasing x in the range of 0.35-0.47 caused the appearance of polycrystalline FCC phase in structure.Compared with the MoNbTaTiZr metallic coating,the coating containing nitrogen favored the high hard-ness around 13.7-32.4 GPa,accompanied by excellent tolerance both against elastic and plastic deforma-tion.Furthermore,such N-containing coatings yielded a low corrosion current density of about 10−8-10−7 A/cm^(2) and high electrochemical impedance of 10^(6)Ωcm^(2) in 3.5 wt.%NaCl solution,indicating the supe-rior corrosion resistance.The reason for the enhanced electrochemical behavior could be ascribed to the spontaneous formation of protective passive layers over the coating surface,which consisted of the domi-nated multi-elemental oxides in chemical stability.Particularly,noted that the(MoNbTaTiZr)_(0.83) N0.17 coat-ing displayed the highest hardness of 32.4±2.6 GPa and H/E ratio at 0.09,together with remarkable cor-rosion resistance,proposing the strongest capability for harsh-environmental applications required both good anti-wear and anti-corrosion performance.展开更多
Exploring high-efficiency and broadband microwave absorption(MA)materials with corrosion resistance and low cost is ur-gently needed for wide practical applications.Herein,the natural porous attapulgite(ATP)nanorods e...Exploring high-efficiency and broadband microwave absorption(MA)materials with corrosion resistance and low cost is ur-gently needed for wide practical applications.Herein,the natural porous attapulgite(ATP)nanorods embedded with TiO_(2)and polyaniline(PANI)nanoparticles are synthesized via heterogeneous precipitation and in-situ polymerization.The obtained PANI-TiO_(2)-ATP one-di-mensional(1D)nanostructures can intertwine into three-dimensional(3D)conductive network,which favors energy dissipation.The min-imum reflection loss(RL_(min))of the PANI-TiO_(2)-ATP coating(20wt%)reaches-49.36 dB at 9.53 GHz,and the effective absorption band-width(EAB)can reach 6.53 GHz with a thickness of 2.1 mm.The excellent MA properties are attributed to interfacial polarization,mul-tiple loss mechanisms,and good impedance matching induced by the synergistic effect of PANI-TiO_(2)nanoparticle shells and ATP nanor-ods.In addition,salt spray and Tafel polarization curve tests reveal that the PANI-TiO_(2)-ATP coating shows outstanding corrosion resist-ance performance.This study provides a low-cost and high-efficiency strategy for constructing 1D nanonetwork composites for MA and corrosion resistance applications using natural porous ATP nanorods as carriers.展开更多
Deep sea,with rich oil,gas,and mineral resources,plays an increasingly crucial role in scientific and industrial realms.However,the highly corrosive feature of deep sea hinders further exploration and development,whic...Deep sea,with rich oil,gas,and mineral resources,plays an increasingly crucial role in scientific and industrial realms.However,the highly corrosive feature of deep sea hinders further exploration and development,which requires metal materials with robust corrosion resistance.This review covers an in-depth and all-around overview of the up-to-date advances in corrosion and protection of metals in deep-sea environment.Firstly,the unique characteristics of deep-sea environment are summarized in detail.Subsequently,the corrosion performances of metals in both in situ and simulated deep-sea environments are illustrated systematically.Furthermore,corrosion prevent strategies of metals,including sacrificial anode protection,organic coatings,as well as coatings achieved by physical vapor deposition(PVD coatings),are highlighted.Finally,we outline current challenges and development trends of corrosion and protection of metals in deep-sea environment in the future.The purpose of this review is not only to summarize the recent progress on metal corrosion and protection in deep sea,but also to aid us in understanding them more comprehensively and deeply in a short time,so as to boost their fast development.展开更多
Nano-zinc oxides(ZnO)demonstrate remarkable antibacterial properties.To further enhance the corrosion resistance and antibacterial efficiency of magnesium alloy micro-arc oxidation(MAO)coatings,this study investigates...Nano-zinc oxides(ZnO)demonstrate remarkable antibacterial properties.To further enhance the corrosion resistance and antibacterial efficiency of magnesium alloy micro-arc oxidation(MAO)coatings,this study investigates the preparation of ZnO-containing micro-arc oxidation coatings with dual functionality by incorporating nano-ZnO into MAO electrolyte.The influence of varying ZnO concentrations on the microstructure,corrosion resistance,and antibacterial properties of the coating was examined through microstructure analysis,immersion tests,electrochemical experiments,and antibacterial assays.The findings revealed that the addition of nano-ZnO significantly enhanced the corrosion resistance of the MAO-coated alloy.Specifically,when the ZnO concentration in the electrolyte was 5 g/L,the corrosion rate was more than ten times lower compared to the MAO coatings without ZnO.Moreover,the antibacterial efficacy of ZnO+MAO coating,prepared with a ZnO concentration of 5 g/L,surpassed 95%after 24 h of co-culturing with Staphylococcus aureus(S.aureus).The nano-ZnO+MAO-coated alloy exhibited exceptional degradation resistance,corrosion resistance,and antibacterial effectiveness.展开更多
The rust layer is a critical factor in determining the corrosion resistance performance of weathering bridge steel.Understanding the evolution mechanism of this rust layer is fundamental for the design and optimizatio...The rust layer is a critical factor in determining the corrosion resistance performance of weathering bridge steel.Understanding the evolution mechanism of this rust layer is fundamental for the design and optimization of such steel.This study investigates the evolu-tion of the rust layer on high-Cr-content weathering bridge steel,using an atmospheric corrosion monitoring(ACM)sensor and big data mining techniques in a simulated tropical marine atmosphere.Results reveal that the protective properties of the rust layer follow a peri-odic pattern of“ascending–constant”rather than a continuous ascending.Correlation analysis indicates that this phenomenon is attributed to the introduction of Cr,which promotes the formation of FeCr_(2)O_(4) in the rust layer.FeCr_(2)O_(4) helps prevent chloride ions from penetrating the rust layer,exerting a protective effect.These findings provide a strong scientific foundation for the design and improvement of new high-Cr-content weathering bridge steels.展开更多
The synergy between corrosion protection and wear resistance is an effective strategy for the development of multifunctional coating to withstand complex working conditions.This study reports an epoxy resin coating fi...The synergy between corrosion protection and wear resistance is an effective strategy for the development of multifunctional coating to withstand complex working conditions.This study reports an epoxy resin coating filled with benzotriazole loaded metal-organic frameworks(BTA-MOFs)functionalized graphene oxide nanoribbons(GONR)that exhibit active anti-corrosion,act as a barrier to corrosive ion,and enhance wear resistance.The GONR@BTA-MOFs composite is synthesized through chemically etching multi-walled carbon nanotubes and subsequent electrostatic self-assembly corrosion inhibitors loaded MOFs onto the GONR.The composite demonstrates improved compatibility with epoxy resins compared to carbon nanotubes.The anti-corrosion performance of the composite coating is investigated using electrochemical impedance spectroscopy.After immersing in a 3.5 wt.%NaCl solution for 25 d,the alternating current impedance of the composite coating is three orders of magnitude higher than that of pure epoxy resin.Simultaneously,the controlled release of the corrosion inhibitor retards the deterioration of the coating after localized damage occurrence,which functions as active corrosion protection.The GONR@BTA-MOFs/EP composite coating exhibits the highest corrosion potential of-0.188 V and the lowest corrosion current of 3.162×10^(−9)A cm^(−2)in the Tafel test.Tribological studies reveal a reduction in the friction coefficient from 0.62 to 0.08 after incorporating GONR@BTA-MOFs in the coating,with the wear volume being seven times lower than that of pure epoxy resin.The excellent lubrication effect of the nanomaterials reduces the coefficient of friction of the coating,thereby improving the abrasion resistance of the coating.The synergy between the self-lubrication of the two-dimensional layered fillers and the corrosion resistance of the smart inhibitor containers suggests a promising strategy for enhancing the performance of epoxy resins under complex working conditions.展开更多
Magnesium(Mg)-based bioresorbable stents represent a potentially groundbreaking advancement in cardiovascular therapy;offering tem-porary vessel support and complete biodegradability—addressing limitations of traditi...Magnesium(Mg)-based bioresorbable stents represent a potentially groundbreaking advancement in cardiovascular therapy;offering tem-porary vessel support and complete biodegradability—addressing limitations of traditional stents like in-stent restenosis and long-term com-plications.However,challenges such as rapid corrosion and suboptimal endothelialisation have hindered their clinical adoption.This review highlights the latest breakthroughs in surface modification,alloying,and coating strategies to enhance the mechanical integrity,corrosion resistance,and biocompatibility of Mg-based stents.Key surface engineering techniques,including polymer and bioactive coatings,are ex-amined for their role in promoting endothelial healing and minimising inflammatory responses.Future directions are proposed,focusing on personalised stent designs to optimize efficacy and long-term outcomes,positioning Mg-based stents as a transformative solution in interventional cardiology.展开更多
The microstructural characterization,corrosion behavior and tensile properties of the extruded lean Mg−1Bi−0.5Sn−0.5In(wt.%)alloy were investigated through scanning electron microscopy(SEM),electron backscatter diffra...The microstructural characterization,corrosion behavior and tensile properties of the extruded lean Mg−1Bi−0.5Sn−0.5In(wt.%)alloy were investigated through scanning electron microscopy(SEM),electron backscatter diffraction(EBSD),X-ray photoelectron spectroscopy(XPS),electrochemical measurements and tensile tests.The results reveal that a microstructure consisting of dynamically recrystallized and deformed grains is obtained.Notably,the investigated alloy exhibits excellent strength−ductility synergy,with tensile yield strength(TYS),ultimate tensile strength(UTS)and elongation(EL)of 254.8 MPa,315.4 MPa,and 25.3%,respectively.Furthermore,in 3.5 wt.%NaCl solution,with the increase of immersion time,the dominant corrosion mechanism of the studied alloy transforms from pitting corrosion to filiform corrosion.After the immersion for 24 h,a composite oxide film(SnO2−Bi2O3−In2O3)is formed,which delays the corrosion process,and the corrosion rate(PH=1.53 mm/a)is finally stabilized.展开更多
Magnesium alloy is a promising biodegradable metal material for hard tissue engineering.However,its high corrosion rate limits its application.In our previous study,we biomimetically deposited a calcium carbonate coat...Magnesium alloy is a promising biodegradable metal material for hard tissue engineering.However,its high corrosion rate limits its application.In our previous study,we biomimetically deposited a calcium carbonate coating on the surface of magnesium alloy using siloxane induction.This calcium carbonate coating demonstrated excellent in vitro biocompatibility and provided partial protection for the magnesium alloy substrate.In this study,we further enhanced the corrosion resistance of the calcium carbonate coating by treating it with stearic acid and its derivative,sodium stearate.Electrochemical corrosion tests revealed that the sodium stearate-treated calcium carbonate coating reduced the corrosion rate by two orders of magnitude.Additionally,in vitro biocompatibility assessments showed that while the biocompatibility of the sodium stearate-treated coating was slightly reduced,it remained acceptable compared to the magnesium substrate.This study builds on our previous work and offers a promising reinforcement strategy for degradable magnesium alloys in medical applications.展开更多
The electrochemical corrosion of ductile pipes(DPs)in drinking water distribution systems(DWDS)has a crucial impact on cement-mortar lining(CML)failure and metal release,potentially leading to drinking water quality d...The electrochemical corrosion of ductile pipes(DPs)in drinking water distribution systems(DWDS)has a crucial impact on cement-mortar lining(CML)failure and metal release,potentially leading to drinking water quality deterioration and posing a risk to public health.An in-situ scanning vibrating electrode technique(SVET)with micron-scale resolution,microscopic scale detection and water quality analysis were used to investigate the corrosion behavior and metal release from DPs throughout the whole CML failure process.Metal pollutants release occurred at three different stages of CML failure process,and there are potential risks of water quality deterioration exceeding the maximum allowable levels set by national standards in the partial failure stage and lining peeling stage.Furthermore,the effects of water chemistry(Cl^(−),SO_(4)^(2−),NO_(3)−,and Ca^(2+))on corrosion scale growth and iron release activity,were investigated during the CML partial failure stage.Results showed that the CML failure process in DPs was accelerated by the autocatalysis of localized corrosion.Cl^(−)was found to damage the uncorroded metal surface,while SO_(4)^(2−)mainly dissolved the corrosion scale surface,increasing iron release.Both the oxidation of NO_(3)−and selective sedimentation of Ca2+were found to enhance the stability of corrosion scales and inhibit iron release.展开更多
文摘The corrosivity of the top three metres of the soil along a pipeline route was determined using soil electrical resistivity for the emplacement of a conduit intended to serve as a gas pipeline. Fifty-six Schlumberger vertical electrical soundings (VES) were carried using a maximum current electrode separation ranging between 24 - 100 m at 2.0 km interval. The data was interpreted using a 1D inversion technique software (1X1D, Interpex, USA). Model resistivity values were classified in terms of the degree of corrosivity. Generally, the sub-soil condition along the pipeline route is non-aggressive but being slightly or moderately aggressive in certain areas due to local conditions prevailing at the measuring stations. Based on the corrosivity along the pipeline route, appropriate cathodic protection methods are prescribed.
文摘This paper evaluate subsoil corrosivity using the electrical resistivity method which was carried out to determine the subsoil resistivity and estimate the degree of corrosion, the resistivity measurements were conducted by using SAS300c resistivity meter. This involves applying a voltage into the soil through metal electrode and measuring the resistance to the flow of electric current. An AC-power supplies current flow (I) between two outer electrodes and the resultant voltage different (V) between two inner electrodes is measured using the Wenner Arrangement. The soil resistance given by R = V/I. This needs to be standardized over a unit length, the resistivity p which measured in ohm-m the equation is, ρ= 2ДdR. There are many factors control the ground resistivity such as soil composition, moisture content, pore water chemistry and pH. The results of the survey show inverse proportion between corrosivity and electrical resistivity, therefore resistivity method is very useful to incipient the corrosion as well as effective, quick, reliable and economic method. Structures such as natural gas, crude oil pipelines and steel constructions were reported to have been affected by soil corrosion all around the world, it can be concluded that sub soil corrosivity around the study area increases southwestern ward with depth.
基金This research was supported by National Natural Science Foundation of China(No.51731008)National Environment Corrosion Platform of China.
文摘The corrosion behavior of pure Magnesium(Mg)in a Mg(OH)2-saturated solution containing different individual constituents of PM2.5 in haze were studied by hydrogen evolution,weight loss and electrochemical experiments.The results indicated that the corrosivity of these constituents to pure Mg decreased in the following order:(NH4)2SO4>Haze-contaminated-solution>NH4NO3>NH4Cl>NaCl≈KCl≈Na2SO4≈MgCl2≈CaSO4>Mg(OH)2(basic solution)>Ca(NO3)2.Possible mechanisms behind the different corrosion behaviors of Mg in response to these constituents were also briefly discussed in this paper.
基金financially supported by the National Natural Science Foundation of China(No.52371049)the Young Elite Scientists Sponsorship Program by the China Association for Science and Technology(YESS,No.2020QNRC001)the National Science and Technology Resources Investigation Program of China(Nos.2021FY100603 and 2019FY101404)。
文摘The atmospheric corrosion monitoring(ACM)technique has been widely employed to track the real-time corrosion behavior of metal materials.However,limited studies have applied ACM to the corrosion protection properties of organic coatings.This study compared a bare epoxy coating with one containing zinc phosphate corrosion inhibitors,both applied on ACM sensors,to observe their corrosion protection properties over time.Coatings with artificial damage via scratches were exposed to immersion and alternating dry and wet environments,which allowed for monitoring galvanic corrosion currents in real-time.Throughout the corrosion tests,the ACM currents of the zinc phosphate/epoxy coating were considerably lower than those of the blank epoxy coating.The trend in ACM current variations closely matched the results obtained from regular electrochemical tests and surface analysis.This alignment highlights the potential of the ACM technique in evaluating the corrosion protection capabilities of organic coatings.Compared with the blank epoxy coating,the zinc phosphate/epoxy coating showed much-decreased ACM current values that confirmed the effective inhibition of zinc phosphate against steel corrosion beneath the damaged coating.
基金financially supported by the National Key Research and Development Plan of China(No.2022YFC2904603)the National Natural Science Foundation of China(No.52174268)。
文摘This study aimed to investigate the effect of varying pyrite(Py)content on copper(Cu)in the presence of different regrinding conditions,which were altered using different types of grinding media:iron,ceramic balls,and their mixture,followed by flotation in the cleaner stage.The flotation performance of rough Cu concentrate can be improved by changing the regrinding conditions based on the Py content.Scanning electron microscopy,X-ray spectrometry,ethylenediaminetetraacetic acid disodium salt extraction,and X-ray photoelectron spectroscopy studies illustrated that when the Py content was high,the use of iron media in regrinding promoted the generation of hydrophilic Fe OOH on the surface of Py and improved the Cu grade.The ceramic medium with a low Py content prevented excessive Fe OOH from covering the surface of chalcopyrite(Cpy).Electrochemical studies further showed that the galvanic corrosion current of Cpy-Py increased with the addition of Py and became stronger with the participation of iron media.
基金financially supported by the National Natural Science Foundation of China(No.52377026 and No.52301192)Taishan Scholars and Young Experts Program of Shandong Province(No.tsqn202103057)+4 种基金Postdoctoral Fellowship Program of CPSF under Grant Number(No.GZB20240327)Shandong Postdoctoral Science Foundation(No.SDCXZG-202400275)Qingdao Postdoctoral Application Research Project(No.QDBSH20240102023)China Postdoctoral Science Foundation(No.2024M751563)the Qingchuang Talents Induction Program of Shandong Higher Education Institution(Research and Innovation Team of Structural-Functional Polymer Composites).
文摘Currently,the demand for electromagnetic wave(EMW)absorbing materials with specific functions and capable of withstanding harsh environments is becoming increasingly urgent.Multi-component interface engineering is considered an effective means to achieve high-efficiency EMW absorption.However,interface modulation engineering has not been fully discussed and has great potential in the field of EMW absorption.In this study,multi-component tin compound fiber composites based on carbon fiber(CF)substrate were prepared by electrospinning,hydrothermal synthesis,and high-temperature thermal reduction.By utilizing the different properties of different substances,rich heterogeneous interfaces are constructed.This effectively promotes charge transfer and enhances interfacial polarization and conduction loss.The prepared SnS/SnS_(2)/SnO_(2)/CF composites with abundant heterogeneous interfaces have and exhibit excellent EMW absorption properties at a loading of 50 wt%in epoxy resin.The minimum reflection loss(RL)is−46.74 dB and the maximum effective absorption bandwidth is 5.28 GHz.Moreover,SnS/SnS_(2)/SnO_(2)/CF epoxy composite coatings exhibited long-term corrosion resistance on Q235 steel surfaces.Therefore,this study provides an effective strategy for the design of high-efficiency EMW absorbing materials in complex and harsh environments.
文摘In-situ formed high Mn steel coating reinforced by carbides was formed by laser surface alloying(LSA).Laser alloyed layers on 1Cr18Ni9Ti steel with Mn+W_(2)C(specimen A),Mn+NiWC(specimen B)and Mn+SiC(specimen C)powders were fabricated to improve the wear and corrosion behavior of 1Cr18Ni9Ti steel blades in high speed mixers.Microstructure evolution,phases,element distribution,microhardness,wear and corrosion behavior of the laser alloyed layers were investigated.Results indicated that high Mn steel matrix composites with undissolved W_(2)C,WC and other in-situ formed carbides were formed by LSA with Mn+W_(2)C and Mn+NiWC while SiC totally dissolved into the high Mn matrix when adding Mn+SiC.Ni as the binding phase in Ni-WC powder decreased the crack sensitivity of the alloyed layer as compared with the addition of W_(2)C powder.An improvement in average microhardness was achieved in the matrix in specimen A,B and C,with the value of 615,602 and 277 HV_(0.5),while that of the substrate was 212 HV_(0.5).The increase of microhardness,wear and corrosion resistance is highly corelated to microstructure,formed phases,type and content of carbides,micro-hardness and toughness of the alloyed layers.
基金Key Research and Development Program of Shaanxi Province(2022GY-410)Funding of Western Titanium Technologies Co.,Ltd(WX2210)。
文摘Based on the microstructure characterization,electrochemical impedance spectroscopy,potentiodynamic polarization,and immersion corrosion,this work comparatively analyzed the differences in the electrochemical corrosion morphology and post-foil formation surface morphology of laser beam welded(LBW)sample and spin-formed sample,and compared the corrosion resistance and Cu foil formation ability of two samples in H_(2)SO_(4)/NaCl solution and CuSO_(4) reducing electrolyte.Results show that in H_(2)SO_(4) and NaCl solutions,LBW sample and spin-formed sample exhibit excellent passivation ability and corrosion resistance.Both samples show uniform corrosion morphologies and similar corrosion resistance in the strong acidic solution containing Cl^(-).Meanwhile,the Cu foil formation ability of the welded joint is similar to that of the spin-formed sample,and both samples obtain intact Cu foils with high-quality surfaces and small differences in properties.
基金supported by the National Key Re-search and Development Program of China(No.2022YFB4002100)the National Natural Science Foundation of China(No.52271136)the Natural Science Foundation of Shaanxi Province(Nos.2019TD-020 and 2021JC-06).
文摘Proton exchange membrane water electrolysis(PEMWE)is one of the most promising strategies to pro-duce green hydrogen energy,and it is crucial to exploit highly conductive and good corrosion-resistant coatings on bipolar plates(BPs),one of the core components in PEMWE cells.In this work,NbN coatings are deposited on Ti BPs by magnetron sputtering to improve the corrosion resistance and conductivity,for which the critical process parameters,such as the working pressure,partial nitrogen pressure and de-position temperature are well optimized.It is found that the compact microstructure,highly conductive δ-NbN and uniform nanoparticles play a dominant role in the synergistic improvement of the corrosion resistance and electrical conductivity of NbN coatings.The optimized NbN coatings exhibit excellent cor-rosion resistance with the low corrosion current density of 1.1×10^(-8) A cm^(-2),a high potential value of-0.005 V vs.SCE and a low ICR value of 15.8 mΩcm2@1.5 MPa.Accordingly,NbN coatings can be a promising candidate for the development of the low-cost and high-anti-corrosion Ti BPs of PEMWE.
基金supported by the National Key Research and Development Program(No.2022YFE0122000)National Natural Science Foundation of China under Grant Nos.52234009,52274383,52222409,and 52201113。
文摘Two sets of alloys,Mg-Zn-Ca-xNi(0≤x≤5),have been developed with tunable corrosion and mechanical properties,optimized for fracturing materials.High-zinc artificial aged(T6)Mg-12Zn-0.5Ca-x Ni(0≤x≤5)series,featuring a straightforward preparation method and the potential for manufacturing large-scale components,exhibit notable corrosion rates up to 29 mg cm^(-2)h^(-1)at 25℃ and 643 mg cm^(-2)h^(-1)at 93℃.The high corrosion rate is primary due to the Ni–containing second phases,which intensify the galvanic corrosion that overwhelms their corrosion barrier effect.Low-zinc rolled Mg-1.5Zn-0.2Ca-x Ni(0≤x≤5)series,characterizing excellent deformability with an elongation to failure of~26%,present accelerated corrosion rates up to 34 mg cm^(-2)h^(-1)at 25℃ and 942 mg cm^(-2)h^(-1)at 93℃.The elimination of corrosion barrier effect via deformation contributes to the further increase of corrosion rate compared to the T6 series.Additionally,Mg-Zn-Ca-xNi(0≤x≤5)alloys exhibit tunable ultimate tensile strengths ranging from~190 to~237 MPa,depending on their specific composition.The adjustable corrosion rate and mechanical properties render the Mg-Zn-Ca-x Ni(0≤x≤5)alloys suitable for fracturing materials.
基金supported by the National Science Fund for Distinguished Young Scholars of China(No.52025014)Zhejiang Provincial Natural Science Foundation of China(Nos.LZJWY23E090001 and LD24E010003)the Natural Science Foundation of Ningbo(No.2022J305).
文摘High-entropy materials possess high hardness and strong wear resistance,yet the key bottleneck for their practical applications is the poor corrosion resistance in harsh environments.In this work,the high-entropy nitride(HEN)coatings of(MoNbTaTiZr)1-x Nx(x=0-0.47)were fabricated using a hybrid di-rect current magnetron sputtering technique.The research focus was dedicated to the effect of nitrogen content on the microstructure,mechanical and electrochemical properties.The results showed that the as-deposited coatings exhibited a typical body-centered cubic(BCC)structure without nitrogen,while the amorphous matrix with face-centered cubic(FCC)nanocrystalline grain was observed at x=0.17.Further increasing x in the range of 0.35-0.47 caused the appearance of polycrystalline FCC phase in structure.Compared with the MoNbTaTiZr metallic coating,the coating containing nitrogen favored the high hard-ness around 13.7-32.4 GPa,accompanied by excellent tolerance both against elastic and plastic deforma-tion.Furthermore,such N-containing coatings yielded a low corrosion current density of about 10−8-10−7 A/cm^(2) and high electrochemical impedance of 10^(6)Ωcm^(2) in 3.5 wt.%NaCl solution,indicating the supe-rior corrosion resistance.The reason for the enhanced electrochemical behavior could be ascribed to the spontaneous formation of protective passive layers over the coating surface,which consisted of the domi-nated multi-elemental oxides in chemical stability.Particularly,noted that the(MoNbTaTiZr)_(0.83) N0.17 coat-ing displayed the highest hardness of 32.4±2.6 GPa and H/E ratio at 0.09,together with remarkable cor-rosion resistance,proposing the strongest capability for harsh-environmental applications required both good anti-wear and anti-corrosion performance.
基金support from the National Key Research and Development Program of China(No.2021YFB3701503)the Key Research and Development Program of Ningbo,China(No.2023Z107)+1 种基金the Jiangsu Key R&D program,China(No.BE2019072)the special project of Gansu regional science and technology cooperation,China(No.20JR10 QA579).
文摘Exploring high-efficiency and broadband microwave absorption(MA)materials with corrosion resistance and low cost is ur-gently needed for wide practical applications.Herein,the natural porous attapulgite(ATP)nanorods embedded with TiO_(2)and polyaniline(PANI)nanoparticles are synthesized via heterogeneous precipitation and in-situ polymerization.The obtained PANI-TiO_(2)-ATP one-di-mensional(1D)nanostructures can intertwine into three-dimensional(3D)conductive network,which favors energy dissipation.The min-imum reflection loss(RL_(min))of the PANI-TiO_(2)-ATP coating(20wt%)reaches-49.36 dB at 9.53 GHz,and the effective absorption band-width(EAB)can reach 6.53 GHz with a thickness of 2.1 mm.The excellent MA properties are attributed to interfacial polarization,mul-tiple loss mechanisms,and good impedance matching induced by the synergistic effect of PANI-TiO_(2)nanoparticle shells and ATP nanor-ods.In addition,salt spray and Tafel polarization curve tests reveal that the PANI-TiO_(2)-ATP coating shows outstanding corrosion resist-ance performance.This study provides a low-cost and high-efficiency strategy for constructing 1D nanonetwork composites for MA and corrosion resistance applications using natural porous ATP nanorods as carriers.
基金the National Key R&D Program of China(No.2022YFB3808800)the National Natural Science Foundation of China(Nos.52301406 and 52375219)+2 种基金the Natural Science Foundation of Zhejiang Province(No.LR21E050001)the China Postdoctoral Science Foundation(No.2023M733600)the Ningbo Natural Science Foundation(No.2023J329).
文摘Deep sea,with rich oil,gas,and mineral resources,plays an increasingly crucial role in scientific and industrial realms.However,the highly corrosive feature of deep sea hinders further exploration and development,which requires metal materials with robust corrosion resistance.This review covers an in-depth and all-around overview of the up-to-date advances in corrosion and protection of metals in deep-sea environment.Firstly,the unique characteristics of deep-sea environment are summarized in detail.Subsequently,the corrosion performances of metals in both in situ and simulated deep-sea environments are illustrated systematically.Furthermore,corrosion prevent strategies of metals,including sacrificial anode protection,organic coatings,as well as coatings achieved by physical vapor deposition(PVD coatings),are highlighted.Finally,we outline current challenges and development trends of corrosion and protection of metals in deep-sea environment in the future.The purpose of this review is not only to summarize the recent progress on metal corrosion and protection in deep sea,but also to aid us in understanding them more comprehensively and deeply in a short time,so as to boost their fast development.
基金supported by the National Natural Science Foundation of China(No.52001034)the China Postdoctoral Science Foundation(No.2023M731677)the Postgraduate Research&Practice Innovation Program of Jiangsu Province(No.KYCX23_3032).
文摘Nano-zinc oxides(ZnO)demonstrate remarkable antibacterial properties.To further enhance the corrosion resistance and antibacterial efficiency of magnesium alloy micro-arc oxidation(MAO)coatings,this study investigates the preparation of ZnO-containing micro-arc oxidation coatings with dual functionality by incorporating nano-ZnO into MAO electrolyte.The influence of varying ZnO concentrations on the microstructure,corrosion resistance,and antibacterial properties of the coating was examined through microstructure analysis,immersion tests,electrochemical experiments,and antibacterial assays.The findings revealed that the addition of nano-ZnO significantly enhanced the corrosion resistance of the MAO-coated alloy.Specifically,when the ZnO concentration in the electrolyte was 5 g/L,the corrosion rate was more than ten times lower compared to the MAO coatings without ZnO.Moreover,the antibacterial efficacy of ZnO+MAO coating,prepared with a ZnO concentration of 5 g/L,surpassed 95%after 24 h of co-culturing with Staphylococcus aureus(S.aureus).The nano-ZnO+MAO-coated alloy exhibited exceptional degradation resistance,corrosion resistance,and antibacterial effectiveness.
基金supported by the National Natural Science Foundation of China(No.52171063).
文摘The rust layer is a critical factor in determining the corrosion resistance performance of weathering bridge steel.Understanding the evolution mechanism of this rust layer is fundamental for the design and optimization of such steel.This study investigates the evolu-tion of the rust layer on high-Cr-content weathering bridge steel,using an atmospheric corrosion monitoring(ACM)sensor and big data mining techniques in a simulated tropical marine atmosphere.Results reveal that the protective properties of the rust layer follow a peri-odic pattern of“ascending–constant”rather than a continuous ascending.Correlation analysis indicates that this phenomenon is attributed to the introduction of Cr,which promotes the formation of FeCr_(2)O_(4) in the rust layer.FeCr_(2)O_(4) helps prevent chloride ions from penetrating the rust layer,exerting a protective effect.These findings provide a strong scientific foundation for the design and improvement of new high-Cr-content weathering bridge steels.
基金supported by the National Natural Science Foundation of China(No.52475216)the Guangdong Basic and Applied Basic Research Foundation(No.2023A1515240030)+2 种基金the Natural Science Foundation of Shaanxi Province(No.2024RSCXTD-62)the Research Fund of the State Key Laboratory of Solidification Processing(NPU)(No.2022-QZ-04)We would like to thank the Analytical&Testing Center of Northwestern Polytechnical University and the Shaanxi Materials Analysis and Research Center.
文摘The synergy between corrosion protection and wear resistance is an effective strategy for the development of multifunctional coating to withstand complex working conditions.This study reports an epoxy resin coating filled with benzotriazole loaded metal-organic frameworks(BTA-MOFs)functionalized graphene oxide nanoribbons(GONR)that exhibit active anti-corrosion,act as a barrier to corrosive ion,and enhance wear resistance.The GONR@BTA-MOFs composite is synthesized through chemically etching multi-walled carbon nanotubes and subsequent electrostatic self-assembly corrosion inhibitors loaded MOFs onto the GONR.The composite demonstrates improved compatibility with epoxy resins compared to carbon nanotubes.The anti-corrosion performance of the composite coating is investigated using electrochemical impedance spectroscopy.After immersing in a 3.5 wt.%NaCl solution for 25 d,the alternating current impedance of the composite coating is three orders of magnitude higher than that of pure epoxy resin.Simultaneously,the controlled release of the corrosion inhibitor retards the deterioration of the coating after localized damage occurrence,which functions as active corrosion protection.The GONR@BTA-MOFs/EP composite coating exhibits the highest corrosion potential of-0.188 V and the lowest corrosion current of 3.162×10^(−9)A cm^(−2)in the Tafel test.Tribological studies reveal a reduction in the friction coefficient from 0.62 to 0.08 after incorporating GONR@BTA-MOFs in the coating,with the wear volume being seven times lower than that of pure epoxy resin.The excellent lubrication effect of the nanomaterials reduces the coefficient of friction of the coating,thereby improving the abrasion resistance of the coating.The synergy between the self-lubrication of the two-dimensional layered fillers and the corrosion resistance of the smart inhibitor containers suggests a promising strategy for enhancing the performance of epoxy resins under complex working conditions.
文摘Magnesium(Mg)-based bioresorbable stents represent a potentially groundbreaking advancement in cardiovascular therapy;offering tem-porary vessel support and complete biodegradability—addressing limitations of traditional stents like in-stent restenosis and long-term com-plications.However,challenges such as rapid corrosion and suboptimal endothelialisation have hindered their clinical adoption.This review highlights the latest breakthroughs in surface modification,alloying,and coating strategies to enhance the mechanical integrity,corrosion resistance,and biocompatibility of Mg-based stents.Key surface engineering techniques,including polymer and bioactive coatings,are ex-amined for their role in promoting endothelial healing and minimising inflammatory responses.Future directions are proposed,focusing on personalised stent designs to optimize efficacy and long-term outcomes,positioning Mg-based stents as a transformative solution in interventional cardiology.
基金supported by the National Natural Science Foundation of China(No.51901153)the Natural Science Foundation of Shanxi,China(No.202103021224049)+1 种基金the Shanxi Zhejiang University New Materials and Chemical Research Institute Scientific Research Project,China(No.2022SX-TD025)the Open Project of Salt Lake Chemical Engineering Research Complex,Qinghai University,China(No.2023-DXSSKF-Z02).
文摘The microstructural characterization,corrosion behavior and tensile properties of the extruded lean Mg−1Bi−0.5Sn−0.5In(wt.%)alloy were investigated through scanning electron microscopy(SEM),electron backscatter diffraction(EBSD),X-ray photoelectron spectroscopy(XPS),electrochemical measurements and tensile tests.The results reveal that a microstructure consisting of dynamically recrystallized and deformed grains is obtained.Notably,the investigated alloy exhibits excellent strength−ductility synergy,with tensile yield strength(TYS),ultimate tensile strength(UTS)and elongation(EL)of 254.8 MPa,315.4 MPa,and 25.3%,respectively.Furthermore,in 3.5 wt.%NaCl solution,with the increase of immersion time,the dominant corrosion mechanism of the studied alloy transforms from pitting corrosion to filiform corrosion.After the immersion for 24 h,a composite oxide film(SnO2−Bi2O3−In2O3)is formed,which delays the corrosion process,and the corrosion rate(PH=1.53 mm/a)is finally stabilized.
基金supported by the National Natural Science Foundation of China(No.52205310)the TUA research funding,UmeåUniversity/Region Västerbotten,Sweden(RV-937838)+1 种基金the Kempe foundation(JCSMK22-0122)the Natural Science Foundation of Shandong Province(No.ZR2021QE263).
文摘Magnesium alloy is a promising biodegradable metal material for hard tissue engineering.However,its high corrosion rate limits its application.In our previous study,we biomimetically deposited a calcium carbonate coating on the surface of magnesium alloy using siloxane induction.This calcium carbonate coating demonstrated excellent in vitro biocompatibility and provided partial protection for the magnesium alloy substrate.In this study,we further enhanced the corrosion resistance of the calcium carbonate coating by treating it with stearic acid and its derivative,sodium stearate.Electrochemical corrosion tests revealed that the sodium stearate-treated calcium carbonate coating reduced the corrosion rate by two orders of magnitude.Additionally,in vitro biocompatibility assessments showed that while the biocompatibility of the sodium stearate-treated coating was slightly reduced,it remained acceptable compared to the magnesium substrate.This study builds on our previous work and offers a promising reinforcement strategy for degradable magnesium alloys in medical applications.
基金supported by the National Natural Science Foundation of China(Nos.51808158,52170101,and 52200116)Tianjin Natural Science Foundation(No.23JCYBJC00640).
文摘The electrochemical corrosion of ductile pipes(DPs)in drinking water distribution systems(DWDS)has a crucial impact on cement-mortar lining(CML)failure and metal release,potentially leading to drinking water quality deterioration and posing a risk to public health.An in-situ scanning vibrating electrode technique(SVET)with micron-scale resolution,microscopic scale detection and water quality analysis were used to investigate the corrosion behavior and metal release from DPs throughout the whole CML failure process.Metal pollutants release occurred at three different stages of CML failure process,and there are potential risks of water quality deterioration exceeding the maximum allowable levels set by national standards in the partial failure stage and lining peeling stage.Furthermore,the effects of water chemistry(Cl^(−),SO_(4)^(2−),NO_(3)−,and Ca^(2+))on corrosion scale growth and iron release activity,were investigated during the CML partial failure stage.Results showed that the CML failure process in DPs was accelerated by the autocatalysis of localized corrosion.Cl^(−)was found to damage the uncorroded metal surface,while SO_(4)^(2−)mainly dissolved the corrosion scale surface,increasing iron release.Both the oxidation of NO_(3)−and selective sedimentation of Ca2+were found to enhance the stability of corrosion scales and inhibit iron release.