期刊文献+
共找到4,705篇文章
< 1 2 236 >
每页显示 20 50 100
A review of anticorrosive,superhydrophobic and self-healing properties of coating-composites as corrosion barriers on magnesium alloys:Recent advances,challenges and future directions 被引量:1
1
作者 Babalola Aisosa Oni Olusegun Stanley Tomomewo +2 位作者 Solomon Evro Andrew N.Misian Samuel Eshorame Sanni 《Journal of Magnesium and Alloys》 2025年第6期2435-2469,共35页
Magnesium and its alloys have gained relevance for their light-weight combined with a high value of strength-to-weight ratio,which makes them useful in fields such as aerospace,automotive as well as biomedical enginee... Magnesium and its alloys have gained relevance for their light-weight combined with a high value of strength-to-weight ratio,which makes them useful in fields such as aerospace,automotive as well as biomedical engineering.Unfortunately,the poor corrosion resistance of Mg-alloys limits their wide acceptance.Advanced composite coatings which are self-healing,superhydrophobic anti corrosive,and wear resistant are new synthetic materials for abating these challenges.The superimposed superhydrophobic surfaces help in minimizing their water contact,thus slowing down the electrochemical reactions on the surface of the alloys,while their self-healing characteristics autonomously aid in the repair of any induced micro-crack,defect or damage towards ensuring the metal's long-term protection.In addition,the integration of wear-resistant materials further improves the durability of coatings under mechanical stress.The most recent research efforts have been directed towards the preparation of multifunctional composites,with an emphasis on nanomaterials,functional polymers,and state-of-the-art fabrication techniques in order to take advantage of their synergistic effects.Some of the methods that have so far exhibited promising potentials in fabricating these materials include the sol-gel method,layer-by-layer assembly,and plasma treatments.However,most of the fabricated products are still faced with significant challenges ranging from long-term stability to homogeneous adhesion of the coatings and their scalability for industrial applications.This review discusses the recent progress and the relationship between corrosion inhibition and self-healing efficiencies of wear resistant polymer nanocomposite coatings.Some challenges related to optimizing coating performance were also discussed.In addition,future directions ranging from the consideration of bioinspired designs,novel hybrid nanocomposite materials,and environmentally sustainable solutions integrated with smart protective coatings were also proposed as new wave technologies that can potentially revolutionize the corrosion protection offered by Mg alloys while opening up prospects for improved performance and sustainability. 展开更多
关键词 Magnesium alloys CORROSION SUPERHYDROPHOBIC Self-healing coatings Water contact angle
在线阅读 下载PDF
Construction of anticorrosive superhydrophobic coatings on B10 copper–nickel alloy welded joints and influence of construction elements on their properties 被引量:1
2
作者 Xin-wei Zhang Yan Zhao +6 位作者 Xiao-hui Dou Zong-hao He Hong-xi Jin Chuan He Song-nan Zhao Fu-fang Han Da-lei Zhang 《Journal of Iron and Steel Research International》 2025年第9期2982-2994,共13页
Cu–Ni and Cu–Co–Ni superhydrophobic films were constructed on the surface of B10 copper–nickel alloy welded joints using a two-step process of electrodeposition and stearic acid modification.The chemical compositi... Cu–Ni and Cu–Co–Ni superhydrophobic films were constructed on the surface of B10 copper–nickel alloy welded joints using a two-step process of electrodeposition and stearic acid modification.The chemical composition of the film surface was determined using surface characterization techniques.The corrosion resistance of the films was characterized using electrochemical impedance spectroscopy,potentiodynamic polarization,and scanning Kelvin probe microscopy at multiple scales.The thermal stability,mechanical stability,and self-cleaning properties of the films were also characterized.It was determined that the Cu–Co–Ni superhydrophobic film exhibited the best performance,with a static water contact angle of 159.3°,a roll-off angle of 2.3°,a charge transfer resistance 3300 times higher than the substrate,a self-corrosion current density nearly three orders of magnitude lower,and a surface Kelvin potential increase of 420 mV.The film demonstrated good thermal stability,excellent mechanical stability,and outstanding self-cleaning properties.Combining with previous studies,it was found that Co elements in the film contribute to the formation of a uniform and dense film,Ni elements enhance the adhesion and corrosion resistance between the films,and the combination of Co and Ni elements promotes uniform surface potential and further improves the corrosion resistance and interfilm adhesion of the films. 展开更多
关键词 Material failure and protection Superhydrophobic film B10 copper-nickel alloy welded joint Corrosion resistance Deposition element effect
原文传递
The performance degradation of MAO/GPTMS coating on magnesium alloy under combined corrosive environment and cyclic loading
3
作者 Shuya Mao Di Mei +5 位作者 Weizheng Cui Mengyao Liu Jiale Xu Shijie Zhu Liguo Wang Shaokang Guan 《Journal of Magnesium and Alloys》 2025年第12期5949-5967,共19页
Magnesium alloys hold promise as biodegradable orthopedic implants but suffer from rapid corrosion and poor corrosion fatigue performance.This study evaluates the efficacy of a micro-arc oxidation(MAO)layer combined w... Magnesium alloys hold promise as biodegradable orthopedic implants but suffer from rapid corrosion and poor corrosion fatigue performance.This study evaluates the efficacy of a micro-arc oxidation(MAO)layer combined with 3-glycidyloxypropyltrimethoxysilane(GPTMS)sealing in enhancing the corrosion fatigue behavior of ZE21B magnesium alloy in Hanks’Balanced Salt Solution(HBSS).Electrochemical testing revealed a two-order-of-magnitude reduction in corrosion current density compared to bare alloy,while immersion tests demonstrated sustained protection against degradation.Corrosion fatigue experiments under cyclic loading showed stress-dependent performance:the composite coating improved fatigue life at low stress amplitudes(60 MPa)by mitigating corrosion pit formation,but interfacial weakness between GPTMS and MAO layers reduced performance at high stresses(90-80 MPa).Fractographic analysis identified asynchronous deformation and stress gradient-dependent coating spallation as key failure modes.These results provide mechanistic insights into coating degradation pathways and offer design strategies for developing robust surface modification systems to advance magnesium-based orthopedic applications. 展开更多
关键词 Magnesium alloy Micro-arc oxidation Silane treatment Corrosion behavior Corrosion fatigue performance
在线阅读 下载PDF
Anticorrosive magnetic microwave absorbers by turbulent sol-gel method
4
作者 Feng Wang Wei Li +1 位作者 Zhihong Chen Jianguo Guan 《Journal of Materials Science & Technology》 2025年第27期205-218,共14页
Coating uniform,compact and thin nanoshells on micro-sized particles is critical to various applications including anticorrosive broadband microwave absorbing materials(MAMs),yet effective processing methods remain la... Coating uniform,compact and thin nanoshells on micro-sized particles is critical to various applications including anticorrosive broadband microwave absorbing materials(MAMs),yet effective processing methods remain lacking.In this work,a turbulent sol-gel method is developed to coat the desired SiO2 nanoshells on flaky carbonyl iron(FCI)particles.The adding millimeter-sized zirconia balls,driven by the orbital shaking,squeeze the solution and create significant relative motion between the liquid and balls,which generates turbulent flows.This significantly promotes the heterogeneous nucleation rate and high nucleation density,ultimately forming highly compact and uniform SiO2 nanoshells covering FCI particles to enhance the electromagnetic absorption and anticorrosion properties.The as-obtained core-shell particles minimize the interface polarization and retain high magnetic loss,resulting in an improved impedance matching and a reflection loss<−10 dB with a bandwidth of 6.5 GHz at a thin thickness of 1 mm.Moreover,they also show a substantial order-of-magnitude improvement in anticorrosion performance.This work provides a promising method to fabricate anticorrosive,broadband and thin-thickness MAMs.The turbulent sol-gel method developed herein offers a facile and effective approach for fabricating uniform compact nanoshells on micro-sized particles. 展开更多
关键词 Magnetic absorbers Core-shell structures Compact nanoshells Corrosion resistance Microwave absorbers
原文传递
Microstructure,electrochemical,wear and corrosive wear performance of laser-based powder bed fusion and wrought biomedical Ti−6Al−4V alloys
5
作者 A.G.LEKATOU B.V.EFREMENKO +6 位作者 V.HAOUI V.G.EFREMENKO S.EMMANOUILIDOU V.I.ZURNADZHY I.PETRYSHYNETS Yu.G.CHABAK I.I.SILI 《Transactions of Nonferrous Metals Society of China》 2025年第8期2612-2631,共20页
Wrought and laser powder bed fusion(LPBF)Ti−6Al−4V(Ti-6-4)specimens were comparatively evaluated,with the objective to determine LPBF Ti−6Al−4V’s suitability for biomedical applications.Testing included nanoindentati... Wrought and laser powder bed fusion(LPBF)Ti−6Al−4V(Ti-6-4)specimens were comparatively evaluated,with the objective to determine LPBF Ti−6Al−4V’s suitability for biomedical applications.Testing included nanoindentation,cyclic polarization in simulated body fluid(SBF,37°C),and dry and SBF“ball-on-plate”sliding.Wrought Ti-6-4 exhibited a lamellarα+βmicrostructure,whereas LPBF Ti-6-4 displayed a fine-grainedα′-martensite microstructure.LPBF Ti-6-4 demonstrated~3%higher indentation modulus and~32%higher hardness,while wrought Ti-6-4 showed~8%higher plasticity.Both alloys exhibited low corrosion rates(10−5 mA/cm^(2)order)and true passivity(10−4 mA/cm^(2)order).No localized corrosion was observed in either two alloys,except for occasional metastable pitting in the LPBF alloy.However,LPBF Ti-6-4 presented higher corrosion rate and passive current,ascribed to its martensitic structure.During dry sliding,LPBF Ti-6-4 exhibited~14%lower volume loss compared to wrought Ti-6-4.Sliding in SBF increased volume losses for both alloys,with wear resistances nearly equalized,as the advantage of LPBF Ti-6-4 decreased due to more intense wear-accelerated corrosion induced by the stressed martensite.Overall,the results demonstrate the suitability of LPBF Ti-6-4 for biomedical uses. 展开更多
关键词 biomedical Ti−6Al−4V alloy laser-based powder bed fusion electrochemical corrosion nanoindentation sliding wear wear-corrosion synergism
在线阅读 下载PDF
CORRELATION AMONG CORROSIVE FACTORS OF SOIL
6
作者 李长荣 屈祖玉 +3 位作者 王光雍 陈建民 丁乙 李春光 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 1996年第1期25+21-24,共5页
In this paper, through the data treatment of correlation coefficients and the clustering technique of pattern recognition, both the matrix of correlation coefficients and the pedigree of factor clusters show that some... In this paper, through the data treatment of correlation coefficients and the clustering technique of pattern recognition, both the matrix of correlation coefficients and the pedigree of factor clusters show that some factors affecting soil corrosivity are interrelated closely, and some independent relatively. The data analytical method used in this paper has certain assistance to the selection of major soil factors during the prediction and evaluation of soil corrosivity. 展开更多
关键词 clustering analysis corrosive factors soil corrosion
在线阅读 下载PDF
Aorto-oesophageal fistula after corrosive ingestion:A case report
7
作者 Matthias Frank Scriba Urda Kotze +2 位作者 Nadraj Naidoo Eduard Jonas Galya Eileen Chinnery 《World Journal of Gastrointestinal Surgery》 SCIE 2022年第5期506-513,共8页
BACKGROUND Aorto-oesophageal fistula(AOF)are uncommon and exceedingly rare after corrosive ingestion.The authors report a case of AOF after corrosive ingestion that survived.A comprehensive literature review was perfo... BACKGROUND Aorto-oesophageal fistula(AOF)are uncommon and exceedingly rare after corrosive ingestion.The authors report a case of AOF after corrosive ingestion that survived.A comprehensive literature review was performed to identify all cases of AOF after corrosive ingestion to determine the incidence of this condition,how it is best managed and what the outcomes are.CASE SUMMARY A previously healthy 30-year-old male,presented with a corrosive oesophageal injury after drain cleaner ingestion.He did not require acute surgical resection,but developed long-segment oesophageal stricturing,which was initially managed with cautious dilatation and later stenting.An AOF was suspected at endoscopy performed two months after the ingestion,when the patient represented with massive upper gastrointestinal bleeding.The fistula was confirmed on computerised tomographic angiography.The initial bleeding at endoscopy was temporised by oesophageal stenting;a second stent was placed when bleeding recurred later the same day.The stenting successfully achieved temporary bleeding control,but resulted in sudden respiratory distress,which was found to be due to left main bronchus compression caused by the overlapping oesophageal stents.Definitive bleeding control was achieved by endovascular aortic stent-grafting.A retrosternal gastroplasty was subsequently performed to achieve gastrointestinal diversion to reduce the risk of stent-graft sepsis.He was subsequently successfully discharged and remains well one year post injury.CONCLUSION AOF after corrosive ingestion is exceedingly rare,with a very high mortality.Most occur weeks to months after the initial corrosive ingestion.Conservative management is ill-advised. 展开更多
关键词 Aorto-oesophageal fistula corrosive/caustic injury corrosive ingestion Case report
暂未订购
Effect of corrosive media on galvanic corrosion of complicated tri-metallic couples of 2024 Al alloy/Q235 mild steel/304 stainless steel 被引量:11
8
作者 Linjun Shi Xiuying Yang +4 位作者 Yingwei Song Dan Liua Kaihui Dong Dayong Shan En-Hou Han 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2019年第9期1886-1893,共8页
Galvanic corrosion of tri-metallic couples is more complicated than that of bi-metallic couples. In this study, the effect of the pH of corrosive media on the galvanic corrosion of 2024 A1 alloy/Q235 mild steel/304 st... Galvanic corrosion of tri-metallic couples is more complicated than that of bi-metallic couples. In this study, the effect of the pH of corrosive media on the galvanic corrosion of 2024 A1 alloy/Q235 mild steel/304 stainless steel tri-metallic couples was investigated using potentiodynamic polarization, scanning electron microscopy, scanning vibrating electrode technique and a multi-channel galvanic corrosion meter. The results show that 2024 always acts as the only anode in 3.5 wt% NaCl at pH 5.56,9.72 and 12.0, while both Q235 and 2024 act as anodes at pH 2.39 in the initial stage and then the role of Q235 changes at longer coupling time, which can be attributed to the effect of pH on the surface film of 2024. It is also found that the galvanic current density of a tri-metallic couple is the superposition of two bi-metallic couples when cathodic reactions are controlled by the diffusion of oxygen, otherwise it is smaller than that of the sum of two bi-metallic couples. The localized corrosion instead of uniform corrosion of anodic metal is accelerated by galvanic corrosion. 展开更多
关键词 Galvanic corrosion Tri-metallic couples corrosive MEDIA Scanning vibrating electrode technique Zero resistance AMMETER
原文传递
Dry Friction and Wear Characteristics of Impregnated Graphite in a Corrosive Environment 被引量:18
9
作者 JIA Qian YUAN Xiaoyang +2 位作者 ZHANG Guoyuan DONG Guangneng ZHAO Weigang 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2014年第5期965-971,共7页
Tribological properties of impregnated graphite are greatly influenced by preparation technology and working conditions and it’s highly susceptible to corrosion environmental impacts,but the experimental research abo... Tribological properties of impregnated graphite are greatly influenced by preparation technology and working conditions and it’s highly susceptible to corrosion environmental impacts,but the experimental research about it are few.In this paper,three kinds of impregnated graphite samples are prepared with different degree of graphitization,the tribological properties of these samples in the dry friction environment and in a corrosive environment are analyzed and contrasted.The tribo-test results show that the friction coefficient of samples is reduced and the amount of wear of samples increase when the graphitization degree of samples increases in dry friction condition.While in a corrosive environment(samples are soaked N2O4),the friction coefficient and amount of wear are changed little if the graphitization degree of samples are low.If the degree of graphitization increase,the friction coefficient and amount of wear of samples increase too,the amount of wear is 2 to 3 times as the samples tested in the non-corrosive environment under pv value of 30MPa?m/s.The impregnated graphite,which friction coefficient is stable and graphitization degree is in mid level,such#2,is more appropriate to have a work in the corrosion conditions.In this paper,preparation and tribological properties especially in corrosive environment of the impregnated graphite is studied,the research conclusion can provide an experimental and theoretical basis for the selection and process improvement of graphite materials,and also provide some important design parameters for contact seal works in a corrosive environment. 展开更多
关键词 corrosive environment impregnated graphite GRAPHITIZATION dry friction coefficient of friction amount of wear
在线阅读 下载PDF
Analysis of cultivable aerobic bacterial community composition and screening for facultative sulfate-reducing bacteria in marine corrosive steel 被引量:5
10
作者 LI Xiaohong XIAO Hui +7 位作者 ZHANG Wenjun LI Yongqian TANG Xuexi DUAN Jizhou YANG Zhibo WANG Jing GUAN Fang DING Guoqing 《Journal of Oceanology and Limnology》 SCIE CAS CSCD 2019年第2期600-614,共15页
Anaerobic, aerobic, and facultative bacteria are all present in corrosive environments. However, as previous studies to address corrosion in the marine environment have largely focused on anaerobic bacteria, limited a... Anaerobic, aerobic, and facultative bacteria are all present in corrosive environments. However, as previous studies to address corrosion in the marine environment have largely focused on anaerobic bacteria, limited attention has been paid to the composition and function of aerobic and facultative bacteria in this process. For analysis in this study, ten samples were collected from rust layers on steel plates that had been immersed in seawater for diff erent periods (i.e., six months and eight years) at Sanya and Xiamen, China. The cultivable aerobic bacterial community structure as well as the number of sulfate-reducing bacteria (SRB) were analyzed in both cases, while the proportion of facultative SRB among the isolated aerobic bacteria in each sample was also evaluated using a novel approach. Bacterial abundance results show that the proportions are related to sea location and immersion time;abundances of culturable aerobic bacteria (CAB) and SRB from Sanya were greater in most corrosion samples than those from Xiamen, and abundances of both bacterial groups were greater in samples immersed for six months than for eight years. A total of 213 isolates were obtained from all samples in terms of CAB community composition, and a phylogenetic analysis revealed that the taxa comprised four phyla and 31 genera. Bacterial species composition is related to marine location;the results show that Firmicutes and Proteobacteria were the dominant phyla, accounting for 98.13% of the total, while Bacillus and Vibrio were the dominant genera, accounting for 53.06% of the total. An additional sixfacultative SRB strains were also screened from the isolates obtained and were found to encompass the genus Vibrio (four strains), Staphylococcus (one strain), and Photobacterium (one strain). It is noteworthy that mentions of Photobacterium species have so far been absent from the literature, both in terms of its membership of the SRB group and its relationship to corrosion. 展开更多
关键词 MARINE corrosive STEEL cultivable AEROBIC BACTERIA FACULTATIVE sulfate-reducing BACTERIA bacterial community composition 16S RRNA gene sequencing
在线阅读 下载PDF
Development and evaluation of corrosion resistant coating for expandable rock bolt against highly corrosive ground conditions 被引量:4
11
作者 Kevin Jinrong Ma John Stankus Dakota Faulkner 《International Journal of Mining Science and Technology》 SCIE EI CSCD 2018年第1期145-151,共7页
Expandable rock bolts are widely used in hard rock mines as an efficient ground control product.However, capacity and service life can be significantly reduced if the metallic body is subjected to corrosion.In some ha... Expandable rock bolts are widely used in hard rock mines as an efficient ground control product.However, capacity and service life can be significantly reduced if the metallic body is subjected to corrosion.In some hard rock mines in the U.S., highly corrosive ground conditions exist, and it has been reported that inflatable rock bolts have corroded within a few months after installation.To provide mining industry a cost-effective inflatable bolt and combat the corrosion issues, Jennmar Corporation, Inc.,and its subsidiary Keystone Mining Services, LLC(KMS), analyzed corroded bolt samples, identified root causes, evaluated properties of various coating materials, and developed a new inflatable rock bolt,Python M3^(TM), that is protected with an innovative PyFlexU2^(TM)coating.The new generation Python M3^(TM) features improved steel chemistry for reliable performance, modified profile for better inflation, and surface preparation and coating application.The PyFlexU2^(TM)is impervious to liquid and air, durable, and UV resistant.With a flexible, adhesive, and highly corrosion-resistant undercoating, and a very hard sacrificial surface coating, the PyFlexU2^(TM)coating system provides the Python M3^(TM)superior protection against chemical corrosion and physical scratch damage.The under-coating has exceptional flexibility and adhesion to prevent coating micro-cracks or fractures after bolt inflation and possesses excellent corrosion resistance to acids(pH < 3), alkalis(p H > 11), fuels, and salt solvents.The corrosion and scratch resistant PyFlexU2^(TM)coating offers very effective bolt protection for extra longevity in highly corrosive environments.The Python M3^(TM)coated with PyFlexU2^(TM)has been tested in the most challenging conditions,including laboratory corrosion tests in extreme acidic and basic solvents, rock slurry, and borehole scratch insertion tests.With demonstrated corrosion and scratch resistance, the product has been greatly welcomed by hard rock mines in the West and is currently installed in large scale.This paper identifies the root causes of the bolt corrosion, discusses the analysis process, and details laboratory and underground tests carried out on the Python M3^(TM)coated with PyFlexU2^(TM).The Python M3^(TM)and PyFlexU2^(TM) are subjects covered by pending U.S.Patent Applications assigned to FCI Holdings Delaware, LLC. 展开更多
关键词 ROCK BOLT HARD ROCK corrosive GROUND CONDITION BOLT corrosion
在线阅读 下载PDF
Calculation of corrosion rate for reinforced concrete beams based on corrosive crack width 被引量:4
12
作者 Feng WU Jing-hai GONG Zhang ZHANG 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2014年第3期197-207,共11页
This paper deals with a correction method for corrosive crack width caused by non-uniform corrosion. Considering the corrosion cracking characteristics of a reinforced concrete structure, a correction model of corrosi... This paper deals with a correction method for corrosive crack width caused by non-uniform corrosion. Considering the corrosion cracking characteristics of a reinforced concrete structure, a correction model of corrosive crack width involving the mutual impacts between adjacent measuring points is established. The calculation model for steel bar corrosion rate for single point is obtained through quantitative analysis and accelerated corrosion tests on more than 70 reinforced cubic members. Two methods are suggested by combining two models, the correction and the corrosion calculation ones. Electrolyte accelerated cor- rosion tests on seven beams are carried out to verify these methods. The experimental results show that the ratio between the maximum corrosion rate by the indirect method and the measured average value ranges from 1.4 to 2.4, and the indirect method is shown to be an effective method for calculating the maximum corrosion rate. 展开更多
关键词 corrosive crack width Non-uniform corrosion Corrosion rate Electrolyte accelerated corrosion test Reinforced cubic beams
原文传递
Effect of SiC content on dry sliding wear, corrosion and corrosive wear of Al/SiC nanocomposites 被引量:3
13
作者 Sareh MOSLEH-SHIRAZI Farshad AKHLAGHI Dong-yang LI 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2016年第7期1801-1808,共8页
The corrosion, corrosive wear and dry sliding wear of nanocomposites, are extremely complicated and involve various chemical, physical anbd mechanical factors. The aim of this work is to investigate the effects of nan... The corrosion, corrosive wear and dry sliding wear of nanocomposites, are extremely complicated and involve various chemical, physical anbd mechanical factors. The aim of this work is to investigate the effects of nanosized SiC content on the hardness, dry sliding wear, corrosion and corrosive wear of Al/SiC nanocomposites synthesized by mechanical milling cold pressing and hot extrusion. The corrosion resistance of these composites in 3%NaCl solution was investigated by electrochemical polarization testing and their dry sliding as well as corrosive wear resistance in the same solution was evaluated using a pin-on-disc tester. The microstructures of the samples and their worn surfaces were examined using scanning electron microscopy. It was shown that the dry sliding wear and corrosion resistance of these nanocomposites were improved with the increase of SiC content. It was concluded that due to the lubrication effect of the solution, both the friction coefficient and frictional heat that might soften the material were reduced. In addition, the improved strength of the nanocomposites combined with their better corrosion resistance contributed to their increased corrosive wear resistance, compared with the base alloy. The prominent wear mechanism in the unreinforced alloy was adhesive wear, in the Al/SiC nanocomposites, the wear mechanism changed to abrasive. 展开更多
关键词 Al 6061 SIC NANOCOMPOSITE mechanical milling CORROSION dry sliding wear corrosive wear
在线阅读 下载PDF
Effects of Yttrium Addition on Microstructure, Hardness and Resistance to Wear and Corrosive Wear of TiNi Alloy 被引量:2
14
作者 Hojat Ahmadi Meisam Nouri 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2011年第9期851-855,共5页
TiNi alloy has a high resistance to wear and could be an excellent candidate for various tribological applications. In this paper, it was demonstrated that by addition of yttrium, hardness properties and resistance to... TiNi alloy has a high resistance to wear and could be an excellent candidate for various tribological applications. In this paper, it was demonstrated that by addition of yttrium, hardness properties and resistance to wear and corrosive wear of TiNi alloy were improved. New yttrium rich regions were formed in microstructure of TiNi alloy. The improved properties of this alloy by the yttrium addition could be attributed to the formation of these regions. The results showed that there was an optimum content for addition of yttrium between 2% and 5% (in wt%), and above this content the improvement in properties of TiNi became minor. 展开更多
关键词 YTTRIUM TINI Mechanical behaviour WEAR corrosive wear MICROSTRUCTURE
原文传递
Colon Interposition for Corrosive Esophageal Stricture: Single Institution Experience with 119 Cases 被引量:2
15
作者 Wen-hui ZENG Wan-li JIANG +5 位作者 Gan-jun KANG Xing-hua ZHANG Guo-hua FAN Qing GENG Song-ping XIE Jie HUANG 《Current Medical Science》 SCIE CAS 2019年第3期415-418,共4页
The colon is an alternative graft organ for esophageal reconstruction.The present study reviewed our experience with the colon interposition for esophageal replacement following corrosive ingestion,to evaluate the out... The colon is an alternative graft organ for esophageal reconstruction.The present study reviewed our experience with the colon interposition for esophageal replacement following corrosive ingestion,to evaluate the outcomes of colon interposition based on our surgical experience. The clinical data of 119 patients who underwent colon interposition for esophageal replacement from January 2005 to March 2017 were retrospectively analyzed. The routes of the colon interposition were retrosternal in 119 (100%). The median operative time was 390 min (range: 290-610 min) and the median blood loss was 615 mL (range:270-2500 mL). Of these 119 patients, the cervical anastomosis was performed at the hypopharynx (n=20,16.8%), the larynx (n=3,2.5%), and the cervical esophagus (n=96, 80.7%). Five patients experienced cervical anastomotic leakage (4 cases for esophagus-colon, and one for hypopharynx-colon).One patient experienced wound infection of the abdominal wall. Three patients had injury of recurrent laryngeal nerve and hoarseness. Three patients had stress ulcer with bleeding and treated with octreotide. Two patients suffered from incomplete intestinal obstruction. The postoperative follow-up was made for 12 months in all patients and all of them were alive. In conclusion, The colon is well-suited for esophageal reconstruction. The selection of the colon graft should be flexible and be based on the inspection of blood supply and the length needed. We must therefore make every effort to reduce the number of postoperative complications, and improve the quality of life for patients. 展开更多
关键词 corrosive ESOPHAGEAL STRICTURE COLON INTERPOSITION OUTCOMES
暂未订购
Development of anti-corrosive coating on AZ31 Mg alloy subjected to plasma electrolytic oxidation at sub-zero temperature 被引量:3
16
作者 S.Fatimah M.P.Kamil +2 位作者 D.I.Han W.Al-Zoubi Y.G.Ko 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2022年第7期1915-1929,共15页
Plasma electrolytic oxidation(PEO)is a promising surface treatment to generate adherent and thick anti-corrosive coating on light-weight metals(Al,Mg,Ti,etc.)using an eco-friendly alkaline electrolyte.High energy plas... Plasma electrolytic oxidation(PEO)is a promising surface treatment to generate adherent and thick anti-corrosive coating on light-weight metals(Al,Mg,Ti,etc.)using an eco-friendly alkaline electrolyte.High energy plasma,however,inevitably generates porous structures that limit their practical performance.The present study proposes a straight-forward simple method by utilizing sub-zero electrolyte(268 K)to alter the plasma characteristics during formation of the protective coating on AZ31 Mg alloy via PEO with a comparison to the electrolyte at room temperature(298 K).In refrigerated electrolyte,the formation of micro-defects is suppressed relatively at the expense of low coating growth,which is measured to be twice lower than that at 298 K due to the temperature-dependent soft plasma discharges contributing to the development of the present coating.As a consequence,corrosion resistance of the sample processed at 268 K is superior to that of 298K,implying that the effect of coating thickness is less dominant than that of compactness.This phenomenon is interpreted in relation to the ionic movement and oxide solidification controlled by soft plasma discharges arising from the temperature gradient between electrolyte and surface of the substrate during PEO. 展开更多
关键词 AZ31 Mg alloy Plasma electrolytic oxidation Sub-zero electrolyte Anti-corrosive coating Corrosion
在线阅读 下载PDF
Corrosive-wear and Electrochemical Performance of Laser Thermal Sprayed Co30Cr8W1.6C3Ni1.4Si Coating on Ti6Al4V Alloy 被引量:2
17
作者 XU Jianyan KONG Dejun 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2020年第4期812-819,共8页
Co30Cr8W1.6C3Ni1.4Si coatings were fabricated on Ti6Al4V alloy using a laser thermal spraying(LTS).The surface and cross-section morphologies,phases and bonding strength of obtained coatings were investigated using sc... Co30Cr8W1.6C3Ni1.4Si coatings were fabricated on Ti6Al4V alloy using a laser thermal spraying(LTS).The surface and cross-section morphologies,phases and bonding strength of obtained coatings were investigated using scanning electronic microscopy(SEM),X-ray diffraction(XRD),and scratch test,respectively.The effects of laser power on the coefficients of friction(COFs)and corrosive-wear behaviors of Co30Cr8W1.6C3Ni1.4Si coatings were investigated using a wear tester in 3.5%NaCl solution,and the electrochemical corrosion performance was analyzed using an electrochemical workstation.The experimental results show that the Co30Cr8W1.6C3Ni1.4Si coating is bonded with the substrate in the metallurgical form,and the bonding strengths of Co30Cr8W1.6C3Ni1.4Si coatings fabricated at the laser power of 1000,1200,and 1400 W are 76.5,56.5,and 55.6 N,respectively.The average COFs of Co30Cr8W1.6C3Ni1.4Si coatings fabricated at the laser power of 1000,1200,and 1400 W are 0.769,0.893,and 0.941,respectively;and the corresponding wear rates are 0.267×105,0.3178×105,and 0.325×105μm3/Nm,respectively,which increases with the increase of laser power,the wear mechanism is primarily abrasive wear.The corrosion potential of Co30Cr8W1.6C3Ni1.4Si coatings fabricated at the laser power of 1000,1200,and 1400 W is-0.05,-0.25,and-0.31 V,respectively,higher than-0.45 V of substrate which enhances the electrochemical corrosion resistance of substrate. 展开更多
关键词 laser thermal spraying(LTS) laser power Co30Cr8W1.6C3Ni1.4Si coating corrosive wear electrochemical corrosion
原文传递
Effect of molybdenum on the microstructure and corrosive wear resistance of laser clad Ni-based coatings 被引量:2
18
作者 张平 原津萍 +3 位作者 盂令东 赵军军 乔玉林 刘操 《China Welding》 EI CAS 2010年第1期43-47,共5页
Five kinds of Ni-based coatings with 0 wt% , 2. 5 wt% , 5.0 wt% , 7.5 wt% and 10. 0 wt% molybdenum were prepared on 45CrNi steel plates by using laser cladding technique. The effect of Mo on the microstructure of Ni-b... Five kinds of Ni-based coatings with 0 wt% , 2. 5 wt% , 5.0 wt% , 7.5 wt% and 10. 0 wt% molybdenum were prepared on 45CrNi steel plates by using laser cladding technique. The effect of Mo on the microstructure of Ni-based coatings was investigated by using scanning electron microscopy. The corrosive wear resistance and the corrosion resistance of five coatings were tested. The results show that the corrosive wear resistance of the coating with 5.0 wt% Mo is better than those of other coatings. During the corrosive wear process, the corrosion and wear effects are combined. The corrosive wear resistance is closely related to the microstructure of the coating. 展开更多
关键词 laser cladding Ni-based alloy corrosive wear
在线阅读 下载PDF
An uncommon cause of corrosive esophageal injury 被引量:2
19
作者 Fabio Pace Salvatore Greco +3 位作者 Stefano Pallotta Daniela Bossi Emilio Trabucchi Gabrielle Bianchi Porro 《World Journal of Gastroenterology》 SCIE CAS CSCD 2008年第4期636-637,共2页
We present an unusual case of corrosive esophageal injury following liquid glue ingestion. The endoscopic f indings were tissue sloughing and blackened appearance of the esophagogastric junction,due to caustic esophag... We present an unusual case of corrosive esophageal injury following liquid glue ingestion. The endoscopic f indings were tissue sloughing and blackened appearance of the esophagogastric junction,due to caustic esophageal injuries following ingestion of glue containing toluene. 展开更多
关键词 Ingested foreign bodies corrosive esophagitis
暂未订购
Intercalation and Stability of Layered Semiconductive Material in Corrosive Environment 被引量:1
20
作者 A.A.El-Meligi 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2006年第2期252-256,共5页
The intercalation of 4-methyl pyridine (4-picoline) into layered semiconductive material (MnPS3) and the stability of the resulting materials in corrosive environments (water, HCI and open atmosphere) were inves... The intercalation of 4-methyl pyridine (4-picoline) into layered semiconductive material (MnPS3) and the stability of the resulting materials in corrosive environments (water, HCI and open atmosphere) were investigated. Powder X-ray diffraction (XRD) indicated that the presence of water and hydrochloric acid greatly influenced the existing form of intercalation and its orientation in the interlayer of the host. Atmospheric environment (open air) affected the vip orientation in the interlayer of the host material. Phase transformation occurred and the material was stable. The intercalated compounds could be indexed in the trigonal unit cell. The XRD patterns exhibited sharp hkl reflections of the intercalated compounds, which formed in water and HCI, confirming that the materials were well crystalline and stable in corrosive environments. 展开更多
关键词 MnPS3 INTERCALATION STABILITY XRD corrosive environments
在线阅读 下载PDF
上一页 1 2 236 下一页 到第
使用帮助 返回顶部