期刊文献+
共找到194,162篇文章
< 1 2 250 >
每页显示 20 50 100
The Preparation and Performance Study of a Phosphate-Free Corrosion/Scale Inhibitor 被引量:3
1
作者 Defang Zeng Wei Zhang 《Journal of Water Resource and Protection》 2012年第7期487-492,共6页
By using acrylic acid copolymer, sodium citrate, hydrolyzed polymaleic anhydride (HPMA), corrosion inhibitor D and Zn2+ synergist as raw materials, a multi-component phosphate-free corrosion and scale inhibitor was de... By using acrylic acid copolymer, sodium citrate, hydrolyzed polymaleic anhydride (HPMA), corrosion inhibitor D and Zn2+ synergist as raw materials, a multi-component phosphate-free corrosion and scale inhibitor was developed. The performance of the composite phosphate-free corrosion and scale inhibitor was evaluated using the rotary hanging sheet corrosion test, the static scale inhibition test and the corrosion electrochemical test. And the surface morphology of the carbon steel was observed by scanning electronic microscope (SEM). Orthogonal experiment results indicated that the optimal mass ratios of amino acid: Zn2+ synergist: HPMA: corrosion inhibitor D: acrylic acid copolymer was 0.5:10:12:1:8. It was also observed that phosphate-free corrosion and scale inhibitor based on an anodic reaction through the electrochemical corrosion experiment, its annual corrosion rate and scale inhibition rate reached 0.0176 mm·a–1 and 98.3%, respectively, showing excellent corrosion and scale inhibition performance. 展开更多
关键词 Phosphate-free corrosion/scale INHIBITOR Static scale INHIBITION Method SEM ELECTROCHEMICAL corrosion
在线阅读 下载PDF
Corrosion behavior of 650 MPa high strength low alloy steel in industrial polluted environments containing different concentrations of Cl^(-)
2
作者 Lianjun Hao Xiaokun Cai +4 位作者 Tianqi Chen Chenyu Zhang Chao Liu Xuequn Cheng Xiaogang Li 《International Journal of Minerals,Metallurgy and Materials》 2026年第1期228-241,共14页
This study utilizes wet/dry cyclic corrosion testing combined with corrosion big data technology to investigate the mechanism by which chloride ions(Cl^(-))influence the corrosion behavior of 650 MPa high-strength low... This study utilizes wet/dry cyclic corrosion testing combined with corrosion big data technology to investigate the mechanism by which chloride ions(Cl^(-))influence the corrosion behavior of 650 MPa high-strength low-alloy(HSLA)steel in industrially polluted environments.The corrosion process of 650 MPa HSLA steel occurred in two distinct stages:an initial corrosion stage and a stable corrosion stage.During the initial phase,the weight loss rate increased rapidly owing to the instability of the rust layer.Notably,this study demonstrated that 650 MPa HSLA steel exhibited superior corrosion resistance in Cl-containing environments.The formation of a corrosion-product film eventually reduced the weight-loss rate.However,the intrusion of Cl^(-)at increasing concentrations gradually destabilized theα/γ^(*)phases of the rust layer,leading to a looser structure and lower polarization resistance(R_(p)).The application of corrosion big data technology in this study facilitated the validation and analysis of the experimental results,offering new insights into the corrosion mechanisms of HSLA steel in chloride-rich environments. 展开更多
关键词 HSLA steel CHLORINE corrosion behavior corrosion big data
在线阅读 下载PDF
Microstructure evolution and corrosion behavior of refill friction stir spot welding joint for dissimilar Al alloys
3
作者 Fang-yuan JIANG Da ZHANG +3 位作者 Yan-kun MA Jiang-tao XIONG Wei GUO Jing-long LI 《Transactions of Nonferrous Metals Society of China》 2026年第1期80-95,共16页
The dissimilar 2B06 and 7B04 Al alloy joints were prepared by refill friction stir spot welding(RFSSW),and the microstructural evolution and corrosion behavior of the joints were investigated.Based on microstructural ... The dissimilar 2B06 and 7B04 Al alloy joints were prepared by refill friction stir spot welding(RFSSW),and the microstructural evolution and corrosion behavior of the joints were investigated.Based on microstructural analysis,the welded joints exhibit distinct microstructural zones,including the stir zone(SZ),thermomechanically affected zone(TMAZ),and heat-affected zone(HAZ).The grain size of each zone is in the order of HAZ>TMAZ>SZ.Notably,the TMAZ and HAZ contain significantly larger secondary-phase particles compared to the SZ,with particle size in the HAZ increasing at higher rotational speeds.Electrochemical tests indicate that corrosion susceptibility follows the sequence of HAZ>TMAZ>SZ>BM,with greater sensitivity observed at increased rotational speeds.Post-corrosion mechanical performance degradation primarily arises from crevice corrosion at joint overlaps,but not from the changes in the microstructure. 展开更多
关键词 refill friction stir spot welding high strength Al alloy dissimilar joint microstructure evolution corrosion behavior
在线阅读 下载PDF
In Situ Reconstructed Corrosion-Resistant PO_(x)^(y-) Prolongs Electrode Lifespans for Efficient Ampere-Level Water/Seawater Oxidation
4
作者 Weiju Hao Xunwei Ma +8 位作者 Xiaoke Ma Yiming Wang Jie Wang Yuhui Tian Shengwei Deng Qingyuan Bi Jinchen Fan Michael K.H.Leung Guisheng Li 《Carbon Energy》 2026年第1期253-266,共14页
Economical,stable,and corrosion-resistant catalytic electrodes are still urgently needed for the oxygen evolution reaction(OER)in water and seawater.Herein,a mild electroless plating strategy is used to achieve large-... Economical,stable,and corrosion-resistant catalytic electrodes are still urgently needed for the oxygen evolution reaction(OER)in water and seawater.Herein,a mild electroless plating strategy is used to achieve large-scale preparation of the“integrated”phosphorus-based precatalyst(FeP-NiP)on nickel foam(NF),which is in situ reconstructed into a highly active and corrosion-resistant(Fe)NiOOH phase for OER.The interaction between phosphate anions(PO_(x)^(y-))and iron ions(Fe^(3+))tunes the electronic structure of the catalytic phase to further enhance OER kinetics.The integrated FeP-NiP@NF electrode exhibits low overpotentials for OER in alkaline water/seawater,requiring only 275/289,320/336,and 349/358 mV to reach 0.1,0.5,and 1.0 A cm^(−2),respectively.The in situ reconstructed PO_(x)^(y-)anion electrostatically repels Cl−in seawater electrolytes,allowing stable operation for over 7 days at 1.0 A cm^(−2) in extreme electrolytes(1.0 M KOH+seawater and 6.0 M KOH+seawater),demonstrating industrial-level stability.This study overcomes the complex synthesis limitations of P-based materials through innovative material design,opening new avenues for electrochemical energy conversion. 展开更多
关键词 ampere-level current density high stability and corrosion resistance in situ reconstruction integrated phosphorus electrode water/seawater for oxygen evolution reaction
在线阅读 下载PDF
The effects of Cl^(-)and Ca^(2+) on corrosion and scale formation of 3Cr steel in CO_(2) flooding produced fluid
5
作者 Haifu Yuan Dezhi Zeng +5 位作者 Jie Li Zhendong Liu Xi Wang Chengxiu Yu Yonggang Yi Baojun Dong 《Chinese Journal of Chemical Engineering》 2025年第9期355-366,共12页
To elucidate the effects of Cl^(-)and Ca^(2+) on the corrosion and scale formation of 3Cr steel in CO_(2) floodingproduced fluid,corrosion weight loss experiments,and titration experiments were conducted.The resulting... To elucidate the effects of Cl^(-)and Ca^(2+) on the corrosion and scale formation of 3Cr steel in CO_(2) floodingproduced fluid,corrosion weight loss experiments,and titration experiments were conducted.The resulting products were characterized using scanning electron microscopy(SEM),X-ray diffraction(XRD),and X-ray photoelectron spectroscopy(XPS).This study examined the corrosion and scaling behavior of 3Cr steel under the influence of Cl^(-)and Ca^(2+).The results indicate that both Cl^(-)and Ca^(2+)promote the corro sion of 3Cr steel.Notably,Cl^(-)diminishes the promoting effect of Ca^(2+)on corro sion and inhibits scaling,revealing a mutual enhancement between corrosion and scaling.The mechanisms of localized corrosion under varying concentrations of Cl^(-)and Ca^(2+)differ;under-scale corrosion occurs in environments with 5000 mg·L^(-1) Cl^(-),while Cl^(-)induced corrosion is observed in 20000 mg·L^(-1) Cl^(-)environments.This study highlights that under the synergistic effects of Cl^(-),Ca^(2+),and scaling processes,the protective product film dissolves,thereby influencing both corrosion and scaling processes. 展开更多
关键词 3Cr steel Cl^(-) CA^(2+) corrosion and scaling Synergistic effect
在线阅读 下载PDF
Revealing the intergranular corrosion mechanism of AA5083 alloys through experiments and atomic-scale computation
6
作者 Chenyang Yao Yucheng Ji +6 位作者 Feng Ding Jiahao Wen Wentao Qin Fulai Xiao Dan Wang Kui Xiao Chaofang Dong 《Journal of Materials Science & Technology》 2025年第13期285-299,共15页
Continuously exposure to elevated temperature,known as sensitization,can accelerate the precipitation of the electrochemically activeβphase(Al3 Mg2)at grain boundaries(GBs)in Al-Mg alloys.This results in intergranula... Continuously exposure to elevated temperature,known as sensitization,can accelerate the precipitation of the electrochemically activeβphase(Al3 Mg2)at grain boundaries(GBs)in Al-Mg alloys.This results in intergranular corrosion(IGC),which seriously affects the application of Al-Mg alloys in marine environ-ments.Low-angle GBs(<15°)are considered to restrict the nucleation and growth of theβphase,while high-angle GBs(>15°)can promote these processes.However,the quantitative relationship between GB misorientation and IGC sensitivity at atomic scale is unknown.Herein,the underlying mechanism of IGC in AA5083 alloys withβphase and GB misorientation is investigated by experiments and simulation.The experimental results show that after sensitization when the misorientation angle exceeded 22.6°,the density of theβphase at GBs reaches up to 50%-60%.The hybrid molecular dynamics/Monte Carlo algorithm was utilized to simulate the diffusion of Mg and cluster formation in Al-5Mg alloy with 11 different GB models at 300 and 425 K.The maximum GB misorientation angle insensitive to IGC is about 18.9°to 22.6°.However,at 425 K,this angle decreases to 16.3°,increasing the IGC risk of Al-5Mg al-loys.The calculation results provide valuable quantitative guidance for the corrosion resistance design of Al-Mg alloys. 展开更多
关键词 Aluminum EBSD Molecular dynamics Diffusion Intergranular corrosion
原文传递
Accelerated Corrosion Rate of Wire Arc Additive Manufacturing of AZ91D Magnesium Alloy:The Formation of Nano-scaled AlMn Phase
7
作者 Dongchao Li Fen Zhang +2 位作者 Lanyue Cui Yueling Guo Rongchang Zeng 《Acta Metallurgica Sinica(English Letters)》 2025年第7期1069-1082,共14页
Additive manufacturing(AM)technologies,with their high degree of flexibility,enhance material utilization in the fabrication of large magnesium alloy parts,effectively meeting the demands of complex geometries.However... Additive manufacturing(AM)technologies,with their high degree of flexibility,enhance material utilization in the fabrication of large magnesium alloy parts,effectively meeting the demands of complex geometries.However,research on the corrosion resistance of magnesium alloy components produced via AM is currently limited.This study investigates the microstructural and corrosion characteristics of AZ91D magnesium alloy fabricated by wire arc additive manufacturing(WAAM)compared to its cast counterpart.A large-sized AZ91D bulk part was deposited on an AZ31 base plate using a layer-by-layer stacking approach.The results showed that the WAAM AZ91D was featured by obviously refined grains from 228.92μm of the cast one to 52.92μm on the travel direction-through thickness(TD-TT)and 50.07μm on the normal direction-through thickness(ND-TT).The rapid solidification process of WAAM inhibited the formation of β-Mg_(17)Al_(12) phase while promoting the formation of uniformly distributed network of dislocations,the dispersive precipitation of nano Al_(8)Mn_(5) phase,as well as Zn segregation.WAAM AZ91D demonstrated the occurrence of pitting corrosion and inferior corrosion resistance compared to cast AZ91D,attributed to the micro-galvanic corrosion between the α-Mg matrix and Al_(8)Mn_(5) particles and the increased number of grain boundaries. 展开更多
关键词 Magnesium alloy Wire arc additive manufacturing(WAAM) corrosion Layer-by-layer stacking Intermetallic compound
原文传递
In-situ synthesizing nanoscale(Zr,Ti)B_(2)at intergranular regions of NdCeFeB magnets with enhanced corrosion resistance
8
作者 Xuegeng Wang Bo Song +5 位作者 Xiaolian Liu Shutai Zhou Song Fu Kai Xu Xinxin Li Junjie Ni 《Journal of Rare Earths》 2025年第5期989-996,共8页
An idea hits us that in-situ synthesizing ceramic phase at intergranular regions of RE-Fe-B alloys should be beneficial to the performance of the materials against corrosion,and in this work a new nanoscale(Zr,Ti)B_(2... An idea hits us that in-situ synthesizing ceramic phase at intergranular regions of RE-Fe-B alloys should be beneficial to the performance of the materials against corrosion,and in this work a new nanoscale(Zr,Ti)B_(2)with space and point groups of P6/mmm and Fmmm,respectively,was successfully synthesized in NdCeFeB sintered magnets.The hcp-structured(Zr,Ti)B_(2)phases are present in a stripe-like shape.Some of(Zr,Ti)B_(2)are developed at interfaces,and the others exist inside grain boundary phase.They coexist with REFe_(2)and RE-rich phases at intergranular regions.When proximity to RE2Fe14B grains,their orientation relationships obey[001]_(Nd_(2)Fe_(14)B)‖[110](Zr,Ti)B_(2).The formation of(Zr,Ti)B_(2)generates significant local compressive stress,being 8.48 GPa,and plenty of reliefs are developed inside the RE2Fe14B grains.The in-situ formed(Zr,Ti)B_(2)modifies the magnet microstructure,lessens the favorable sites for absorption reaction,narrows reaction channels,and reduces the potential difference between intergranular phase and main phase.Such favorable factors greatly enhance the corrosion resistance with an icorrdecrement by 70%in comparison to the unmodified magnet.These new discoveries are thought to be able to provide an insight into the method of potentially improving properties of magnets. 展开更多
关键词 NDFEB (Zr Ti)B_(2) In-situ synthesis TEM corrosion resistance Rare earths
原文传递
Assessing the corrosion protection property of coatings loaded with corrosion inhibitors using the real-time atmospheric corrosion monitoring technique 被引量:1
9
作者 Xiaoxue Wang Lulu Jin +8 位作者 Jinke Wang Rongqiao Wang Xiuchun Liu Kai Gao Jingli Sun Yong Yuan Lingwei Ma Hongchang Qian Dawei Zhang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS 2025年第1期119-126,共8页
The atmospheric corrosion monitoring(ACM)technique has been widely employed to track the real-time corrosion behavior of metal materials.However,limited studies have applied ACM to the corrosion protection properties ... The atmospheric corrosion monitoring(ACM)technique has been widely employed to track the real-time corrosion behavior of metal materials.However,limited studies have applied ACM to the corrosion protection properties of organic coatings.This study compared a bare epoxy coating with one containing zinc phosphate corrosion inhibitors,both applied on ACM sensors,to observe their corrosion protection properties over time.Coatings with artificial damage via scratches were exposed to immersion and alternating dry and wet environments,which allowed for monitoring galvanic corrosion currents in real-time.Throughout the corrosion tests,the ACM currents of the zinc phosphate/epoxy coating were considerably lower than those of the blank epoxy coating.The trend in ACM current variations closely matched the results obtained from regular electrochemical tests and surface analysis.This alignment highlights the potential of the ACM technique in evaluating the corrosion protection capabilities of organic coatings.Compared with the blank epoxy coating,the zinc phosphate/epoxy coating showed much-decreased ACM current values that confirmed the effective inhibition of zinc phosphate against steel corrosion beneath the damaged coating. 展开更多
关键词 atmospheric corrosion monitoring technology corrosion inhibitor COATING carbon steel corrosion protection
在线阅读 下载PDF
Corrosion Inhibition of a Green Scale Inhibitor Polyepoxysuccinic Acid 被引量:14
10
作者 Rong Chun XIONG, Qing ZHOU, Gang WEI Beijing University of Chemistry and Technology, Beijing 100029 《Chinese Chemical Letters》 SCIE CAS CSCD 2003年第9期955-957,共3页
The corrosion inhibition of a green scale inhibitor, polyepoxysuccinic acid (PESA) was studied based on dynamic tests. It is found that when PESA is used alone, it had good corrosion inhibition. So, PESA should be inc... The corrosion inhibition of a green scale inhibitor, polyepoxysuccinic acid (PESA) was studied based on dynamic tests. It is found that when PESA is used alone, it had good corrosion inhibition. So, PESA should be included in the category of corrosion inhibitors. It is not only a kind of green scale inhibitor, but also a green corrosion inhibitor. The synergistic effect between PESA and Zn2+ or sodium gluconate is poor. However, the synergistic effect among PESA, Zn2+ and sodium gluconate is excellent, and the corrosion inhibition efficiency for carbon steel is higher than 99%. Further study of corrosion inhibition mechanism reveals that corrosion inhibition of PESA is not affected by carboxyl group, but by the oxygen atom inserted. The existence of oxygen atom in PESA molecular structure makes it easy to form stable chelate with pentacyclic structure. 展开更多
关键词 Green scale inhibitor polyepoxysuccinic acid corrosion inhibition synergistic effect.
在线阅读 下载PDF
Wear Resistance of CO_2 Corrosion Product Scale Formed at High Temperature 被引量:6
11
作者 LIN Guan-fa ZHENG Mao-sheng +1 位作者 BAI Zhen-quan FENG Yao-rong 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2006年第5期47-52,共6页
To investigate the correlation between structure characteristics and wear resistance of CO2 corrosion product scales at high temperature and high pressure, an autoclave was used to prepare CO2 corrosion product scales... To investigate the correlation between structure characteristics and wear resistance of CO2 corrosion product scales at high temperature and high pressure, an autoclave was used to prepare CO2 corrosion product scales on N80 steel in carbon dioxide corrosion environment. The correlation between wear resistance of the scales and many other factors, such as temperature, pressure, morphology, structure, velocity of fluid medium, sand grain size, and so on, was comparatively analyzed by a self assembled wear device, and the scale morphologies before or after being worn were observed by scanning electron microscope (SEM). And then the surface grain size and thickness of scale were measured. The results showed that the cross-section of the corrosion scale was of a double-layer structure, the outer layer of which was composed of regular crystals, whereas the inner layer was a thin scale of fine grains. The outer grain size and thickness of scale varied with temperature, and the initial wear loss was consistent with the surface grain size; at the same time, the total wear loss corresponded to the thickness of scale. Compared to wear resist- ance in different depths of the scale, it was found that the structure of scale was a double-layer structure in cross-section, and the wear resistance of inner layer was better than that of the outer layer; the closer the scale to the matrix, the greater was the wear resistance of scale; and the larger the size or the higher the rotary speed of solid grain in multiphase flowing medium, the more was the wear loss of scale. 展开更多
关键词 CO2 corrosion corrosion product scale WEAR N80 steel MORPHOLOGY structure
在线阅读 下载PDF
Multiple Tin Compounds Modified Carbon Fibers to Construct Heterogeneous Interfaces for Corrosion Prevention and Electromagnetic Wave Absorption 被引量:1
12
作者 Zhiqiang Guo Di Lan +6 位作者 Zirui Jia Zhenguo Gao Xuetao Shi Mukun He Hua Guo Guanglei Wu Pengfei Yin 《Nano-Micro Letters》 SCIE EI CAS 2025年第1期507-527,共21页
Currently,the demand for electromagnetic wave(EMW)absorbing materials with specific functions and capable of withstanding harsh environments is becoming increasingly urgent.Multi-component interface engineering is con... Currently,the demand for electromagnetic wave(EMW)absorbing materials with specific functions and capable of withstanding harsh environments is becoming increasingly urgent.Multi-component interface engineering is considered an effective means to achieve high-efficiency EMW absorption.However,interface modulation engineering has not been fully discussed and has great potential in the field of EMW absorption.In this study,multi-component tin compound fiber composites based on carbon fiber(CF)substrate were prepared by electrospinning,hydrothermal synthesis,and high-temperature thermal reduction.By utilizing the different properties of different substances,rich heterogeneous interfaces are constructed.This effectively promotes charge transfer and enhances interfacial polarization and conduction loss.The prepared SnS/SnS_(2)/SnO_(2)/CF composites with abundant heterogeneous interfaces have and exhibit excellent EMW absorption properties at a loading of 50 wt%in epoxy resin.The minimum reflection loss(RL)is−46.74 dB and the maximum effective absorption bandwidth is 5.28 GHz.Moreover,SnS/SnS_(2)/SnO_(2)/CF epoxy composite coatings exhibited long-term corrosion resistance on Q235 steel surfaces.Therefore,this study provides an effective strategy for the design of high-efficiency EMW absorbing materials in complex and harsh environments. 展开更多
关键词 Electrostatic spinning Component regulation Heterogeneous interfaces Electromagnetic wave absorption corrosion protection
在线阅读 下载PDF
Microstructure and Wear/corrosion Resistance of Stainless Steel Laser-alloyed with Mn+W_(2)C, Mn+NiWC and Mn+SiC 被引量:1
13
作者 ZHOU Rui DIAO Xiaogang SUN Yixin 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2025年第1期283-294,共12页
In-situ formed high Mn steel coating reinforced by carbides was formed by laser surface alloying(LSA).Laser alloyed layers on 1Cr18Ni9Ti steel with Mn+W_(2)C(specimen A),Mn+NiWC(specimen B)and Mn+SiC(specimen C)powder... In-situ formed high Mn steel coating reinforced by carbides was formed by laser surface alloying(LSA).Laser alloyed layers on 1Cr18Ni9Ti steel with Mn+W_(2)C(specimen A),Mn+NiWC(specimen B)and Mn+SiC(specimen C)powders were fabricated to improve the wear and corrosion behavior of 1Cr18Ni9Ti steel blades in high speed mixers.Microstructure evolution,phases,element distribution,microhardness,wear and corrosion behavior of the laser alloyed layers were investigated.Results indicated that high Mn steel matrix composites with undissolved W_(2)C,WC and other in-situ formed carbides were formed by LSA with Mn+W_(2)C and Mn+NiWC while SiC totally dissolved into the high Mn matrix when adding Mn+SiC.Ni as the binding phase in Ni-WC powder decreased the crack sensitivity of the alloyed layer as compared with the addition of W_(2)C powder.An improvement in average microhardness was achieved in the matrix in specimen A,B and C,with the value of 615,602 and 277 HV_(0.5),while that of the substrate was 212 HV_(0.5).The increase of microhardness,wear and corrosion resistance is highly corelated to microstructure,formed phases,type and content of carbides,micro-hardness and toughness of the alloyed layers. 展开更多
关键词 laser surface alloying stainless steel carbide type MICROSTRUCTURE wear and corrosion resistance
原文传递
Influence of mill scale and rust layer on the corrosion resistance of low-alloy steel in simulated concrete pore solution 被引量:7
14
作者 Jin-jie Shi Jing Ming 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2017年第1期64-74,共11页
Electrochemical impedance spectroscopy, cyclic potentiodynamic polarization measurements, and scanning electron microscopy in conjunction with energy-dispersive X-ray spectroscopy were used to investigate the influenc... Electrochemical impedance spectroscopy, cyclic potentiodynamic polarization measurements, and scanning electron microscopy in conjunction with energy-dispersive X-ray spectroscopy were used to investigate the influence of mill scale and rust layer on the passivation capability and chloride-induced corrosion behaviors of conventional low-carbon(LC) steel and low-alloy(LA) steel in simulated concrete pore solution. The results show that mill scale exerts different influences on the corrosion resistance of both steels at various electrochemical stages. We propose that the high long-term corrosion resistance of LA steel is mainly achieved through the synergistic effect of a gradually formed compact, adherent and well-distributed Cr-enriched inner rust layer and the physical barrier protection effect of mill scale. 展开更多
关键词 steel reinforced concrete low alloy steel low carbon steel steel corrosion corrosion resistance
在线阅读 下载PDF
Experimental Study on a New Corrosion and Scale Inhibitor 被引量:4
15
作者 Defang Zeng Huan Yan 《Journal of Environmental Protection》 2013年第7期671-675,共5页
The mixture consisted of benzotriazole (BTA), chitosan (CTS), polyacrylic acid and zinc salt has been investigated as a corrosion and scale inhibitor of A3 carbon steel in cooling water. The scale and corrosion inhibi... The mixture consisted of benzotriazole (BTA), chitosan (CTS), polyacrylic acid and zinc salt has been investigated as a corrosion and scale inhibitor of A3 carbon steel in cooling water. The scale and corrosion inhibition efficiency was evaluated by static anti-scaling teat together with rotary coupon test. Compared with the phosphorus corrosion and scale inhibitor, the corrosion inhibition rate and scale inhibition rate of it increased respectively by 2.51% and 1.16%. As the corrosion and scale inhibitor is phosphate-free, it won’t cause eutrophication, considering the product performance and environmental influence, the phosphate-free corrosion and scale inhibitor is superior to the traditional one. 展开更多
关键词 corrosion and scale INHIBITOR scale INHIBITION PERFORMANCE corrosion INHIBITION
暂未订购
Review on corrosion and corrosion scale formation upon unlined cast iron pipes in drinking water distribution systems 被引量:6
16
作者 Haiya Zhang Dibo Liu +6 位作者 Lvtong Zhao Jun Wang Shuguang Xie Shuming Liu Pengfei Lin Xiaojian Zhang Chao Chen 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2022年第7期173-189,共17页
The qualified finished water from water treatment plants(WTPs) may become discolored and deteriorated during transportation in drinking water distribution systems(DWDSs), which affected tap water quality seriously. Th... The qualified finished water from water treatment plants(WTPs) may become discolored and deteriorated during transportation in drinking water distribution systems(DWDSs), which affected tap water quality seriously. This water stability problem often occurs due to pipe corrosion and the destabilization of corrosion scales. This paper provides a comprehensive review of pipe corrosion in DWDSs, including corrosion process, corrosion scale formation, influencing factors and monitoring technologies utilized in DWDSs. In terms of corrosion process, corrosion occurrence, development mechanisms, currently applied assays, and indices used to determine the corrosion possibility are summarized, as well as the chemical and bacterial influences. In terms of scale formation, explanations for the nature of corrosion and scale formation mechanisms are discussed and its typical multilayered structure is illustrated. Furthermore, the influences of water quality and microbial activity on scale transformation are comprehensively discussed. Corrosion-related bacteria at the genus level and their associated corrosion mechanism are also summarized. This review helps deepen the current understanding of pipe corrosion and scale formation in DWDSs, providing guidance for water supply utilities to ensure effective measures to maintain water quality stability and guarantee drinking water safety. 展开更多
关键词 corrosion scale formation Water quality stability Drinking water distribution system Iron pipe Water supply safety
原文传递
Erosion-Corrosion of Ti(C,N)-Mo_(2)C-Ni Cermet and WC-Co Cemented Carbide in Alkaline Conditions 被引量:1
17
作者 Deng Chengjun Lin Fukai +4 位作者 Yang Tianen Hong Huaping Liang Lei Peng Huabei Xiong Ji 《稀有金属材料与工程》 北大核心 2025年第4期886-897,共12页
Ti(C,N)-Mo_(2)C-Ni cermet as alternative materials was explored for use in alkaline conditions,replacing the WC-Co cemented carbides,since Co is classified as a potentially carcinogenic substance and there is potentia... Ti(C,N)-Mo_(2)C-Ni cermet as alternative materials was explored for use in alkaline conditions,replacing the WC-Co cemented carbides,since Co is classified as a potentially carcinogenic substance and there is potential hazard of“hard metal disease”under the exposure to cobalt dust.The changes in microstructure,corrosion rate and volumetric loss rate of the two materials were compared under electrochemical corrosion and erosion-corrosion in alkaline environment.The results demonstrates that Ti(C,N)-Mo_(2)C-Ni cermet undergoes passivation when exposed to electrochemical corrosion of NaOH solution,resulting in a significant increase in oxygen content on the corroded surface.The corrosion rate of cermet is approximately one order of magnitude lower than that of the cemented carbide.Under the erosion-corrosion of an alkaline sand-water mixture,both the cermet and cemented carbide experience a gradual increase in volumetric loss rate with prolonging the erosion time.During erosion,the rim phase in cermet is fragile,so cracks easily penetrate it while the core phase remains intact.The medium-grained cemented carbide commonly demonstrates transgranular fracture mode,while in the fine-grained cemented carbide,cracks tend to propagate along phase boundaries.The erosive wear and damage caused by sand particles play a predominant role in the erosion-corrosion process of alkaline sand-water mixtures.This process represents an accelerated destructive phenomenon influenced and intensified by the combined effects of corrosion and erosion.It is confirmed that using cermet as an alternative anti-wear material to cemented carbides is feasible under alkaline conditions,and even better. 展开更多
关键词 CERMET cemented carbide EROSION-corrosion electrochemical corrosion alkaline conditions
原文传递
Adjustable corrosion and mechanical properties of Mg-Zn-Ca-Ni alloys for fracturing materials 被引量:2
18
作者 Dawei Wang Xiangshuang Jiang +7 位作者 Changxin Chen Xun Zhang Zhong-Zheng Jin Fuyong Cao Jia-Ning Zhu Cheng Wang Yinlong Ma Min Zha 《Journal of Magnesium and Alloys》 2025年第6期2618-2635,共18页
Two sets of alloys,Mg-Zn-Ca-xNi(0≤x≤5),have been developed with tunable corrosion and mechanical properties,optimized for fracturing materials.High-zinc artificial aged(T6)Mg-12Zn-0.5Ca-x Ni(0≤x≤5)series,featuring... Two sets of alloys,Mg-Zn-Ca-xNi(0≤x≤5),have been developed with tunable corrosion and mechanical properties,optimized for fracturing materials.High-zinc artificial aged(T6)Mg-12Zn-0.5Ca-x Ni(0≤x≤5)series,featuring a straightforward preparation method and the potential for manufacturing large-scale components,exhibit notable corrosion rates up to 29 mg cm^(-2)h^(-1)at 25℃ and 643 mg cm^(-2)h^(-1)at 93℃.The high corrosion rate is primary due to the Ni–containing second phases,which intensify the galvanic corrosion that overwhelms their corrosion barrier effect.Low-zinc rolled Mg-1.5Zn-0.2Ca-x Ni(0≤x≤5)series,characterizing excellent deformability with an elongation to failure of~26%,present accelerated corrosion rates up to 34 mg cm^(-2)h^(-1)at 25℃ and 942 mg cm^(-2)h^(-1)at 93℃.The elimination of corrosion barrier effect via deformation contributes to the further increase of corrosion rate compared to the T6 series.Additionally,Mg-Zn-Ca-xNi(0≤x≤5)alloys exhibit tunable ultimate tensile strengths ranging from~190 to~237 MPa,depending on their specific composition.The adjustable corrosion rate and mechanical properties render the Mg-Zn-Ca-x Ni(0≤x≤5)alloys suitable for fracturing materials. 展开更多
关键词 Mg-Zn-Ca alloy Fracturing material Galvanic corrosion corrosion barrier
在线阅读 下载PDF
Corrosion and Copper Foil Formation Behavior of Laser-Welded Joint and Spin-Formed Materials of Commercially Pure Titanium in H_(2)SO_(4)/CuSO_(4) Electrolyte 被引量:1
19
作者 Ren Lina Song Yanfei +4 位作者 Qi Liang Yang Jian Yang Jiadian Lei Xiaowei Zhang Jianxun 《稀有金属材料与工程》 北大核心 2025年第6期1467-1477,共11页
Based on the microstructure characterization,electrochemical impedance spectroscopy,potentiodynamic polarization,and immersion corrosion,this work comparatively analyzed the differences in the electrochemical corrosio... Based on the microstructure characterization,electrochemical impedance spectroscopy,potentiodynamic polarization,and immersion corrosion,this work comparatively analyzed the differences in the electrochemical corrosion morphology and post-foil formation surface morphology of laser beam welded(LBW)sample and spin-formed sample,and compared the corrosion resistance and Cu foil formation ability of two samples in H_(2)SO_(4)/NaCl solution and CuSO_(4) reducing electrolyte.Results show that in H_(2)SO_(4) and NaCl solutions,LBW sample and spin-formed sample exhibit excellent passivation ability and corrosion resistance.Both samples show uniform corrosion morphologies and similar corrosion resistance in the strong acidic solution containing Cl^(-).Meanwhile,the Cu foil formation ability of the welded joint is similar to that of the spin-formed sample,and both samples obtain intact Cu foils with high-quality surfaces and small differences in properties. 展开更多
关键词 Ti cathode laser beam welding spin forming corrosion Cu foil electroplating
原文传递
Study on a Novel Composite Eco-Friendly Corrosion and Scale Inhibitor for Steel Surface in Simulated Cooling Water 被引量:2
20
作者 Defang Zeng Wen Qin 《Journal of Surface Engineered Materials and Advanced Technology》 2012年第3期137-141,共5页
The use of organophosphorus inhibitor is diminishing because of its toxic effects on aquatic and other life. In this study, a composite eco-friendly phosphate-free corrosion and scale inhibitor HS has been developed u... The use of organophosphorus inhibitor is diminishing because of its toxic effects on aquatic and other life. In this study, a composite eco-friendly phosphate-free corrosion and scale inhibitor HS has been developed using hydrolyzed polymaleic anhydride (HPMA), sodium gluconate, Zn2+ synergist and sulfamic acid. And the formula ratio of each component is 9:5:4:2. The performance of the corrosion and scale inhibitor was evaluated by weight loss experiment and the static scale inhibition test, respectively. The results indicated that HS had positive corrosion and scale inhibition effect at a dosage of 40 mg.L–1 or higher. Potentiodynamic polarization curves indicated that HS inhibits the corrosion of steel based on controlling the anodic reaction. And the surface morphology of the carbon steel was studied by scan-ning electronic microscope (SEM). The inhibition effects were due to the formation of protective films. 展开更多
关键词 corrosion and scale INHIBITOR STEEL COOLING System
暂未订购
上一页 1 2 250 下一页 到第
使用帮助 返回顶部