Virtual Machines are the core of cloud computing and are utilized toget the benefits of cloud computing. Other essential features include portability,recovery after failure, and, most importantly, creating the core me...Virtual Machines are the core of cloud computing and are utilized toget the benefits of cloud computing. Other essential features include portability,recovery after failure, and, most importantly, creating the core mechanismfor load balancing. Several study results have been reported in enhancing loadbalancingsystems employing stochastic or biogenetic optimization methods.It examines the underlying issues with load balancing and the limitationsof present load balance genetic optimization approaches. They are criticizedfor using higher-order probability distributions, more complicated solutionsearch spaces, and adding factors to improve decision-making skills. Thus, thispaper explores the possibility of summarizing load characteristics. Second,this study offers an improved prediction technique for pheromone level predictionover other typical genetic optimization methods during load balancing.It also uses web-based third-party cloud service providers to test and validatethe principles provided in this study. It also reduces VM migrations, timecomplexity, and service level agreements compared to other parallel standardapproaches.展开更多
Two traditional recommendation techniques, content-based and collaborative filtering (CF), have been widely used in a broad range of domain areas. Both meth- ods have their advantages and disadvantages, and some of ...Two traditional recommendation techniques, content-based and collaborative filtering (CF), have been widely used in a broad range of domain areas. Both meth- ods have their advantages and disadvantages, and some of the defects can be resolved by integrating both techniques in a hybrid model to improve the quality of the recommendation. In this article, we will present a problem-oriented approach to design a hybrid immunizing solution for job recommen- dation problem from applicant's perspective. The proposed approach aims to recommend the best chances of opening jobs to the applicant who searches for job. It combines the artificial immune system (AIS), which has a powerful explo- ration capability in polynomial time, with the collaborative filtering, which can exploit the neighbors' interests. We will discuss the design issues, as well as the hybridization process that should be applied to the problem. Finally, experimental studies are conducted and the results show the importance of our approach for solving the job recommendation problem.展开更多
Adulteration using cheap vegetable oils into expensive oils such as sesame oil is a considerable challenge in the edible oil market. To discriminate pure and adulterated sesame oilwith sunflower and canola oils (commo...Adulteration using cheap vegetable oils into expensive oils such as sesame oil is a considerable challenge in the edible oil market. To discriminate pure and adulterated sesame oilwith sunflower and canola oils (commonly used as an adulterant to the high-price oils),dielectric spectroscopy was applied in the range of 40 kHz–20 MHz. The principal component analysis (PCA) plots were able to distinguish the pure sesame oil, while it was impossible to separate the adulterated oils based on the kind of adulteration. The correlationbased feature selection (CFS) method was used to select the more relevant dielectric datawithin the spectrum and to reduce the dimensionality of the input vector belongs to theartificial neural network (ANN). The ANN classifier with topology of 19-5-4 structureshowed a perfect accuracy of 100% in detecting the authentic and the adulterated sesameoil. The regression ANN with the topology of 15-5-1, 21-8-1 and 10-11-1 were the mostrobust models in quantifying the amount of adulteration in sesame oil generated by sun-flower oil, canola oil and sunflower + canola oils, with R2Test of 1, 1 and 0.999 9, respectively.The proposed technique is a powerful and simple method to detect and quantify adulteration of sesame oil. The novelty of this research is capability of used system for authentication of adulterated sesame oil using low frequency. Furthermore, the developed systemhas a good capability for other types of sesame oil adulterations as well as to detect adulteration in other expensive edible oils.展开更多
文摘Virtual Machines are the core of cloud computing and are utilized toget the benefits of cloud computing. Other essential features include portability,recovery after failure, and, most importantly, creating the core mechanismfor load balancing. Several study results have been reported in enhancing loadbalancingsystems employing stochastic or biogenetic optimization methods.It examines the underlying issues with load balancing and the limitationsof present load balance genetic optimization approaches. They are criticizedfor using higher-order probability distributions, more complicated solutionsearch spaces, and adding factors to improve decision-making skills. Thus, thispaper explores the possibility of summarizing load characteristics. Second,this study offers an improved prediction technique for pheromone level predictionover other typical genetic optimization methods during load balancing.It also uses web-based third-party cloud service providers to test and validatethe principles provided in this study. It also reduces VM migrations, timecomplexity, and service level agreements compared to other parallel standardapproaches.
文摘Two traditional recommendation techniques, content-based and collaborative filtering (CF), have been widely used in a broad range of domain areas. Both meth- ods have their advantages and disadvantages, and some of the defects can be resolved by integrating both techniques in a hybrid model to improve the quality of the recommendation. In this article, we will present a problem-oriented approach to design a hybrid immunizing solution for job recommen- dation problem from applicant's perspective. The proposed approach aims to recommend the best chances of opening jobs to the applicant who searches for job. It combines the artificial immune system (AIS), which has a powerful explo- ration capability in polynomial time, with the collaborative filtering, which can exploit the neighbors' interests. We will discuss the design issues, as well as the hybridization process that should be applied to the problem. Finally, experimental studies are conducted and the results show the importance of our approach for solving the job recommendation problem.
文摘Adulteration using cheap vegetable oils into expensive oils such as sesame oil is a considerable challenge in the edible oil market. To discriminate pure and adulterated sesame oilwith sunflower and canola oils (commonly used as an adulterant to the high-price oils),dielectric spectroscopy was applied in the range of 40 kHz–20 MHz. The principal component analysis (PCA) plots were able to distinguish the pure sesame oil, while it was impossible to separate the adulterated oils based on the kind of adulteration. The correlationbased feature selection (CFS) method was used to select the more relevant dielectric datawithin the spectrum and to reduce the dimensionality of the input vector belongs to theartificial neural network (ANN). The ANN classifier with topology of 19-5-4 structureshowed a perfect accuracy of 100% in detecting the authentic and the adulterated sesameoil. The regression ANN with the topology of 15-5-1, 21-8-1 and 10-11-1 were the mostrobust models in quantifying the amount of adulteration in sesame oil generated by sun-flower oil, canola oil and sunflower + canola oils, with R2Test of 1, 1 and 0.999 9, respectively.The proposed technique is a powerful and simple method to detect and quantify adulteration of sesame oil. The novelty of this research is capability of used system for authentication of adulterated sesame oil using low frequency. Furthermore, the developed systemhas a good capability for other types of sesame oil adulterations as well as to detect adulteration in other expensive edible oils.