期刊文献+
共找到476篇文章
< 1 2 24 >
每页显示 20 50 100
SFGA-CPA: A Novel Screening Correlation Power Analysis Framework Based on Genetic Algorithm
1
作者 Jiahui Liu Lang Li +1 位作者 Di Li Yu Ou 《Computers, Materials & Continua》 SCIE EI 2024年第6期4641-4657,共17页
Correlation power analysis(CPA)combined with genetic algorithms(GA)now achieves greater attack efficiency and can recover all subkeys simultaneously.However,two issues in GA-based CPA still need to be addressed:key de... Correlation power analysis(CPA)combined with genetic algorithms(GA)now achieves greater attack efficiency and can recover all subkeys simultaneously.However,two issues in GA-based CPA still need to be addressed:key degeneration and slow evolution within populations.These challenges significantly hinder key recovery efforts.This paper proposes a screening correlation power analysis framework combined with a genetic algorithm,named SFGA-CPA,to address these issues.SFGA-CPA introduces three operations designed to exploit CPA characteris-tics:propagative operation,constrained crossover,and constrained mutation.Firstly,the propagative operation accelerates population evolution by maximizing the number of correct bytes in each individual.Secondly,the constrained crossover and mutation operations effectively address key degeneration by preventing the compromise of correct bytes.Finally,an intelligent search method is proposed to identify optimal parameters,further improving attack efficiency.Experiments were conducted on both simulated environments and real power traces collected from the SAKURA-G platform.In the case of simulation,SFGA-CPA reduces the number of traces by 27.3%and 60%compared to CPA based on multiple screening methods(MS-CPA)and CPA based on simple GA method(SGA-CPA)when the success rate reaches 90%.Moreover,real experimental results on the SAKURA-G platform demonstrate that our approach outperforms other methods. 展开更多
关键词 Side-channel analysis correlation power analysis genetic algorithm CROSSOVER MUTATION
在线阅读 下载PDF
Bayesian-based analysis of sequence activity characteristics in the Bohai Rim region
2
作者 Bi Jin-Meng Song Cheng Cao Fu-Yang 《Applied Geophysics》 2025年第2期237-251,554,共16页
Disaster mitigation necessitates scientifi c and accurate aftershock forecasting during the critical 2 h after an earthquake. However, this action faces immense challenges due to the lack of early postearthquake data ... Disaster mitigation necessitates scientifi c and accurate aftershock forecasting during the critical 2 h after an earthquake. However, this action faces immense challenges due to the lack of early postearthquake data and the unreliability of forecasts. To obtain foundational data for sequence parameters of the land-sea adjacent zone and establish a reliable and operational aftershock forecasting framework, we combined the initial sequence parameters extracted from envelope functions and incorporated small-earthquake information into our model to construct a Bayesian algorithm for the early postearthquake stage. We performed parameter fitting and early postearthquake aftershock occurrence rate forecasting and effectiveness evaluation for 36 earthquake sequences with M ≥ 4.0 in the Bohai Rim region since 2010. According to the results, during the early stage after the mainshock, earthquake sequence parameters exhibited relatively drastic fl uctuations with signifi cant errors. The integration of prior information can mitigate the intensity of these changes and reduce errors. The initial and stable sequence parameters generally display advantageous distribution characteristics, with each parameter’s distribution being relatively concentrated and showing good symmetry and remarkable consistency. The sequence parameter p-values were relatively small, which indicates the comparatively slow attenuation of signifi cant earthquake events in the Bohai Rim region. A certain positive correlation was observed between earthquake sequence parameters b and p. However, sequence parameters are unrelated to the mainshock magnitude, which implies that their statistical characteristics and trends are universal. The Bayesian algorithm revealed a good forecasting capability for aftershocks in the early postearthquake period (2 h) in the Bohai Rim region, with an overall forecasting effi cacy rate of 76.39%. The proportion of “too low” failures exceeded that of “too high” failures, and the number of forecasting failures for the next three days was greater than that for the next day. 展开更多
关键词 earthquake sequences Bayesian algorithm model parameters correlation analysis effectiveness evaluation
在线阅读 下载PDF
Joint Analysis Method for Major Genes Controlling Multiple Correlated Quantitative Traits 被引量:5
3
作者 XIAO Jing WANG Xue-feng HU Zhi-qiu TANG Zai-xiang SUI Jiong-ming LI Xin XU Chen-wu 《Agricultural Sciences in China》 CAS CSCD 2006年第3期179-187,共9页
Based on the major gene and polygene mixed inheritance model for multiple correlated quantitative traits, the authors proposed a new joint segregation analysis method of major gene controlling multiple correlated quan... Based on the major gene and polygene mixed inheritance model for multiple correlated quantitative traits, the authors proposed a new joint segregation analysis method of major gene controlling multiple correlated quantitative traits, which include major gene detection and its effect and variation estimation. The effect and variation of major gene are estimated by the maximum likelihood method implemented via expectation-maximization (EM) algorithm. Major gene is tested with the likelihood ratio (LR) test statistic. Extensive simulation studies showed that joint analysis not only increases the statistical power of major gene detection but also improves the precision and accuracy of major gene effect estimates. An example of the plant height and the number of tiller of F2 population in rice cross Duonieai x Zhonghua 11 was used in the illustration. The results indicated that the genetic difference of these two traits in this cross refers to only one pleiotropic major gene. The additive effect and dominance effect of the major gene are estimated as -21.3 and 40.6 cm on plant height, and 22.7 and -25.3 on number of tiller, respectively. The major gene shows overdominance for plant height and close to complete dominance for number of tillers. 展开更多
关键词 multiple correlated quantitative traits major gene joint segregation analysis maximum likelihood estimation EM algorithm
在线阅读 下载PDF
Correlation-weighted least squares residual algorithm for RAIM 被引量:7
4
作者 Dan SONG Chuang SHI +2 位作者 Zhipeng WANG Cheng WANG Guifei JING 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2020年第5期1505-1516,共12页
The Least Squares Residual(LSR)algorithm,one of the classical Receiver Autonomous Integrity Monitoring(RAIM)algorithms for Global Navigation Satellite System(GNSS),presents a high Missed Detection Risk(MDR)for a large... The Least Squares Residual(LSR)algorithm,one of the classical Receiver Autonomous Integrity Monitoring(RAIM)algorithms for Global Navigation Satellite System(GNSS),presents a high Missed Detection Risk(MDR)for a large-slope faulty satellite and a high False Alarm Risk(FAR)for a small-slope faulty satellite.From the theoretical analysis of the high MDR and FAR cause,the optimal slope is determined,and thereby the optimal test statistic for fault detection is conceived,which can minimize the FAR with the MDR not exceeding its allowable value.To construct a test statistic approximate to the optimal one,the CorrelationWeighted LSR(CW-LSR)algorithm is proposed.The CW-LSR test statistic remains the sum of pseudorange residual squares,but the square for the most potentially faulty satellite,judged by correlation analysis between the pseudorange residual and observation error,is weighted with an optimal-slope-based factor.It does not obey the same distribution but has the same noncentral parameter with the optimal test statistic.The superior performance of the CW-LSR algorithm is verified via simulation,both reducing the FAR for a small-slope faulty satellite with the MDR not exceeding its allowable value and reducing the MDR for a large-slope faulty satellite at the expense of FAR addition. 展开更多
关键词 correlation analysis Fault detection Least squares residual(LSR)algorithm Receiver autonomous integrity monitoring(RAIM) SLOPE
原文传递
Gas monitoring data anomaly identification based on spatio-temporal correlativity analysis 被引量:3
5
作者 Shi-song ZHU Yun-jia WANG Lian-jiang WEI 《Journal of Coal Science & Engineering(China)》 2013年第1期8-13,共6页
Based on spatio-temporal correlativity analysis method, the automatic identification techniques for data anomaly monitoring of coal mining working face gas are presented. The asynchronous correlative characteristics o... Based on spatio-temporal correlativity analysis method, the automatic identification techniques for data anomaly monitoring of coal mining working face gas are presented. The asynchronous correlative characteristics of gas migration in working face airflow direction are qualitatively analyzed. The calculation method of asynchronous correlation delay step and the prediction and inversion formulas of gas concentration changing with time and space after gas emission in the air return roadway are provided. By calculating one hundred and fifty groups of gas sensors data series from a coal mine which have the theoretical correlativity, the correlative coefficient values range of eight kinds of data anomaly is obtained. Then the gas moni- toring data anomaly identification algorithm based on spatio-temporal correlativity analysis is accordingly presented. In order to improve the efficiency of analysis, the gas sensors code rules which can express the spatial topological relations are sug- gested. The experiments indicate that methods presented in this article can effectively compensate the defects of methods based on a single gas sensor monitoring data. 展开更多
关键词 gas monitoring spatio-temporal correlativity analysis anomaly pattern identification algorithm
在线阅读 下载PDF
Night Vision Object Tracking System Using Correlation Aware LSTM-Based Modified Yolo Algorithm
6
作者 R.Anandha Murugan B.Sathyabama 《Intelligent Automation & Soft Computing》 SCIE 2023年第4期353-368,共16页
Improved picture quality is critical to the effectiveness of object recog-nition and tracking.The consistency of those photos is impacted by night-video systems because the contrast between high-profile items and diffe... Improved picture quality is critical to the effectiveness of object recog-nition and tracking.The consistency of those photos is impacted by night-video systems because the contrast between high-profile items and different atmospheric conditions,such as mist,fog,dust etc.The pictures then shift in intensity,colour,polarity and consistency.A general challenge for computer vision analyses lies in the horrid appearance of night images in arbitrary illumination and ambient envir-onments.In recent years,target recognition techniques focused on deep learning and machine learning have become standard algorithms for object detection with the exponential growth of computer performance capabilities.However,the iden-tification of objects in the night world also poses further problems because of the distorted backdrop and dim light.The Correlation aware LSTM based YOLO(You Look Only Once)classifier method for exact object recognition and deter-mining its properties under night vision was a major inspiration for this work.In order to create virtual target sets similar to daily environments,we employ night images as inputs;and to obtain high enhanced image using histogram based enhancement and iterative wienerfilter for removing the noise in the image.The process of the feature extraction and feature selection was done for electing the potential features using the Adaptive internal linear embedding(AILE)and uplift linear discriminant analysis(ULDA).The region of interest mask can be segmen-ted using the Recurrent-Phase Level set Segmentation.Finally,we use deep con-volution feature fusion and region of interest pooling to integrate the presently extremely sophisticated quicker Long short term memory based(LSTM)with YOLO method for object tracking system.A range of experimentalfindings demonstrate that our technique achieves high average accuracy with a precision of 99.7%for object detection of SSAN datasets that is considerably more than that of the other standard object detection mechanism.Our approach may therefore satisfy the true demands of night scene target detection applications.We very much believe that our method will help future research. 展开更多
关键词 Object monitoring night vision image SSAN dataset adaptive internal linear embedding uplift linear discriminant analysis recurrent-phase level set segmentation correlation aware LSTM based yolo classifier algorithm
在线阅读 下载PDF
Correlation knowledge extraction based on data mining for distribution network planning 被引量:3
7
作者 Zhifang Zhu Zihan Lin +4 位作者 Liping Chen Hong Dong Yanna Gao Xinyi Liang Jiahao Deng 《Global Energy Interconnection》 EI CSCD 2023年第4期485-492,共8页
Traditional distribution network planning relies on the professional knowledge of planners,especially when analyzing the correlations between the problems existing in the network and the crucial influencing factors.Th... Traditional distribution network planning relies on the professional knowledge of planners,especially when analyzing the correlations between the problems existing in the network and the crucial influencing factors.The inherent laws reflected by the historical data of the distribution network are ignored,which affects the objectivity of the planning scheme.In this study,to improve the efficiency and accuracy of distribution network planning,the characteristics of distribution network data were extracted using a data-mining technique,and correlation knowledge of existing problems in the network was obtained.A data-mining model based on correlation rules was established.The inputs of the model were the electrical characteristic indices screened using the gray correlation method.The Apriori algorithm was used to extract correlation knowledge from the operational data of the distribution network and obtain strong correlation rules.Degree of promotion and chi-square tests were used to verify the rationality of the strong correlation rules of the model output.In this study,the correlation relationship between heavy load or overload problems of distribution network feeders in different regions and related characteristic indices was determined,and the confidence of the correlation rules was obtained.These results can provide an effective basis for the formulation of a distribution network planning scheme. 展开更多
关键词 Distribution network planning Data mining Apriori algorithm Gray correlation analysis Chi-square test
在线阅读 下载PDF
MODAL PARAMETERS EXTRACTION WITH CROSS CORRELATION FUNCTION AND CROSS POWER SPECTRUM UNDER UNKNOWN EXCITATION 被引量:1
8
作者 郑敏 申凡 +1 位作者 陈怀海 鲍明 《Chinese Journal of Aeronautics》 SCIE EI CSCD 2000年第1期19-23,共5页
In most of real operational conditions only response data are measurable while the actual excitations are unknown, so modal parameter must be extracted only from responses. This paper gives a theoretical formulation f... In most of real operational conditions only response data are measurable while the actual excitations are unknown, so modal parameter must be extracted only from responses. This paper gives a theoretical formulation for the cross-correlation functions and cross-power spectra between the outputs under the assumption of white-noise excitation. It widens the field of modal analysis under ambient excitation because many classical methods by impulse response functions or frequency response functions can be used easily for modal analysis under unknown excitation. The Polyreference Complex Exponential method and Eigensystem Realization Algorithm using cross-correlation functions in time domain and Orthogonal Polynomial method using cross-power spectra in frequency domain are applied to a steel frame to extract modal parameters under operational conditions. The modal properties of the steel frame from these three methods are compared with those from frequency response functions analysis. The results show that the modal analysis method using cross-correlation functions or cross-power spectra presented in this paper can extract modal parameters efficiently under unknown excitation. 展开更多
关键词 algorithms correlation methods Dynamic response Eigenvalues and eigenfunctions Frequency domain analysis Functions Modal analysis Parameter estimation Structural frames Time domain analysis Vibrations (mechanical) White noise
在线阅读 下载PDF
基于关联分析FP-Tree算法的企业风险信息数据在线挖掘方法 被引量:1
9
作者 庞泰 翁巍 +2 位作者 孟灿 赵蕾 牛红伟 《无线互联科技》 2024年第11期75-77,共3页
现阶段的数据挖掘方法缺少对数据关联分析的过程,挖掘效果较差,故文章提出基于关联分析频繁模式树(FrequentPattern Tree, FP-Tree)算法的企业风险信息数据在线挖掘方法。选取与企业风险相关的信息指标,收集有关数据并进行预处理操作后... 现阶段的数据挖掘方法缺少对数据关联分析的过程,挖掘效果较差,故文章提出基于关联分析频繁模式树(FrequentPattern Tree, FP-Tree)算法的企业风险信息数据在线挖掘方法。选取与企业风险相关的信息指标,收集有关数据并进行预处理操作后,设计一种考虑关联分析的FP-Tree算法,生成FP-Tree节点的条件模式树挖掘频繁项集,计算满足最小置信度的频繁项集,实现企业风险信息数据在线挖掘。实验结果表明,所用方法挖掘量和挖掘效率较高。 展开更多
关键词 关联分析fp-tree算法 企业风险信息数据 在线挖掘方法 数据挖掘
在线阅读 下载PDF
某三甲医院糖尿病肾病患者降糖药使用现状的Apriori算法分析
10
作者 雷婷 程云生 +2 位作者 于刚 贾犇黎 王媛媛 《中国药业》 2025年第18期15-19,共5页
目的为糖尿病肾病(DN)患者降糖药临床合理应用提供参考。方法利用医院电子病历系统检索某三级甲等医院2023年1月至8月按医嘱出院患者的病历资料,提取患者的基本资料、实验室指标及医嘱用药(2010 d)情况,根据预估肾小球滤过率(eGFR)评估... 目的为糖尿病肾病(DN)患者降糖药临床合理应用提供参考。方法利用医院电子病历系统检索某三级甲等医院2023年1月至8月按医嘱出院患者的病历资料,提取患者的基本资料、实验室指标及医嘱用药(2010 d)情况,根据预估肾小球滤过率(eGFR)评估用药情况,记录患者住院期间降糖药使用情况,并基于Apriori算法分析患者降糖药联合应用的关联性。结果纳入患者197例,其中男135例、女62例,年龄(59.82±13.75)岁,体质量指数(25.09±3.26)kg/m^(2),超重/肥胖患者124例(62.94%),合并心血管疾病(高血压)140例(71.06%);共使用降糖药8类、31个品种。胰岛素类在不同eGFR分期患者中使用率均较高(≥77.78%),随着eGFR的增大,患者降糖药使用种数逐渐增多(10→31种),钠-葡萄糖协同转运蛋白2抑制剂(SGLT2i)类、双胍类使用率逐渐增加。最常发生的二联用药为胰岛素类+SGLT2i类(支持度57.26%,置信度79.76%),三联用药为SGLT2i类+胰岛素类+胰高血糖素样肽-1受体激动剂(GLP-1RAs)类(支持度26.63%,置信度76.84%),SGLT2i类、胰岛素类、GLP-1RAs类关联性较强。13例(6.54%)患者未根据eGFR水平进行药物减量或禁用,涉及药物分别为二甲双胍片、西格列汀片、沙格列汀片、利拉鲁肽注射液等。结论该院DN患者较多合并心血管疾病患者,降糖治疗以联合用药为主,SGLT2i类因可使患者心肾获益及减轻体质量已成为联合用药的最广泛选择,与临床诊疗指南推荐基本相符。同时建议临床根据eGFR水平针对性调整降糖药剂量,加强合理用药管理。 展开更多
关键词 APRIORI算法 糖尿病肾病 降糖药 关联分析
暂未订购
基于数据挖掘的某三甲医院1~14岁特应性皮炎患儿用药规律探索
11
作者 雷婷 程云生 +1 位作者 殷方雄 王媛媛 《儿科药学杂志》 2025年第5期26-30,共5页
目的:基于数据挖掘技术分析某三甲医院皮肤科1~14岁特应性皮炎患儿药物使用现状及关联性,为提高临床用药合理性、探索治疗方案及后续研究提供依据。方法:利用医院电子病历管理平台检索2024年于皮肤科就诊的1~14岁特应性皮炎患儿门诊病历... 目的:基于数据挖掘技术分析某三甲医院皮肤科1~14岁特应性皮炎患儿药物使用现状及关联性,为提高临床用药合理性、探索治疗方案及后续研究提供依据。方法:利用医院电子病历管理平台检索2024年于皮肤科就诊的1~14岁特应性皮炎患儿门诊病历,记录处方信息,建立关联Apriori算法模型,对药物使用进行关联性分析。结果:共纳入1317张门诊处方,中重度特应性皮炎处方共计428张(32.50%)。不同种药物关联规则分析显示,规则“曲安奈德益康唑乳膏→氯雷他定糖浆”在2种药物联用中记录最高(支持度35.53%,置信度46.03%);规则“曲安奈德益康唑乳膏+氯雷他定糖浆→尿素维E乳膏”在3种药物联用中记录最高(支持度16.35%,置信度43.89%)。不同类别药物关联分析显示,规则“外用糖皮质激素→口服抗过敏药(抗组胺)”在2类药物联用中记录最高(支持度74.47%,置信度67.62%);规则“外用糖皮质激素+外用钙调磷酸酶抑制剂→口服抗过敏药(抗组胺)”在3类药物联用中记录最高(支持度23.41%,置信度66.33%)。结论:通过高频药物使用关联分析,总结了我院1~14岁患儿在治疗特应性皮炎时常用药物及药物联用治疗方案,符合其疾病治疗特点,与临床诊疗指南推荐基本相符,可为医药专业人员诊疗提供不同方向与路径参考。尚需加强部分药品超说明书药物使用管理,保障患儿用药安全。 展开更多
关键词 数据挖掘 APRIORI算法 特应性皮炎 用药规律 关联分析
暂未订购
基于聚类分析方法的人才画像模型研究
12
作者 李颖 丁元欣 《信息技术》 2025年第9期7-12,共6页
人才画像是对人才进行全面评估的一种方法,可以形成对个人能力、特质和潜力的综合认知。文中提出一种基于聚类分析的人才画像模型设计方法。首先从社交媒体平台和UCI公开机器学习测试集中采集数据,进行数据清洗和特征提取;然后使用Apri... 人才画像是对人才进行全面评估的一种方法,可以形成对个人能力、特质和潜力的综合认知。文中提出一种基于聚类分析的人才画像模型设计方法。首先从社交媒体平台和UCI公开机器学习测试集中采集数据,进行数据清洗和特征提取;然后使用Apriori算法进行用户关联分析,挖掘用户行为之间的相关性;最后采用改进的K-means聚类算法对用户数据进行聚类分析,建立人才画像模型。通过实验验证,文中提出的方法比GMM聚类算法的查准率、查全率和F1值分别提高了18.8%、13.7%和17.9%。 展开更多
关键词 人才画像 数据清洗 特征提取 关联分析 聚类算法
在线阅读 下载PDF
基于交互式分析的多源航迹关联融合方法
13
作者 陈晓慧 刘建湘 +2 位作者 张匆 张兵 赵云鹏 《信息工程大学学报》 2025年第5期608-616,共9页
针对传统航迹关联算法正确率不高、交互分析解决航迹关联融合任务研究较少等问题,提出一种基于交互式分析的多源船舶目标航迹关联融合方法。首先改进最近邻距离的航迹关联算法进行中断航迹关联和多源航迹关联,其次发挥“人在回路”的交... 针对传统航迹关联算法正确率不高、交互分析解决航迹关联融合任务研究较少等问题,提出一种基于交互式分析的多源船舶目标航迹关联融合方法。首先改进最近邻距离的航迹关联算法进行中断航迹关联和多源航迹关联,其次发挥“人在回路”的交互式分析优势,通过评估传感器稳定性计算其在航迹融合过程中的权重,最后采用基于插值拟合的中断航迹拼接方法和基于加权平均的多源航迹融合方法实现航迹融合。实验结果表明,所提出的航迹关联算法能够有效提高中断航迹关联的关联正确率,降低多源航迹关联的关联错误率,设计的交互式分析系统能够验证融合算法的有效性,通过交互式分析和改进的关联融合算法,能够更准确地完成中断航迹和多源航迹的关联任务。 展开更多
关键词 最近邻距离算法 航迹关联 航迹融合 交互式分析
在线阅读 下载PDF
基于KOA-BiLSTM的矿井淋水井筒风温预测模型及可解释性分析
14
作者 秦跃平 唐飞 +3 位作者 王海蓉 王鹏 郭铭彦 王世斌 《中国安全科学学报》 北大核心 2025年第7期40-47,共8页
为提高矿井淋水井筒风温预测的准确性、稳定性及模型的可解释性,首先,通过皮尔逊相关性系数分析特征变量;其次,采用开普勒优化算法(KOA)优化双向长短期记忆网络(BiLSTM)模型,建立基于KOA-BiLSTM的矿井淋水井筒风温预测模型;然后,在相同... 为提高矿井淋水井筒风温预测的准确性、稳定性及模型的可解释性,首先,通过皮尔逊相关性系数分析特征变量;其次,采用开普勒优化算法(KOA)优化双向长短期记忆网络(BiLSTM)模型,建立基于KOA-BiLSTM的矿井淋水井筒风温预测模型;然后,在相同样本条件下,与反向传播(BP)、随机森林(RF)、最小二乘增强(LSBoost)和支持向量机(SVM)算法进行综合对比;最后,利用沙普利可加性特征解释算法(SHAP)进行可解释性分析及实例验证。研究结果表明:KOA-BiLSTM模型的绝对误差范围为-1.24~0.5℃,比优化前模型的预测精度提高3.98%;与另外4个模型相比,该模型的平均绝对误差(MAE)、平均绝对百分比误差(MAPE)和均方误差(MSE)等均为最佳,表明该模型具有最优的预测效果和泛化能力;SHAP分析表明:井口风流温度对预测结果影响最大,而地面压力影响最小;KOA-BiLSTM模型实例验证的绝对误差范围为-0.49~0.38℃,预测精度可满足实际工作需要。 展开更多
关键词 开普勒优化算法(KOA)-双向长短期记忆网络(BiLSTM)模型 淋水井筒 风温预测模型 可解释性分析 皮尔逊相关性
原文传递
考虑电能质量因素的理论线损率计算方法
15
作者 周群 刘海波 +3 位作者 冷敏瑞 刘雪山 黄晶 陈灿玉 《电力系统及其自动化学报》 北大核心 2025年第7期69-78,共10页
在新型电力系统中,电能质量问题日益严重,导致额外线损增加。为提高理论线损率计算的准确性,应考虑电能质量因素。考虑包括电能质量因素在内的所有影响理论线损的因素,对各个因素进行灰色关联分析,筛选出对理论线损影响最大的几个因素,... 在新型电力系统中,电能质量问题日益严重,导致额外线损增加。为提高理论线损率计算的准确性,应考虑电能质量因素。考虑包括电能质量因素在内的所有影响理论线损的因素,对各个因素进行灰色关联分析,筛选出对理论线损影响最大的几个因素,在筛选过程中对各个维度进行交叉验证以找出最佳维度,并作为模型的输入数据。基于上述数据分别使用随机森林算法和反向传播神经网络进行理论线损计算,对比两种算法的计算结果,最终选取随机森林算法作为计算模型。以某地区的样本为例进行仿真计算,验证了所提方法的有效性和合理性。 展开更多
关键词 低压台区 电气特征参数 理论线损计算 灰色关联分析 随机森林算法 电能质量 最佳维度选取
在线阅读 下载PDF
基于灰关联与风格迁移的游牧民族柳编家具设计
16
作者 阿如娜 吉日木图 《设计》 2025年第7期1-5,共5页
为解决器物纹样创新时对原民族文化内涵损失率较高的问题,提出依照基于原器物文化本源与设计因子间构建关联模型的方法。首先,利用CGM模型构建各层级设计基元,其次,通过灰关联分析计算各层级基元中的单元与原器物纹样的关联度并进行权... 为解决器物纹样创新时对原民族文化内涵损失率较高的问题,提出依照基于原器物文化本源与设计因子间构建关联模型的方法。首先,利用CGM模型构建各层级设计基元,其次,通过灰关联分析计算各层级基元中的单元与原器物纹样的关联度并进行权重计算,最后,利用人工智能程序进行风格迁移。生成了新的纹样,并将其应用于家具设计中验证了其适配与可行性。该方法可较为清晰地计算出设计因子与原纹样间的关联度,在大幅提升设计效率的同时融入现代审美倾向,为民族艺术的当代价值营建及其传承路径拓展提供新的思路与借鉴。 展开更多
关键词 灰色关联分析 蒙古族柳编纹样 风格迁移算法 民族艺术传承 家具设计
在线阅读 下载PDF
遗传算法优化神经网络在地声参数反演中的应用 被引量:1
17
作者 赵振星 李琪 黄益旺 《哈尔滨工程大学学报》 北大核心 2025年第4期643-651,共9页
针对浅海环境下传统匹配场反演方法对地声参数估计精度低的问题,本文将遗传算法优化的BP神经网络算法(GA-BP)应用到地声参数反演领域。首先仿真分析了噪声场垂直空间相关系数对地声参数变化的敏感度值,研究了GA-BP反演地声参数的效果,... 针对浅海环境下传统匹配场反演方法对地声参数估计精度低的问题,本文将遗传算法优化的BP神经网络算法(GA-BP)应用到地声参数反演领域。首先仿真分析了噪声场垂直空间相关系数对地声参数变化的敏感度值,研究了GA-BP反演地声参数的效果,最后使用GA-BP处理实测海洋环境噪声数据,估计了海底密度、声速和衰减。仿真与实验结果表明:GA-BP相比于BP神经网络算法具有更快的网络训练速度以及更高的反演精度,利用GA-BP可以准确反演得到Pekeris波导的地声参数。反演得到的海洋环境噪声场空间相关系数曲线与实验测量结果吻合较好,二者皮尔逊相关系数达到0.98。本文证实了GA-BP算法在地声参数反演中的高效性与可靠性,为基于海洋环境噪声的无源地声参数提供了的技术支撑手段。 展开更多
关键词 海洋环境噪声 空间相关特性 敏感度分析 遗传算法 BP神经网络 Pekeris波导 地声参数反演 海上实验
在线阅读 下载PDF
AN IMPROVED ALGORITHM FOR DPIV CORRELATION ANALYSIS
18
作者 WU Long-hua 《Journal of Hydrodynamics》 SCIE EI CSCD 2007年第1期62-67,共6页
In a Digital Particle Image Velocimetry (DPW) system, the correlation of digital images is normally used to acquire the displacement information of particles and give estimates of the flow field. The accuracy and ro... In a Digital Particle Image Velocimetry (DPW) system, the correlation of digital images is normally used to acquire the displacement information of particles and give estimates of the flow field. The accuracy and robustness of the correlation algorithm directly affect the validity of the analysis result. In this article, an improved algorithm for the correlation analysis was proposed which could be used to optimize the selection/determination of the correlation window, analysis area and search path. This algorithm not only reduces largely the amount of calculation, but also improves effectively the accuracy and reliability of the correlation analysis. The algorithm was demonstrated to be accurate and efficient in the measurement of the velocity field in a flocculation pool. 展开更多
关键词 Digital Particle Image Velocimetry (DPIV) correlation analysis improved algorithm
原文传递
基于PSO-BP神经网络的单位注浆量预测 被引量:2
19
作者 陈泓 黄永辉 +1 位作者 张智宇 陈成志 《有色金属(中英文)》 北大核心 2025年第2期288-297,共10页
帷幕注浆作为矿山控制地下水的重要手段之一,对矿山的安全生产十分重要,单位注浆量作为注浆效果的关键评价指标,具有不确定性。基于尖山磷矿帷幕注浆试验段注浆数据,进行单位注浆量影响因素相关性分析,分别构建单位注浆量卷积神经网络(C... 帷幕注浆作为矿山控制地下水的重要手段之一,对矿山的安全生产十分重要,单位注浆量作为注浆效果的关键评价指标,具有不确定性。基于尖山磷矿帷幕注浆试验段注浆数据,进行单位注浆量影响因素相关性分析,分别构建单位注浆量卷积神经网络(CNN)、BP神经网络、遗传算法优化神经网络(GA-BP)和粒子群算法优化神经网络(PSO-BP)预测模型进行预测和准确性分析。结果表明:斯皮尔曼相关系数法和肯德尔相关系数法对单位注浆量影响因素分析结果一致,影响因素相关性由强到弱为:注浆持续时间、水灰比、注前透水率、注浆段长度、注浆压力、钻孔深度;PSO-BP神经网络模型预测效果明显优于另外三种预测模型,R^(2)达到0.94527,RMSE值分别降低80%、56%、49%;MAE值分别降低68.3%、48.6%、23.2%,验证了该模型的优越性。该模型能够更准确地对单位注浆量进行预测,对后续注浆工作的实施具有一定参考,可为帷幕注浆效果评价提供重要的指导建议。 展开更多
关键词 帷幕注浆 单位注浆量 相关性分析 BP神经网络 粒子群优化算法
在线阅读 下载PDF
基于改进遗传算法优化LSTM的营养液温度预测模型 被引量:1
20
作者 刘艺梦 王会强 +3 位作者 丁小明 李飞 孙玉林 孙广军 《中国农机化学报》 北大核心 2025年第6期91-97,共7页
准确预测营养液温度是营养液膜栽培技术(NFT)调控根区温度的关键,对作物生长具有重要意义,但因营养液温度具有时序性、非线性及多耦合性等特征,难以实现连续、精准化预测,基于此,提出一种改进遗传算法(IGA)优化多变量长短时记忆神经网络... 准确预测营养液温度是营养液膜栽培技术(NFT)调控根区温度的关键,对作物生长具有重要意义,但因营养液温度具有时序性、非线性及多耦合性等特征,难以实现连续、精准化预测,基于此,提出一种改进遗传算法(IGA)优化多变量长短时记忆神经网络(LSTM)模型参数的营养液温度预测方法,通过引入正弦函数,对遗传算法中的固定交叉和变异概率进行优化。使用皮尔逊相关分析法获取相关性较强的特征。同时构造特征与时间步长的矩阵,将其输入到网络中进行温度预测。预测结果表明,在预测时间为20~60 min时,模型决定系数为0.954~0.985,均方根误差为0.183℃~0.365℃,平均绝对误差为0.165℃~0.311℃。并在不同清晰度指数K_(T)下进行验证。结果表明,在0.5>K_(T)≥0.2(多云)时,模型营养液温度预测效果最好,且在其他K_(T)下模型可以达到生产所需预测精度要求,为根区精准高效控温提供重要依据。 展开更多
关键词 营养液膜技术 改进遗传算法 LSTM神经网络 皮尔逊相关分析 营养液温度预测
在线阅读 下载PDF
上一页 1 2 24 下一页 到第
使用帮助 返回顶部