Correction to"Mass forming chronic pancreatitis mimicking pancreatic cystic neoplasm:A case report"World J Gastroenterology 2018;24(2):297-302.This article had accidentally omitted the fact of research-fund ...Correction to"Mass forming chronic pancreatitis mimicking pancreatic cystic neoplasm:A case report"World J Gastroenterology 2018;24(2):297-302.This article had accidentally omitted the fact of research-fund support notation.It should be added as supported by Dankook University Research Fund(R201600314).展开更多
Correction to"Type II human epidermal growth factor receptor heterogeneity is a poor prognosticator for type II human epidermal growth factor receptor-positive gastric cancer"World J Clin Cases 2019;7(15):19...Correction to"Type II human epidermal growth factor receptor heterogeneity is a poor prognosticator for type II human epidermal growth factor receptor-positive gastric cancer"World J Clin Cases 2019;7(15):1964-1977.In this article,one of the affiliation of the first author was lacked.Akio Kaito,the first author,belonged to Course of Advanced Clinical Research of Cancer,Juntendo University Graduate School of Medicine,Tokyo 163-8001,Japan.展开更多
Early correction of childhood malocclusion is timely managing morphological,structural,and functional abnormalities at different dentomaxillofacial developmental stages.The selection of appropriate imaging examination...Early correction of childhood malocclusion is timely managing morphological,structural,and functional abnormalities at different dentomaxillofacial developmental stages.The selection of appropriate imaging examination and comprehensive radiological diagnosis and analysis play an important role in early correction of childhood malocclusion.This expert consensus is a collaborative effort by multidisciplinary experts in dentistry across the nation based on the current clinical evidence,aiming to provide general guidance on appropriate imaging examination selection,comprehensive and accurate imaging assessment for early orthodontic treatment patients.展开更多
Accurate seasonal precipitation forecasts,especially for extreme events,are crucial to preventing meteorological hazards and their potential impacts on national development,social activity,and security.However,the int...Accurate seasonal precipitation forecasts,especially for extreme events,are crucial to preventing meteorological hazards and their potential impacts on national development,social activity,and security.However,the intensity of summer precipitation is often largely underestimated in many current dynamic models.This study uses a deep learning method called Cycle-Consistent Generative Adversarial Networks(CycleGAN)to improve the seasonal forecasts for June-JulyAugust precipitation in southeastern China by the Nanjing University of Information Science and Technology Climate Forecast System(NUIST-CFS 1.0).The results suggest that the CycleGAN-based model significantly improves the accuracy in predicting the spatiotemporal distribution of summer precipitation compared to the traditional quantile mapping(QM)method.Using the unpaired bias-correction model,we can also obtain advanced forecasts of the frequency,intensity,and duration of extreme precipitation events over the dynamic model predictions.This study expands the potential applications of deep learning models toward improving seasonal precipitation forecasts.展开更多
BACKGROUND Transcatheter arterial chemoembolization(TACE)is a key treatment approach for advanced invasive liver cancer(infiltrative hepatocellular carcinoma).However,its therapeutic response can be difficult to evalu...BACKGROUND Transcatheter arterial chemoembolization(TACE)is a key treatment approach for advanced invasive liver cancer(infiltrative hepatocellular carcinoma).However,its therapeutic response can be difficult to evaluate accurately using conventional two-dimensional imaging criteria due to the tumor’s diffuse and multifocal growth pattern.Volumetric imaging,especially enhanced tumor volume(ETV),offers a more comprehensive assessment.Nonetheless,bias field inhomogeneity in magnetic resonance imaging(MRI)poses challenges,potentially skewing volumetric measurements and undermining prognostic evaluation.AIM To investigate whether MRI bias field correction enhances the accuracy of volumetric assessment of infiltrative hepatocellular carcinoma treated with TACE,and to analyze how this improved measurement impacts prognostic prediction.METHODS We retrospectively collected data from 105 patients with invasive liver cancer who underwent TACE treatment at the Affiliated Hospital of Xuzhou Medical University from January 2020 to January 2024.The improved N4 bias field correction algorithm was applied to process MRI images,and the ETV before and after treatment was calculated.The ETV measurements before and after correction were compared,and their relationship with patient prognosis was analyzed.A Cox proportional hazards model was used to evaluate prognostic factors,with Martingale residual analysis determining the optimal cutoff value,followed by survival analysis.RESULTS Bias field correction significantly affected ETV measurements,with the corrected baseline ETV mean(505.235 cm^(3))being significantly lower than before correction(825.632 cm^(3),P<0.001).Cox analysis showed that the hazard ratio(HR)for corrected baseline ETV(HR=1.165,95%CI:1.069-1.268)was higher than before correction(HR=1.063,95%CI:1.031-1.095).Using 412 cm^(3) as the cutoff,the group with baseline ETV<415 cm^(3) had a longer median survival time compared to the≥415 cm^(3) group(18.523 months vs 8.926 months,P<0.001).The group with an ETV reduction rate≥41%had better prognosis than the<41%group(17.862 months vs 9.235 months,P=0.006).Multivariate analysis confirmed that ETV reduction rate(HR=0.412,P<0.001),Child-Pugh classification(HR=0.298,P<0.001),and Barcelona Clinic Liver Cancer stage(HR=0.578,P=0.045)were independent prognostic factors.CONCLUSION Volume imaging based on MRI bias field correction can improve the accuracy of evaluating the efficacy of TACE treatment for invasive liver cancer.The corrected ETV and its reduction rate can serve as independent indicators for predicting patient prognosis,providing important reference for developing individualized treatment strategies.展开更多
The Zenith Hydrostatic Delay(ZHD)is essential for high-precision Global Navigation Satellite System(GNSS)and Very Long Baseline Interferometry(VLBI)data processing.Accurate estimation of ZHD relies on in situ atmosphe...The Zenith Hydrostatic Delay(ZHD)is essential for high-precision Global Navigation Satellite System(GNSS)and Very Long Baseline Interferometry(VLBI)data processing.Accurate estimation of ZHD relies on in situ atmospheric pressure,which is primarily variable in the vertical direction.Current atmospheric pressure is either site-specific or has limited spatial coverage,necessitating vertical corrections for broader applicability.This study introduces a model that uses a Gaussian function for the vertical correction of atmospheric pressure when in situ meteorological observations are unavailable.Validation with the fifth-generation European Centre for Medium-Range Weather Forecasts reanalysis(ERA5)reveals an average Bias and RMS for the new model of 0.31 h Pa and 2.96 h Pa,respectively.This corresponds to improvements of 37.5%and 80.3%in terms of RMS compared to two commonly used models(T0and Tvmodels)that require in situ meteorological observations,respectively.Additional validation with radiosonde data shows an average Bias and RMS of 1.85 h Pa and 4.87 h Pa,corresponding to the improvement of 42.8%and 71.1%in RMS compared with T0and Tv models,respectively.These accuracies are sufficient for calculating ZHD to an accuracy of 1 mm by performing atmospheric pressure vertical correction.The new model can correct atmospheric pressure from meteorological stations or numerical weather forecasts to different heights of the troposphere.展开更多
Myocardial perfusion imaging(MPI),which uses single-photon emission computed tomography(SPECT),is a well-known estimating tool for medical diagnosis,employing the classification of images to show situations in coronar...Myocardial perfusion imaging(MPI),which uses single-photon emission computed tomography(SPECT),is a well-known estimating tool for medical diagnosis,employing the classification of images to show situations in coronary artery disease(CAD).The automatic classification of SPECT images for different techniques has achieved near-optimal accuracy when using convolutional neural networks(CNNs).This paper uses a SPECT classification framework with three steps:1)Image denoising,2)Attenuation correction,and 3)Image classification.Image denoising is done by a U-Net architecture that ensures effective image denoising.Attenuation correction is implemented by a convolution neural network model that can remove the attenuation that affects the feature extraction process of classification.Finally,a novel multi-scale diluted convolution(MSDC)network is proposed.It merges the features extracted in different scales and makes the model learn the features more efficiently.Three scales of filters with size 3×3 are used to extract features.All three steps are compared with state-of-the-art methods.The proposed denoising architecture ensures a high-quality image with the highest peak signal-to-noise ratio(PSNR)value of 39.7.The proposed classification method is compared with the five different CNN models,and the proposed method ensures better classification with an accuracy of 96%,precision of 87%,sensitivity of 87%,specificity of 89%,and F1-score of 87%.To demonstrate the importance of preprocessing,the classification model was analyzed without denoising and attenuation correction.展开更多
The hot deformation behavior of as-extruded Ti-6554 alloy was investigated through isothermal compression at 700–950°C and 0.001–1 s^(−1).The temperature rise under different deformation conditions was calculat...The hot deformation behavior of as-extruded Ti-6554 alloy was investigated through isothermal compression at 700–950°C and 0.001–1 s^(−1).The temperature rise under different deformation conditions was calculated,and the curve was corrected.The strain compensation constitutive model of as-extruded Ti-6554 alloy based on temperature rise correction was established.The microstructure evolution under different conditions was analyzed,and the dynamic recrystallization(DRX)mechanism was revealed.The results show that the flow stress decreases with the increase in strain rate and the decrease in deformation temperature.The deformation temperature rise gradually increases with the increase in strain rate and the decrease in deformation temperature.At 700°C/1 s^(−1),the temperature rise reaches 100°C.The corrected curve value is higher than the measured value,and the strain compensation constitutive model has high prediction accuracy.The precipitation of theαphase occurs during deformation in the twophase region,which promotes DRX process of theβphase.At low strain rate,the volume fraction of dynamic recrystallization increases with the increase in deformation temperature.DRX mechanism includes continuous DRX and discontinuous DRX.展开更多
Airborne area-array whisk-broom imaging systems typically adopt constant-speed scanning schemes.For large-inertia scanning systems,constant-speed scanning requires substantial time to complete the reversal motion,redu...Airborne area-array whisk-broom imaging systems typically adopt constant-speed scanning schemes.For large-inertia scanning systems,constant-speed scanning requires substantial time to complete the reversal motion,reducing the system's adaptability to high-speed reversal scanning and decreasing scanning efficiency.This study proposes a novel sinusoidal variable-speed roll scanning strategy,which reduces abrupt changes in speed and acceleration,minimizing time loss during reversals.Based on the forward image motion compensation strategy in the pitch direction,we establish a line-of-sight(LOS)position calculation model with vertical flight path correction(VFPC),ensuring that the central LOS of the scanned image remains stable on the same horizontal line,facilitating accurate image stitching in whisk-broom imaging.Through theoretical analysis and simulation experiments,the proposed method improves the scanning efficiency by approximately 18.6%at a 90o whiskbroom imaging angle under the same speed height ratio conditions.The new VFPC method enables wide-field,high-resolution imaging,achieving single-line LOS horizontal stability with an accuracy of better than O.4 mrad.The research is of great significance to promote the further development of airborne area-array whisk-broom imaging technology toward wider fields of view,higher speed height ratios,and greater scanning efficiency.展开更多
This letter compares the clinical efficacy and economic feasibility of the scoliocorrector fatma-UI(SCFUI)with direct vertebral rotation(DVR)in treating adolescent idiopathic scoliosis(AIS).SCFUI has shown promising r...This letter compares the clinical efficacy and economic feasibility of the scoliocorrector fatma-UI(SCFUI)with direct vertebral rotation(DVR)in treating adolescent idiopathic scoliosis(AIS).SCFUI has shown promising results in threedimensional spinal correction,providing superior rotational alignment compared to DVR and achieving significant improvements in coronal and sagittal planes.Additionally,SCFUI’s advanced design reduces risks associated with AIS surgeries and enhances overall patient outcomes.Economic analysis reveals SCFUI as a cost-effective option,potentially lowering long-term healthcare costs by minimizing complications and revisions.Our findings suggest that SCFUI is a viable,innovative approach in AIS treatment,meeting clinical and economic demands in orthopedic care.展开更多
For the quantum error correction and noisy intermediate-scale quantum algorithms to function with high efficiency,the raw fidelity of quantum logic gates on physical qubits needs to satisfy strict requirements.The neu...For the quantum error correction and noisy intermediate-scale quantum algorithms to function with high efficiency,the raw fidelity of quantum logic gates on physical qubits needs to satisfy strict requirements.The neutral atom quantum computing equipped with Rydberg blockade gates has made impressive progress recently,which makes it worthwhile to explore its potential in the two-qubit entangling gates,including the controlledphase gate,and in particular,the CZ gate.Provided the quantum coherence is well preserved,improving the fidelity of Rydberg blockade gates calls for special mechanisms to deal with adverse effects caused by realistic experimental conditions.Here,the heralded very-high-fidelity Rydberg blockade controlled-phase gate is designed to address these issues,which contains self-correction and projection as the key steps.This trailblazing method builds upon the previously established buffer-atom-mediated gate framework,with a special form of symmetry under parity–time transformation playing a crucial role in the process.We further analyze the performance with respect to a few typical sources of imperfections.This procedure can also be regarded as quantum hardware error correction or mitigation.While this paper by itself does not cover every single subtle issue and still contains many oversimplifications,we find it reasonable to anticipate a very-high-fidelity two-qubit quantum logic gate operated in the sense of heralded but probabilistic,whose gate error can be reduced to the level of 10^(-4)–10^(-6)or even lower with reasonably high possibilities.展开更多
Correction to:Rare Met.https://doi.org/10.1007/s12598-021-01815-z In the original publication,Fig.5 was published with few mistakes.The correct version of Fig.5 is given in this correction.
Correction to:Nuclear Science and Techniques(2025)36:66 https://doi.org/10.1007/s41365-025-01662-y.In this article,the author’s name Hui-Ling Wei was incorrectly written as Hui-Ling We.The original article has been c...Correction to:Nuclear Science and Techniques(2025)36:66 https://doi.org/10.1007/s41365-025-01662-y.In this article,the author’s name Hui-Ling Wei was incorrectly written as Hui-Ling We.The original article has been corrected.展开更多
In this work,we apply tunneling formalism to analyze charged particles tunneling across a hairy black hole horizon.Such black hole solutions are essential for frameworks based on Horndeski's gravity theory.Applyin...In this work,we apply tunneling formalism to analyze charged particles tunneling across a hairy black hole horizon.Such black hole solutions are essential for frameworks based on Horndeski's gravity theory.Applying a semi-classical technique,we examine the tunneling of charged particles from a hairy black hole and derive the generic tunneling spectrum of released particles,ignoring self-gravitational and interaction.It is studied to ignore the back-reaction impact of the radiated particle on the hairy black hole.We analyze the properties of the black hole,such as temperature and entropy,under the influence of quantum gravity and also observe that the firstorder correction is present.We study tunneling radiation produced by a charged field equation in the presence of a generalized uncertainty effect.We modify the semi-classical technique by using the generalized uncertainty principle,the WKB approximation,and surface gravity.展开更多
The forecast results of temperature based on the intelligent grids of the Central Meteorological Observatory and the meteorological bureau of the autonomous region and the numerical forecast model of the European Cent...The forecast results of temperature based on the intelligent grids of the Central Meteorological Observatory and the meteorological bureau of the autonomous region and the numerical forecast model of the European Center(EC model)from February to December in 2022 were used.Based on the data of the national intelligent grid forecast,the intelligent grid forecast of the regional bureau,EC model,etc.,temperature was predicted.According to the research of the grid point forecast synthesis algorithm with the highest accuracy rate in the recent three days,the temperature grid point correction was conducted in two forms of stations and grids.In order to reduce the deviation caused by the seasonal system temperature difference,a temperature prediction model was established by using the rolling forecast errors of 5,10,15,20,25 and 30 d as the basis data.The verification and evaluation of objective correction results show that the accuracy rate of temperature forecast by the intelligent grid of the regional bureau,the national intelligent grid,and EC model could be increased by 10%,8%,and 12%,respectively.展开更多
Following the publication of Xu et al.(2022),an error was identified in Figure 1D.Specifically,the top left panel was inadvertently duplicated during figure preparation.To ensure the accuracy and integrity of our publ...Following the publication of Xu et al.(2022),an error was identified in Figure 1D.Specifically,the top left panel was inadvertently duplicated during figure preparation.To ensure the accuracy and integrity of our published work,we request the publication of a corrigendum with the corrected image.We apologize for this oversight and any confusion it may have caused.The amended figure is provided in the updated Supplementary Materials.展开更多
Accurate short-term forecast of offshore wind fields is still challenging for numerical weather prediction models.Based on three years of 48-hour forecast data from the European Centre for Medium-Range Weather Forecas...Accurate short-term forecast of offshore wind fields is still challenging for numerical weather prediction models.Based on three years of 48-hour forecast data from the European Centre for Medium-Range Weather Forecasts Integrated Forecasting System global model(ECMWF-IFS)over 14 offshore weather stations along the coast of Shandong Province,this study introduces a multi-task learning(MTL)model(TabNet-MTL),which significantly improves the forecast bias of near-surface wind direction and speed simultaneously.TabNet-MTL adopts the feature engineering method,utilizes mean square error as the loss function,and employs the 5-fold cross validation method to ensure the generalization ability of the trained model.It demonstrates superior skills in wind field correction across different forecast lead times over all stations compared to its single-task version(TabNet-STL)and three other popular single-task learning models(Random Forest,LightGBM,and XGBoost).Results show that it significantly reduces root mean square error of the ECMWF-IFS wind speed forecast from 2.20 to 1.25 m s−1,and increases the forecast accuracy of wind direction from 50%to 65%.As an explainable deep learning model,the weather stations and long-term temporal statistics of near-surface wind speed are identified as the most influential variables for TabNet-MTL in constructing its feature engineering.展开更多
Following the publication of Zeng et al.(2023),an inadvertent error was recently identified in Figure 1B and Supplementary Figure S3.To ensure the accuracy and integrity of our published work,we formally request a cor...Following the publication of Zeng et al.(2023),an inadvertent error was recently identified in Figure 1B and Supplementary Figure S3.To ensure the accuracy and integrity of our published work,we formally request a correction to address this issue and apologize for any confusion this error may have caused.For details,please refer to the modified Supplementary Materials.展开更多
Background:Lipemia,characterized by elevated triglyceride levels in blood samples,is a prevalent preanalytical interferent in clinical hematology.It leads to erroneous measurements of key complete blood count(CBC)para...Background:Lipemia,characterized by elevated triglyceride levels in blood samples,is a prevalent preanalytical interferent in clinical hematology.It leads to erroneous measurements of key complete blood count(CBC)parameters,including falsely elevated hemoglobin(Hgb)and platelet(PLT)counts.These inaccuracies can compromise diagnostic reliability and patient management.Objective:This review systematically evaluates existing correction methods for lipemic interference in CBC analysis,comparing their efficacy,limitations,and applicability in clinical settings.Methods:We analyze saline replacement,formula-based correction,instrument-specific algorithms,and emerging technologies,supported by experimental and clinical validation data.Conclusion:An optimized,context-dependent strategy is proposed,integrating multiple correction approaches based on lipemia severity.Future research directions,including artificial intelligence(AI)-enhanced corrections and standardized protocols,are discussed to advance hematology testing accuracy.展开更多
文摘Correction to"Mass forming chronic pancreatitis mimicking pancreatic cystic neoplasm:A case report"World J Gastroenterology 2018;24(2):297-302.This article had accidentally omitted the fact of research-fund support notation.It should be added as supported by Dankook University Research Fund(R201600314).
文摘Correction to"Type II human epidermal growth factor receptor heterogeneity is a poor prognosticator for type II human epidermal growth factor receptor-positive gastric cancer"World J Clin Cases 2019;7(15):1964-1977.In this article,one of the affiliation of the first author was lacked.Akio Kaito,the first author,belonged to Course of Advanced Clinical Research of Cancer,Juntendo University Graduate School of Medicine,Tokyo 163-8001,Japan.
基金supports by the National Natural Science Foundation of China(Nos.82201135)"2015"Cultivation Program for Reserve Talents for Academic Leaders of Nanjing Stomatological School,Medical School of Nanjing University(No.0223A204).
文摘Early correction of childhood malocclusion is timely managing morphological,structural,and functional abnormalities at different dentomaxillofacial developmental stages.The selection of appropriate imaging examination and comprehensive radiological diagnosis and analysis play an important role in early correction of childhood malocclusion.This expert consensus is a collaborative effort by multidisciplinary experts in dentistry across the nation based on the current clinical evidence,aiming to provide general guidance on appropriate imaging examination selection,comprehensive and accurate imaging assessment for early orthodontic treatment patients.
基金supported by the National Key Research and Development Program of China(Grant No.2020YFA0608000)the National Natural Science Foundation of China(Grant No.42030605)+1 种基金CAAI-MindSpore Academic Fund Research Projects(CAAIXSJLJJ2023MindSpore11)the program of China Scholarships Council(No.CXXM2101180001)。
文摘Accurate seasonal precipitation forecasts,especially for extreme events,are crucial to preventing meteorological hazards and their potential impacts on national development,social activity,and security.However,the intensity of summer precipitation is often largely underestimated in many current dynamic models.This study uses a deep learning method called Cycle-Consistent Generative Adversarial Networks(CycleGAN)to improve the seasonal forecasts for June-JulyAugust precipitation in southeastern China by the Nanjing University of Information Science and Technology Climate Forecast System(NUIST-CFS 1.0).The results suggest that the CycleGAN-based model significantly improves the accuracy in predicting the spatiotemporal distribution of summer precipitation compared to the traditional quantile mapping(QM)method.Using the unpaired bias-correction model,we can also obtain advanced forecasts of the frequency,intensity,and duration of extreme precipitation events over the dynamic model predictions.This study expands the potential applications of deep learning models toward improving seasonal precipitation forecasts.
文摘BACKGROUND Transcatheter arterial chemoembolization(TACE)is a key treatment approach for advanced invasive liver cancer(infiltrative hepatocellular carcinoma).However,its therapeutic response can be difficult to evaluate accurately using conventional two-dimensional imaging criteria due to the tumor’s diffuse and multifocal growth pattern.Volumetric imaging,especially enhanced tumor volume(ETV),offers a more comprehensive assessment.Nonetheless,bias field inhomogeneity in magnetic resonance imaging(MRI)poses challenges,potentially skewing volumetric measurements and undermining prognostic evaluation.AIM To investigate whether MRI bias field correction enhances the accuracy of volumetric assessment of infiltrative hepatocellular carcinoma treated with TACE,and to analyze how this improved measurement impacts prognostic prediction.METHODS We retrospectively collected data from 105 patients with invasive liver cancer who underwent TACE treatment at the Affiliated Hospital of Xuzhou Medical University from January 2020 to January 2024.The improved N4 bias field correction algorithm was applied to process MRI images,and the ETV before and after treatment was calculated.The ETV measurements before and after correction were compared,and their relationship with patient prognosis was analyzed.A Cox proportional hazards model was used to evaluate prognostic factors,with Martingale residual analysis determining the optimal cutoff value,followed by survival analysis.RESULTS Bias field correction significantly affected ETV measurements,with the corrected baseline ETV mean(505.235 cm^(3))being significantly lower than before correction(825.632 cm^(3),P<0.001).Cox analysis showed that the hazard ratio(HR)for corrected baseline ETV(HR=1.165,95%CI:1.069-1.268)was higher than before correction(HR=1.063,95%CI:1.031-1.095).Using 412 cm^(3) as the cutoff,the group with baseline ETV<415 cm^(3) had a longer median survival time compared to the≥415 cm^(3) group(18.523 months vs 8.926 months,P<0.001).The group with an ETV reduction rate≥41%had better prognosis than the<41%group(17.862 months vs 9.235 months,P=0.006).Multivariate analysis confirmed that ETV reduction rate(HR=0.412,P<0.001),Child-Pugh classification(HR=0.298,P<0.001),and Barcelona Clinic Liver Cancer stage(HR=0.578,P=0.045)were independent prognostic factors.CONCLUSION Volume imaging based on MRI bias field correction can improve the accuracy of evaluating the efficacy of TACE treatment for invasive liver cancer.The corrected ETV and its reduction rate can serve as independent indicators for predicting patient prognosis,providing important reference for developing individualized treatment strategies.
基金supported by the National Natural Science Foundation of China(42304018)the National Natural Science Foundation of China(42330105,42064002,42074035)+3 种基金the Guangxi Natural Science Foundation of China(Guike AD23026177,2020GXNSFBA297145)the Foundation of Guilin University of Technology(GUTQDJJ6616032)Guangxi Key Laboratory of Spatial Information and Geomatics(21238-21-05)the Innovation Project of Guangxi Graduate Education(YCSW2023341)。
文摘The Zenith Hydrostatic Delay(ZHD)is essential for high-precision Global Navigation Satellite System(GNSS)and Very Long Baseline Interferometry(VLBI)data processing.Accurate estimation of ZHD relies on in situ atmospheric pressure,which is primarily variable in the vertical direction.Current atmospheric pressure is either site-specific or has limited spatial coverage,necessitating vertical corrections for broader applicability.This study introduces a model that uses a Gaussian function for the vertical correction of atmospheric pressure when in situ meteorological observations are unavailable.Validation with the fifth-generation European Centre for Medium-Range Weather Forecasts reanalysis(ERA5)reveals an average Bias and RMS for the new model of 0.31 h Pa and 2.96 h Pa,respectively.This corresponds to improvements of 37.5%and 80.3%in terms of RMS compared to two commonly used models(T0and Tvmodels)that require in situ meteorological observations,respectively.Additional validation with radiosonde data shows an average Bias and RMS of 1.85 h Pa and 4.87 h Pa,corresponding to the improvement of 42.8%and 71.1%in RMS compared with T0and Tv models,respectively.These accuracies are sufficient for calculating ZHD to an accuracy of 1 mm by performing atmospheric pressure vertical correction.The new model can correct atmospheric pressure from meteorological stations or numerical weather forecasts to different heights of the troposphere.
基金the Research Grant of Kwangwoon University in 2024.
文摘Myocardial perfusion imaging(MPI),which uses single-photon emission computed tomography(SPECT),is a well-known estimating tool for medical diagnosis,employing the classification of images to show situations in coronary artery disease(CAD).The automatic classification of SPECT images for different techniques has achieved near-optimal accuracy when using convolutional neural networks(CNNs).This paper uses a SPECT classification framework with three steps:1)Image denoising,2)Attenuation correction,and 3)Image classification.Image denoising is done by a U-Net architecture that ensures effective image denoising.Attenuation correction is implemented by a convolution neural network model that can remove the attenuation that affects the feature extraction process of classification.Finally,a novel multi-scale diluted convolution(MSDC)network is proposed.It merges the features extracted in different scales and makes the model learn the features more efficiently.Three scales of filters with size 3×3 are used to extract features.All three steps are compared with state-of-the-art methods.The proposed denoising architecture ensures a high-quality image with the highest peak signal-to-noise ratio(PSNR)value of 39.7.The proposed classification method is compared with the five different CNN models,and the proposed method ensures better classification with an accuracy of 96%,precision of 87%,sensitivity of 87%,specificity of 89%,and F1-score of 87%.To demonstrate the importance of preprocessing,the classification model was analyzed without denoising and attenuation correction.
基金National Key R&D Program of China(2022YFB3706901)National Natural Science Foundation of China(52274382)Key Research and Development Program of Hubei Province(2022BAA024)。
文摘The hot deformation behavior of as-extruded Ti-6554 alloy was investigated through isothermal compression at 700–950°C and 0.001–1 s^(−1).The temperature rise under different deformation conditions was calculated,and the curve was corrected.The strain compensation constitutive model of as-extruded Ti-6554 alloy based on temperature rise correction was established.The microstructure evolution under different conditions was analyzed,and the dynamic recrystallization(DRX)mechanism was revealed.The results show that the flow stress decreases with the increase in strain rate and the decrease in deformation temperature.The deformation temperature rise gradually increases with the increase in strain rate and the decrease in deformation temperature.At 700°C/1 s^(−1),the temperature rise reaches 100°C.The corrected curve value is higher than the measured value,and the strain compensation constitutive model has high prediction accuracy.The precipitation of theαphase occurs during deformation in the twophase region,which promotes DRX process of theβphase.At low strain rate,the volume fraction of dynamic recrystallization increases with the increase in deformation temperature.DRX mechanism includes continuous DRX and discontinuous DRX.
基金Supported by the National Key Research and Development Program(2023YFC3107602)。
文摘Airborne area-array whisk-broom imaging systems typically adopt constant-speed scanning schemes.For large-inertia scanning systems,constant-speed scanning requires substantial time to complete the reversal motion,reducing the system's adaptability to high-speed reversal scanning and decreasing scanning efficiency.This study proposes a novel sinusoidal variable-speed roll scanning strategy,which reduces abrupt changes in speed and acceleration,minimizing time loss during reversals.Based on the forward image motion compensation strategy in the pitch direction,we establish a line-of-sight(LOS)position calculation model with vertical flight path correction(VFPC),ensuring that the central LOS of the scanned image remains stable on the same horizontal line,facilitating accurate image stitching in whisk-broom imaging.Through theoretical analysis and simulation experiments,the proposed method improves the scanning efficiency by approximately 18.6%at a 90o whiskbroom imaging angle under the same speed height ratio conditions.The new VFPC method enables wide-field,high-resolution imaging,achieving single-line LOS horizontal stability with an accuracy of better than O.4 mrad.The research is of great significance to promote the further development of airborne area-array whisk-broom imaging technology toward wider fields of view,higher speed height ratios,and greater scanning efficiency.
文摘This letter compares the clinical efficacy and economic feasibility of the scoliocorrector fatma-UI(SCFUI)with direct vertebral rotation(DVR)in treating adolescent idiopathic scoliosis(AIS).SCFUI has shown promising results in threedimensional spinal correction,providing superior rotational alignment compared to DVR and achieving significant improvements in coronal and sagittal planes.Additionally,SCFUI’s advanced design reduces risks associated with AIS surgeries and enhances overall patient outcomes.Economic analysis reveals SCFUI as a cost-effective option,potentially lowering long-term healthcare costs by minimizing complications and revisions.Our findings suggest that SCFUI is a viable,innovative approach in AIS treatment,meeting clinical and economic demands in orthopedic care.
基金supported by the Science and Technology Commission of Shanghai Municipality(Grant No.24DP2600202)the National Key R&D Program of China(Grant No.2024YFB4504002)the National Natural Science Foundation of China(Grant No.92165107)。
文摘For the quantum error correction and noisy intermediate-scale quantum algorithms to function with high efficiency,the raw fidelity of quantum logic gates on physical qubits needs to satisfy strict requirements.The neutral atom quantum computing equipped with Rydberg blockade gates has made impressive progress recently,which makes it worthwhile to explore its potential in the two-qubit entangling gates,including the controlledphase gate,and in particular,the CZ gate.Provided the quantum coherence is well preserved,improving the fidelity of Rydberg blockade gates calls for special mechanisms to deal with adverse effects caused by realistic experimental conditions.Here,the heralded very-high-fidelity Rydberg blockade controlled-phase gate is designed to address these issues,which contains self-correction and projection as the key steps.This trailblazing method builds upon the previously established buffer-atom-mediated gate framework,with a special form of symmetry under parity–time transformation playing a crucial role in the process.We further analyze the performance with respect to a few typical sources of imperfections.This procedure can also be regarded as quantum hardware error correction or mitigation.While this paper by itself does not cover every single subtle issue and still contains many oversimplifications,we find it reasonable to anticipate a very-high-fidelity two-qubit quantum logic gate operated in the sense of heralded but probabilistic,whose gate error can be reduced to the level of 10^(-4)–10^(-6)or even lower with reasonably high possibilities.
文摘Correction to:Rare Met.https://doi.org/10.1007/s12598-021-01815-z In the original publication,Fig.5 was published with few mistakes.The correct version of Fig.5 is given in this correction.
文摘Correction to:Nuclear Science and Techniques(2025)36:66 https://doi.org/10.1007/s41365-025-01662-y.In this article,the author’s name Hui-Ling Wei was incorrectly written as Hui-Ling We.The original article has been corrected.
基金funded by the National Natural Science Foundation of China under Grant No.11975145。
文摘In this work,we apply tunneling formalism to analyze charged particles tunneling across a hairy black hole horizon.Such black hole solutions are essential for frameworks based on Horndeski's gravity theory.Applying a semi-classical technique,we examine the tunneling of charged particles from a hairy black hole and derive the generic tunneling spectrum of released particles,ignoring self-gravitational and interaction.It is studied to ignore the back-reaction impact of the radiated particle on the hairy black hole.We analyze the properties of the black hole,such as temperature and entropy,under the influence of quantum gravity and also observe that the firstorder correction is present.We study tunneling radiation produced by a charged field equation in the presence of a generalized uncertainty effect.We modify the semi-classical technique by using the generalized uncertainty principle,the WKB approximation,and surface gravity.
文摘The forecast results of temperature based on the intelligent grids of the Central Meteorological Observatory and the meteorological bureau of the autonomous region and the numerical forecast model of the European Center(EC model)from February to December in 2022 were used.Based on the data of the national intelligent grid forecast,the intelligent grid forecast of the regional bureau,EC model,etc.,temperature was predicted.According to the research of the grid point forecast synthesis algorithm with the highest accuracy rate in the recent three days,the temperature grid point correction was conducted in two forms of stations and grids.In order to reduce the deviation caused by the seasonal system temperature difference,a temperature prediction model was established by using the rolling forecast errors of 5,10,15,20,25 and 30 d as the basis data.The verification and evaluation of objective correction results show that the accuracy rate of temperature forecast by the intelligent grid of the regional bureau,the national intelligent grid,and EC model could be increased by 10%,8%,and 12%,respectively.
文摘Following the publication of Xu et al.(2022),an error was identified in Figure 1D.Specifically,the top left panel was inadvertently duplicated during figure preparation.To ensure the accuracy and integrity of our published work,we request the publication of a corrigendum with the corrected image.We apologize for this oversight and any confusion it may have caused.The amended figure is provided in the updated Supplementary Materials.
基金the National Key Research and Development Plan of China[Grant No.2023YFB3002400]the Shanghai 2021 Natural Science Foundation[Grant Nos.21ZR1420400 and 21ZR1419800]+1 种基金the Shanghai 2023 Natural Science Foundation[Grant No.23ZR1463000]the Shandong Provincial Meteorological Bureau Scientific Research Project[Grant No.2023SDBD05].
文摘Accurate short-term forecast of offshore wind fields is still challenging for numerical weather prediction models.Based on three years of 48-hour forecast data from the European Centre for Medium-Range Weather Forecasts Integrated Forecasting System global model(ECMWF-IFS)over 14 offshore weather stations along the coast of Shandong Province,this study introduces a multi-task learning(MTL)model(TabNet-MTL),which significantly improves the forecast bias of near-surface wind direction and speed simultaneously.TabNet-MTL adopts the feature engineering method,utilizes mean square error as the loss function,and employs the 5-fold cross validation method to ensure the generalization ability of the trained model.It demonstrates superior skills in wind field correction across different forecast lead times over all stations compared to its single-task version(TabNet-STL)and three other popular single-task learning models(Random Forest,LightGBM,and XGBoost).Results show that it significantly reduces root mean square error of the ECMWF-IFS wind speed forecast from 2.20 to 1.25 m s−1,and increases the forecast accuracy of wind direction from 50%to 65%.As an explainable deep learning model,the weather stations and long-term temporal statistics of near-surface wind speed are identified as the most influential variables for TabNet-MTL in constructing its feature engineering.
文摘Following the publication of Zeng et al.(2023),an inadvertent error was recently identified in Figure 1B and Supplementary Figure S3.To ensure the accuracy and integrity of our published work,we formally request a correction to address this issue and apologize for any confusion this error may have caused.For details,please refer to the modified Supplementary Materials.
文摘Background:Lipemia,characterized by elevated triglyceride levels in blood samples,is a prevalent preanalytical interferent in clinical hematology.It leads to erroneous measurements of key complete blood count(CBC)parameters,including falsely elevated hemoglobin(Hgb)and platelet(PLT)counts.These inaccuracies can compromise diagnostic reliability and patient management.Objective:This review systematically evaluates existing correction methods for lipemic interference in CBC analysis,comparing their efficacy,limitations,and applicability in clinical settings.Methods:We analyze saline replacement,formula-based correction,instrument-specific algorithms,and emerging technologies,supported by experimental and clinical validation data.Conclusion:An optimized,context-dependent strategy is proposed,integrating multiple correction approaches based on lipemia severity.Future research directions,including artificial intelligence(AI)-enhanced corrections and standardized protocols,are discussed to advance hematology testing accuracy.