This study presents a simplified multivariate bias correction scheme that is sequentially implemented in the GEOS5 data assimilation system and compared against a control experiment without model bias correction. The ...This study presents a simplified multivariate bias correction scheme that is sequentially implemented in the GEOS5 data assimilation system and compared against a control experiment without model bias correction. The results show considerable improvement in terms of the mean biases of rawinsonde observation-minus-background (OmB) residuals for observed water vapor, wind and temperature variables. The time series spectral analysis shows whitening of bias-corrected OmB residuals, and mean biases for rawinsonde observation-minus-analysis (OmA) are also improved. Some wind and temperature biases in the control experiment near the equatorial tropopause nearly vanish from the bias-corrected experiment. Despite the analysis improvement, the bias correction scheme has only a moderate impact on forecast skill. Significant interaction is also found among quality-control, satellite observation bias correction, and background bias correction, and the latter positively impacts satellite bias correction.展开更多
In the actual use of a parallel battery pack in electric vehicles(EVs),current distribution in each branch will be different due to inconsistence characteristics of each battery cell.If the branch current is approxima...In the actual use of a parallel battery pack in electric vehicles(EVs),current distribution in each branch will be different due to inconsistence characteristics of each battery cell.If the branch current is approximately calculated by the total current of the battery pack divided by the number of the parallel branches,there will be a large error between the calculated branch current and the real branch current.Adding current sensors to measure each branch current is not practical because of the high cost.Accurate estimation of branch currents can give a safety warning in time when the parallel batteries of EVs are seriously inconsistent.This paper puts forward a method to estimate and correct branch currents based on dual back propagation(BP)neural networks.In the proposed method,one BP neural network is used to estimate branch currents,the other BP neural network is used to reduce the estimation error cause by current pulse excitations.Furthermore,this paper makes discussions on the selection of the best inputs for the dual BP neural networks and the adaptability of the method for different battery capacity and resistence differences.The effectiveness of the proposed method is verified by multiple dynamic conditions of two cells connected in parallel.展开更多
This poper presents a new method of estimating and correcting Doppler frequency shift in anM-ary (D)PSK receiver. The performance is discussed. Analytical and simulation results are presentedand the error probability ...This poper presents a new method of estimating and correcting Doppler frequency shift in anM-ary (D)PSK receiver. The performance is discussed. Analytical and simulation results are presentedand the error probability performance of the (D)PSK receiver is evaluated in the presence of the Doppler correction. It is shown from analytical and simulation results for constant Doppler shift that the methodperforms excellently.展开更多
文摘This study presents a simplified multivariate bias correction scheme that is sequentially implemented in the GEOS5 data assimilation system and compared against a control experiment without model bias correction. The results show considerable improvement in terms of the mean biases of rawinsonde observation-minus-background (OmB) residuals for observed water vapor, wind and temperature variables. The time series spectral analysis shows whitening of bias-corrected OmB residuals, and mean biases for rawinsonde observation-minus-analysis (OmA) are also improved. Some wind and temperature biases in the control experiment near the equatorial tropopause nearly vanish from the bias-corrected experiment. Despite the analysis improvement, the bias correction scheme has only a moderate impact on forecast skill. Significant interaction is also found among quality-control, satellite observation bias correction, and background bias correction, and the latter positively impacts satellite bias correction.
基金Natural Science Program of Shandong Province(Grant No.ZR2020ME209)National Natural Science Foundation of China(Grant No.52177210)China Postdoctoral Science Foundation(Grant No.2021M690740).
文摘In the actual use of a parallel battery pack in electric vehicles(EVs),current distribution in each branch will be different due to inconsistence characteristics of each battery cell.If the branch current is approximately calculated by the total current of the battery pack divided by the number of the parallel branches,there will be a large error between the calculated branch current and the real branch current.Adding current sensors to measure each branch current is not practical because of the high cost.Accurate estimation of branch currents can give a safety warning in time when the parallel batteries of EVs are seriously inconsistent.This paper puts forward a method to estimate and correct branch currents based on dual back propagation(BP)neural networks.In the proposed method,one BP neural network is used to estimate branch currents,the other BP neural network is used to reduce the estimation error cause by current pulse excitations.Furthermore,this paper makes discussions on the selection of the best inputs for the dual BP neural networks and the adaptability of the method for different battery capacity and resistence differences.The effectiveness of the proposed method is verified by multiple dynamic conditions of two cells connected in parallel.
文摘This poper presents a new method of estimating and correcting Doppler frequency shift in anM-ary (D)PSK receiver. The performance is discussed. Analytical and simulation results are presentedand the error probability performance of the (D)PSK receiver is evaluated in the presence of the Doppler correction. It is shown from analytical and simulation results for constant Doppler shift that the methodperforms excellently.