A high-contrast coronagraph for direct imaging of an Earth-like exoplanet at the visible band needs a contrast of 10^-10 at a small angular separation of 4λ/D or less. Here we report our recent laboratory experiment ...A high-contrast coronagraph for direct imaging of an Earth-like exoplanet at the visible band needs a contrast of 10^-10 at a small angular separation of 4λ/D or less. Here we report our recent laboratory experiment that approaches these lim- its. Our test of a high-contrast imaging coronagraph is based on our step-transmission apodized filter. To achieve this goal, we use a liquid crystal array as a phase correc- tor to create a dark hole based on our dedicated algorithm. We have suppressed the diffraction and speckle noise near the point image of a star to a level of 1.68 × 10^-9 at 4λ/D, which can be used for direct imaging of Jupiter-like exoplanets. This demon- strates that a telescope incorporating a high-contrast coronagraph in space has the potential to detect and characterize Earth-like planets.展开更多
An adaptive optics (AO) system based on a stochastic parallel gradient descent (SPGD) algorithm is proposed to reduce the speckle noises in the optical system of a stellar coronagraph in order to further improve t...An adaptive optics (AO) system based on a stochastic parallel gradient descent (SPGD) algorithm is proposed to reduce the speckle noises in the optical system of a stellar coronagraph in order to further improve the contrast. The principle of the SPGD algorithm is described briefly and a metric suitable for point source imaging optimization is given. The feasibility and good performance of the SPGD algorithm is demonstrated by an experimental system featured with a 140-actuator deformable mirror and a Hartrnann-Shark wavefront sensor. Then the SPGD based AO is applied to a liquid crystal array (LCA) based coronagraph to improve the contrast. The LCA can modulate the incoming light to generate a pupil apodization mask of any pattern. A circular stepped pattern is used in our preliminary experiment and the image contrast shows improvement from 10^-3 to 10^-4.5 at an angular distance of 2A/D after being corrected by SPGD based AO.展开更多
High-contrast imaging coronagraphs, used for the detection of exoplanets, have always adopted passive coronagraph optical components. It is therefore impossible to actively optimize the coronagraphs to achieve their b...High-contrast imaging coronagraphs, used for the detection of exoplanets, have always adopted passive coronagraph optical components. It is therefore impossible to actively optimize the coronagraphs to achieve their best performance. To solve this problem, we propose a novel high-contrast imaging coronagraph which combines a liquid crystal array (LCA) for active pupil apodization and a deformable mirror (DM) for phase correction. The LCA we use is an amplitude-only spatial light mod- ulator. The LCA is well calibrated and compensates for its amplitude non-uniformity and nonlinear intensity responsivity. We measured the imaging contrasts of the coron- agraph system with the LCA only and without the DM deployed. Imaging contrasts of 10-4 and 10-5 can be reached at an inner working angular distance of 2.5 and 5A/D, respectively. A simulation shows that the phase errors on the coronagraph pupil limit the contrast performance. The contrast could be further improved if a DM is deployed to correct the phase errors induced by the LCA and coronagraph optics.展开更多
Using an optical vortex coronagraph (OVC) is one of the most promising techniques for di- rectly imaging exoplanets because of its small inner working angle and high throughput. This paper presents the design and la...Using an optical vortex coronagraph (OVC) is one of the most promising techniques for di- rectly imaging exoplanets because of its small inner working angle and high throughput. This paper presents the design and laboratory demonstration performance of an OVC based on liquid crystal polymers (LCPs) at 633 nm and 1520 nm. The OVC can deliver good performance in laboratory tests and achieve a contrast of 10-6 at an angular distance of 3A/D, which can be implemented for imaging young giant exoplanets in combination with extreme adaptive optics.展开更多
The light reflected from planets is polarized mainly due to Rayleigh scattering, but starlight is normally unpolarized. Thus it provides an approach to enhance the imaging contrast by inducing the imaging polarimetry ...The light reflected from planets is polarized mainly due to Rayleigh scattering, but starlight is normally unpolarized. Thus it provides an approach to enhance the imaging contrast by inducing the imaging polarimetry technique. In this paper, we propose a high-contrast imaging polarimeter that is op- timized for the direct imaging of exoplanets, combined with our recently developed stepped-transmission filter based coronagraph. Here we present the design and calibration method of the polarimetry system and the associated test of its high-contrast performance. In this polarimetry system, two liquid crystal variable retarders (LCVRs) act as a polarization modulator, which can extract the polarized signal. We show that our polarimeter can achieve a measurement accuracy of about 0.2% at a visible wavelength (632.8 nm) with linearly polarized light. Finally, the whole system demonstrates that a contrast of 10 9 at 5A/D is achievable, which can be used for direct imaging of Jupiter-like planets with a space telescope.展开更多
An angular trapezoidal phase mask used for a wideband coronagraph is proposed. The azimuthal phase of the mask is double-periodic and has both trapezoidal and constant parts in each period. This kind of continuous pha...An angular trapezoidal phase mask used for a wideband coronagraph is proposed. The azimuthal phase of the mask is double-periodic and has both trapezoidal and constant parts in each period. This kind of continuous phase distribution can be employed to avoid the abrupt phase variation of the 6-level phase distribution we proposed previously. Numerical calculations show that this more practical phase mask can still keep its superior performance in terms of starlight elimination, small inner working angle, and good achromatism. It is of great importance that there is no singularity in this kind of mask except for a singularity at the center. This mask design is close to real manufacturing conditions, and the process technology is superior.展开更多
Significant optical engineering advances at the University of Arizona are being made for design, fabrication, and construction of next generation astronomical telescopes. This summary review paper focuses on the techn...Significant optical engineering advances at the University of Arizona are being made for design, fabrication, and construction of next generation astronomical telescopes. This summary review paper focuses on the technological advances in three key areas. First is the optical fabrication technique used for constructing next-generation telescope mirrors. Advances in ground-based telescope control and instrumentation comprise the second area of development. This includes active alignment of the laser truss-based Large Binocular Telescope(LBT) prime focus camera, the new MOBIUS modular cross-dispersion spectroscopy unit used at the prime focal plane of the LBT, and topological pupil segment optimization. Lastly, future space telescope concepts and enabling technologies are discussed. Among these, the Nautilus space observatory requires challenging alignment of segmented multi-order diffractive elements. The OASIS terahertz space telescope presents unique challenges for characterizing the inflatable primary mirror, and the Hyperion space telescope pushes the limits of high spectral resolution, far-UV spectroscopy. The Coronagraphic Debris and Exoplanet Exploring Pioneer(CDEEP) is a Small Satellite(Small Sat) mission concept for high-contrast imaging of circumstellar disks and exoplanets using vector vortex coronagraph. These advances in optical engineering technologies will help mankind to probe, explore, and understand the scientific beauty of our universe.展开更多
基金Supported by the National Natural Science Foundation of China
文摘A high-contrast coronagraph for direct imaging of an Earth-like exoplanet at the visible band needs a contrast of 10^-10 at a small angular separation of 4λ/D or less. Here we report our recent laboratory experiment that approaches these lim- its. Our test of a high-contrast imaging coronagraph is based on our step-transmission apodized filter. To achieve this goal, we use a liquid crystal array as a phase correc- tor to create a dark hole based on our dedicated algorithm. We have suppressed the diffraction and speckle noise near the point image of a star to a level of 1.68 × 10^-9 at 4λ/D, which can be used for direct imaging of Jupiter-like exoplanets. This demon- strates that a telescope incorporating a high-contrast coronagraph in space has the potential to detect and characterize Earth-like planets.
基金Supported by the National Natural Science Foundation of China(Grant Nos. 10873024 and 11003031)supported by the National Science Foundation under Grant ATM-0841440
文摘An adaptive optics (AO) system based on a stochastic parallel gradient descent (SPGD) algorithm is proposed to reduce the speckle noises in the optical system of a stellar coronagraph in order to further improve the contrast. The principle of the SPGD algorithm is described briefly and a metric suitable for point source imaging optimization is given. The feasibility and good performance of the SPGD algorithm is demonstrated by an experimental system featured with a 140-actuator deformable mirror and a Hartrnann-Shark wavefront sensor. Then the SPGD based AO is applied to a liquid crystal array (LCA) based coronagraph to improve the contrast. The LCA can modulate the incoming light to generate a pupil apodization mask of any pattern. A circular stepped pattern is used in our preliminary experiment and the image contrast shows improvement from 10^-3 to 10^-4.5 at an angular distance of 2A/D after being corrected by SPGD based AO.
基金supported by the "Strategic Priority Research Program" of the Chinese Academy of Sciences(Grant No.XDA04070600)the National Natural Science Foundation of China(Grant Nos.11003031 and 10873024)+1 种基金as well as the National Astronomical Observatories' Special Fund for Astronomy-2009Part of the work described in this paper was carried out at California State University Northridge,with support from the National Science Foundation under Grant ATM-0841440
文摘High-contrast imaging coronagraphs, used for the detection of exoplanets, have always adopted passive coronagraph optical components. It is therefore impossible to actively optimize the coronagraphs to achieve their best performance. To solve this problem, we propose a novel high-contrast imaging coronagraph which combines a liquid crystal array (LCA) for active pupil apodization and a deformable mirror (DM) for phase correction. The LCA we use is an amplitude-only spatial light mod- ulator. The LCA is well calibrated and compensates for its amplitude non-uniformity and nonlinear intensity responsivity. We measured the imaging contrasts of the coron- agraph system with the LCA only and without the DM deployed. Imaging contrasts of 10-4 and 10-5 can be reached at an inner working angular distance of 2.5 and 5A/D, respectively. A simulation shows that the phase errors on the coronagraph pupil limit the contrast performance. The contrast could be further improved if a DM is deployed to correct the phase errors induced by the LCA and coronagraph optics.
基金supported by the National Natural Science Foundation of China(Grant Nos.11661161011,11433007,11220101001,11328302 and 11373005)the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDA04075200)+2 种基金the International Partnership Program of Chinese Academy of Sciences(Grant Nos.114A32KYSB20160018 and 114A32KYSB20160057)the special fund for astronomy of CAS(2015–2016)Part of the work described in this paper was carried out at California State University,Northridge,with support from the Mt.Cuba Astronomical Foundation
文摘Using an optical vortex coronagraph (OVC) is one of the most promising techniques for di- rectly imaging exoplanets because of its small inner working angle and high throughput. This paper presents the design and laboratory demonstration performance of an OVC based on liquid crystal polymers (LCPs) at 633 nm and 1520 nm. The OVC can deliver good performance in laboratory tests and achieve a contrast of 10-6 at an angular distance of 3A/D, which can be implemented for imaging young giant exoplanets in combination with extreme adaptive optics.
基金supported by the NSFC(Grant Nos.11220101001,11433007,11328302,11373005 and 11303064)the“Strategic Priority Research Program”of the Chinese Academy of Sciences(Grant Nos.XDA04070600 and XDA04075200)+2 种基金the special funding for Young Researchers of Nanjing Institute of Astronomical Optics&Technologythe special fund for astronomy(Grant No.KT2013-022)of CAS.carried out at California State University Northridge,with support from the Mt.Cuba Astronomical Foundation
文摘The light reflected from planets is polarized mainly due to Rayleigh scattering, but starlight is normally unpolarized. Thus it provides an approach to enhance the imaging contrast by inducing the imaging polarimetry technique. In this paper, we propose a high-contrast imaging polarimeter that is op- timized for the direct imaging of exoplanets, combined with our recently developed stepped-transmission filter based coronagraph. Here we present the design and calibration method of the polarimetry system and the associated test of its high-contrast performance. In this polarimetry system, two liquid crystal variable retarders (LCVRs) act as a polarization modulator, which can extract the polarized signal. We show that our polarimeter can achieve a measurement accuracy of about 0.2% at a visible wavelength (632.8 nm) with linearly polarized light. Finally, the whole system demonstrates that a contrast of 10 9 at 5A/D is achievable, which can be used for direct imaging of Jupiter-like planets with a space telescope.
文摘An angular trapezoidal phase mask used for a wideband coronagraph is proposed. The azimuthal phase of the mask is double-periodic and has both trapezoidal and constant parts in each period. This kind of continuous phase distribution can be employed to avoid the abrupt phase variation of the 6-level phase distribution we proposed previously. Numerical calculations show that this more practical phase mask can still keep its superior performance in terms of starlight elimination, small inner working angle, and good achromatism. It is of great importance that there is no singularity in this kind of mask except for a singularity at the center. This mask design is close to real manufacturing conditions, and the process technology is superior.
基金the Gordon and Betty Moore Foundation for their financial support of the development of the MODElens and its enabling alignment technologiesthe II-VI Foundation Block-Gift,Technology Research Initiative Fund Optics/Imaging Program。
文摘Significant optical engineering advances at the University of Arizona are being made for design, fabrication, and construction of next generation astronomical telescopes. This summary review paper focuses on the technological advances in three key areas. First is the optical fabrication technique used for constructing next-generation telescope mirrors. Advances in ground-based telescope control and instrumentation comprise the second area of development. This includes active alignment of the laser truss-based Large Binocular Telescope(LBT) prime focus camera, the new MOBIUS modular cross-dispersion spectroscopy unit used at the prime focal plane of the LBT, and topological pupil segment optimization. Lastly, future space telescope concepts and enabling technologies are discussed. Among these, the Nautilus space observatory requires challenging alignment of segmented multi-order diffractive elements. The OASIS terahertz space telescope presents unique challenges for characterizing the inflatable primary mirror, and the Hyperion space telescope pushes the limits of high spectral resolution, far-UV spectroscopy. The Coronagraphic Debris and Exoplanet Exploring Pioneer(CDEEP) is a Small Satellite(Small Sat) mission concept for high-contrast imaging of circumstellar disks and exoplanets using vector vortex coronagraph. These advances in optical engineering technologies will help mankind to probe, explore, and understand the scientific beauty of our universe.