We study the topological states(TSs)of all-dielectric honeycomb valley photonic crystals(VPCs).Breaking the space inversion symmetry of the honeycomb lattice by varying the filling ratio of materials for circular ring...We study the topological states(TSs)of all-dielectric honeycomb valley photonic crystals(VPCs).Breaking the space inversion symmetry of the honeycomb lattice by varying the filling ratio of materials for circular ring dielectric columns in the unit cell,which triggers topological phase transitions and thus achieves topological edge states(TESs)and topological corner states(TCSs).The results demonstrate that this structure has efficient photon transmission characteristics and anti-scattering robustness.In particular,we have found that changing the type of edge splicing between VPCs with different topological properties produces a change in the frequency of TCSs,and then based on this phenomenon,we have used a new method of adjusting only the type of edge splicing of the structure to design a novel TCSs combiner that can integrate four TCSs with different frequencies.This work not only expands the variety and number of unexplored TCSs that may exist in a fixed photonic band gap and can be rationalized to be selectively excited in the fixed configuration.Our study provides a feasible pathway for the design of integrated optical devices in which multiple TSs coexist in a single photonic system.展开更多
We present a stable valley photonic crystal(VPC)unit cell with C_(3v)symmetric quasi-ring-shaped dielectric columns and realize its topological phase transition by breaking mirror symmetry.Based on this unit cell stru...We present a stable valley photonic crystal(VPC)unit cell with C_(3v)symmetric quasi-ring-shaped dielectric columns and realize its topological phase transition by breaking mirror symmetry.Based on this unit cell structure,topological edge states(TESs)and topological corner states(TCSs)are realized.We obtain a new type of wave transmission mode based on photonic crystal zipper-like boundaries and apply it to a beam splitter assembled from rectangular photonic crystals(PCs).The constructed beam splitter structure is compact and possesses frequency separation functions.In addition,we construct a box-shaped triangular PC structures with zipper-like boundaries and discover phenomena of TCSs in the corners,comparing its corner states with those formed by other boundaries.Based on this,we explore the regularities of the electric field patterns of TESs and TCSs,explain the connection between the characteristic frequencies and locality of TCSs,which helps better control photons and ensures low power consumption of the system.展开更多
Intrinsic higher-order topological insulators driven solely by orbital coupling are rare in electronic materials.Here,we propose that monolayer LaBrO is an intrinsic two-dimensional second-order topological insulator....Intrinsic higher-order topological insulators driven solely by orbital coupling are rare in electronic materials.Here,we propose that monolayer LaBrO is an intrinsic two-dimensional second-order topological insulator.The generalized second-order topological phase arises from the coupling between the 5d orbital of the La atom and the 2p orbital of the O atom.The underlying physics can be thoroughly described by a four-band generalized higher-order topological model.Notably,the edge states and corner states of monolayer LaBrO exhibit different characteristics in terms of morphology,number,and location distribution under different boundary and nanocluster configurations.Furthermore,the higher-order topological corner states of monolayer LaBrO are robust against variations in spin-orbit coupling and different values of Hubbard U.This provides a material platform for studying intrinsic 2D second-order topological insulators.展开更多
We explore the behaviors of optically coupled topological corner states in supercell arrays composed of photonic crystal rods,where each supercell is a second-order topological insulator.Our findings indicate that the...We explore the behaviors of optically coupled topological corner states in supercell arrays composed of photonic crystal rods,where each supercell is a second-order topological insulator.Our findings indicate that the coupled corner states possess nondegenerate eigenfrequencies at theΓpoint,with coupled dipole corner states excited resonantly by incident plane waves and displaying a polarization-independent characteristic.The resonance properties of coupled dipole corner states can be effectively modulated via evanescently near-field coupling,while multipole decomposition shows that they are primarily dominated by electric quadrupole moment and magnetic dipole moment.Furthermore,we demonstrate that these coupled corner states can form surface lattice resonances driven by diffractively far-field coupling,leading to a dramatic increase in the quality factor.This work introduces more optical approaches to tailoring photonic topological states,and holds potential applications in mid-infrared topological micro-nano devices.展开更多
The immunity of topological states against backscattering and structural defects provides them with a unique advantage in the exploration and design of high-precision low-loss optical devices.However,the operating ban...The immunity of topological states against backscattering and structural defects provides them with a unique advantage in the exploration and design of high-precision low-loss optical devices.However,the operating bandwidth of the topological states in certain photonic structures is difficult to actively tune and flexibly reconfigure.In this study,we propose a valley topological photonic crystal(TPC)comprising two inverse honeycomb photonic crystals,consisting of hexagonal silicon and Ge2Sb2Te5(GST)rods.When GST transitions from the amorphous phase to the crystalline phase,the edge band of the TPC appears as a significant redshift and is inversed from a“∪”to an“∩”shape with topological phase transition,which enables active tuning of the operating bandwidth and propagation direction of topological edge states.Both the topological edge and corner states in a triangular structure constructed using TPCs can be simultaneously adjusted and reconfigured via GST phase transition,along with a change in the group number of corner states.Using the adjustability of topological edge states and electromagnetic coupling between two different topological bearded interfaces,we develop a multichannel optical router with a high tuning degree of freedom,where channels can be actively reconfigured and their on/off states can be freely switched.Our study provides a strategy for the active regulation of topological states and may be beneficial for the development of reconfigurable topological optical devices.展开更多
Based on the tight-binding calculations on honeycomb lattice and photonic experimental visualization on artificial graphene(AG), we report the domain-wall-induced gapped topological kink states and topological corner ...Based on the tight-binding calculations on honeycomb lattice and photonic experimental visualization on artificial graphene(AG), we report the domain-wall-induced gapped topological kink states and topological corner states. In honeycomb lattice, domain walls(DWs) with gapless topological kink states could be induced either by sublattice symmetry breaking or by lattice deformation. We find that the coexistence of these two mechanisms will induce DWs with gapped topological kink states. Significantly, the intersection of these two types of DWs gives rise to topological corner state localized at the crossing point.Through the manipulation of the DWs, we show AG with honeycomb lattice structure not only a versatile platform supporting multiple topological corner modes in a controlled manner, but also possessing promising applications such as fabricating topological quantum dots composed of gapped topological kink states and topological corner states.展开更多
Mechanical elastic wheel(ME-wheel)is a new type of non-inflatable safety tyre,and the structure is significantly different from traditional pneumatic tyre.In order to investigate cornering properties of ME-wheel,exper...Mechanical elastic wheel(ME-wheel)is a new type of non-inflatable safety tyre,and the structure is significantly different from traditional pneumatic tyre.In order to investigate cornering properties of ME-wheel,experimental research on mechanics characteristics of ME-wheel under steady-state cornering conditions are carried out.The test of steady-state cornering properties of ME-wheel at different experimental parameter conditions is conducted by test bench for dynamic mechanical properties of tyre.Cornering property curves are used to analyze the steady-state cornering properties of ME-wheel,namely the variation tendency of lateral force or aligning torque with the increase of side-slip angle.Moreover,evaluation indexes for cornering properties of ME-wheel are extracted and the effect of different experimental parameters(including vertical load,friction coefficient,and speed)on cornering properties of ME-wheel is contrastively analyzed.The proposed research can provide certain reference to facilitate structure parameters and cornering properties optimizing process of ME-wheel.展开更多
Higher-order band topology not only enriches our understanding of topological phases but also unveils pioneering lower-dimensional boundary states,which harbors substantial potential for next-generation device applica...Higher-order band topology not only enriches our understanding of topological phases but also unveils pioneering lower-dimensional boundary states,which harbors substantial potential for next-generation device applications.The distinct electronic configurations and tunable attributes of two-dimensional materials position them as a quintessential platform for the realization of second-order topological insulators(SOTIs).This article provides an overview of the research progress in SOTIs within the field of two-dimensional electronic materials,focusing on the characterization of higher-order topological properties and the numerous candidate materials proposed in theoretical studies.These endeavors not only enhance our understanding of higher-order topological states but also highlight potential material systems that could be experimentally realized.展开更多
Topological insulators represent a new phase of matter,characterized by conductive surfaces,while their bulk remains insulating.When the dimension of the system exceeds that of the topological state by at least two,th...Topological insulators represent a new phase of matter,characterized by conductive surfaces,while their bulk remains insulating.When the dimension of the system exceeds that of the topological state by at least two,the insulators are classified as higher-order topological insulators(HOTI).The appearance of higher-order topological states,such as corner states,can be explained by the filling anomaly,which leads to the fractional spectral charges in the unit cell.Previously reported fractional charges have been quite limited in number and size.In this work,based on the two-dimensional(2D)Su-Schrieffer-Heeger model lattice,we demonstrated a new class of HOTIs with adjustable fractional charges that can take any value ranging from 0 to 1,achieved by utilizing the Lorentz transformation.Furthermore,this transformation generates novel bound-state-in-continuum-like corner states,even when the lattice is in a topological trivial phase,offering a new approach to light beam localization.This work paves the way for fabricating HOTIs with diverse corner states that offer promising applicative potential.展开更多
In recent years,there has been a surge of interest in higher-order topological phases(HOTPs)across various disciplines within the field of physics.These unique phases are characterized by their ability to harbor topol...In recent years,there has been a surge of interest in higher-order topological phases(HOTPs)across various disciplines within the field of physics.These unique phases are characterized by their ability to harbor topological protected boundary states at lower-dimensional boundaries,a distinguishing feature that sets them apart from conventional topological phases and is attributed to the higher-order bulk-boundary correspondence.Two-dimensional(2D)twisted systems offer an optimal platform for investigating HOTPs,owing to their strong controllability and experimental feasibility.Here,we provide a comprehensive overview of the latest research advancements on HOTPs in 2D twisted multilayer systems.We will mainly review the HOTPs in electronic,magnonic,acoustic,photonic and mechanical twisted systems,and finally provide a perspective of this topic.展开更多
We investigate magnonic topology in the breathing Su–Schrieffer–Heeger(SSH) model, incorporating non-Hermitian effects. Our results demonstrate the coexistence of first-and second-order magnonic topologies, with non...We investigate magnonic topology in the breathing Su–Schrieffer–Heeger(SSH) model, incorporating non-Hermitian effects. Our results demonstrate the coexistence of first-and second-order magnonic topologies, with non-Hermitian effects exhibiting size-dependent behavior. In two-dimensional systems, non-Hermitian terms induce a flat band and gap closure along high-symmetry paths, whereas in one-dimensional systems, a finite band gap persists for small system sizes. Additionally, the corner states remain robust, and a pronounced non-Hermitian skin effect emerges. Our findings provide new insights into magnon-based devices, emphasizing the impact of non-Hermitian effects on their design and functionality.展开更多
A corner-pumped Nd:YAG/YAG composite slab continuous-wave laser operating at 1064 nm,1074 nm,1112 nm,1116 nm,and 1123 nm simultaneously and a laser that is tunable at these wavelengths are reported for the first time...A corner-pumped Nd:YAG/YAG composite slab continuous-wave laser operating at 1064 nm,1074 nm,1112 nm,1116 nm,and 1123 nm simultaneously and a laser that is tunable at these wavelengths are reported for the first time.The maximum output power of the five-wavelength laser is 5.66 W with an optical-to-optical conversion efficiency of 11.3%.After a birefringent filter is inserted in the cavity,the five wavelengths can be separated successfully by rotating the filter.The maximum output powers of the 1064 nm,1074 nm,1112 nm,1116 nm,and 1123 nm lasers are 1.51 W,1.3 W,1.27 W,0.86 W,and 0.72 W,respectively.展开更多
文摘We study the topological states(TSs)of all-dielectric honeycomb valley photonic crystals(VPCs).Breaking the space inversion symmetry of the honeycomb lattice by varying the filling ratio of materials for circular ring dielectric columns in the unit cell,which triggers topological phase transitions and thus achieves topological edge states(TESs)and topological corner states(TCSs).The results demonstrate that this structure has efficient photon transmission characteristics and anti-scattering robustness.In particular,we have found that changing the type of edge splicing between VPCs with different topological properties produces a change in the frequency of TCSs,and then based on this phenomenon,we have used a new method of adjusting only the type of edge splicing of the structure to design a novel TCSs combiner that can integrate four TCSs with different frequencies.This work not only expands the variety and number of unexplored TCSs that may exist in a fixed photonic band gap and can be rationalized to be selectively excited in the fixed configuration.Our study provides a feasible pathway for the design of integrated optical devices in which multiple TSs coexist in a single photonic system.
基金Project supported by the Suzhou Basic Research Project (Grant No.SJC2023003)Suzhou City University National Project Pre-research Project (Grant No.2023SGY014)。
文摘We present a stable valley photonic crystal(VPC)unit cell with C_(3v)symmetric quasi-ring-shaped dielectric columns and realize its topological phase transition by breaking mirror symmetry.Based on this unit cell structure,topological edge states(TESs)and topological corner states(TCSs)are realized.We obtain a new type of wave transmission mode based on photonic crystal zipper-like boundaries and apply it to a beam splitter assembled from rectangular photonic crystals(PCs).The constructed beam splitter structure is compact and possesses frequency separation functions.In addition,we construct a box-shaped triangular PC structures with zipper-like boundaries and discover phenomena of TCSs in the corners,comparing its corner states with those formed by other boundaries.Based on this,we explore the regularities of the electric field patterns of TESs and TCSs,explain the connection between the characteristic frequencies and locality of TCSs,which helps better control photons and ensures low power consumption of the system.
基金financially supported by the National Key R&D Program of China(Grant No.2022YFA1403200)the National Natural Science Foundation of China(Grant Nos.92265104,12022413,and 11674331)+5 种基金the Basic Research Program of the Chinese Academy of Sciences Based on Major Scientific Infrastructures(Grant No.JZHKYPT-2021-08)the CASHIPS Director’s Fund(Grant No.BJPY2023A09)the“Strategic Priority Research Program(B)”of the Chinese Academy of Sciences(Grant No.XDB33030100)Anhui Provincial Major S&T Project(Grant No.s202305a12020005)the Major Basic Program of Natural Science Foundation of Shandong Province(Grant No.ZR2021ZD01)the High Magnetic Field Laboratory of Anhui Province(Grant No.AHHM-FX-2020-02)。
文摘Intrinsic higher-order topological insulators driven solely by orbital coupling are rare in electronic materials.Here,we propose that monolayer LaBrO is an intrinsic two-dimensional second-order topological insulator.The generalized second-order topological phase arises from the coupling between the 5d orbital of the La atom and the 2p orbital of the O atom.The underlying physics can be thoroughly described by a four-band generalized higher-order topological model.Notably,the edge states and corner states of monolayer LaBrO exhibit different characteristics in terms of morphology,number,and location distribution under different boundary and nanocluster configurations.Furthermore,the higher-order topological corner states of monolayer LaBrO are robust against variations in spin-orbit coupling and different values of Hubbard U.This provides a material platform for studying intrinsic 2D second-order topological insulators.
基金Project supported by the National Natural Science Foundation of China (Grant Nos.62275271,12272407,and 62275269)the National Key Research and Development Program of China (Grant No.2022YFF0706005)+1 种基金the Natural Science Foundation of Hunan Province,China (Grant Nos.2023JJ40683,2022JJ40552,and 2020JJ5646)the Program for New Century Excellent Talents in University,China (Grant No.NCET-12-0142)。
文摘We explore the behaviors of optically coupled topological corner states in supercell arrays composed of photonic crystal rods,where each supercell is a second-order topological insulator.Our findings indicate that the coupled corner states possess nondegenerate eigenfrequencies at theΓpoint,with coupled dipole corner states excited resonantly by incident plane waves and displaying a polarization-independent characteristic.The resonance properties of coupled dipole corner states can be effectively modulated via evanescently near-field coupling,while multipole decomposition shows that they are primarily dominated by electric quadrupole moment and magnetic dipole moment.Furthermore,we demonstrate that these coupled corner states can form surface lattice resonances driven by diffractively far-field coupling,leading to a dramatic increase in the quality factor.This work introduces more optical approaches to tailoring photonic topological states,and holds potential applications in mid-infrared topological micro-nano devices.
文摘The immunity of topological states against backscattering and structural defects provides them with a unique advantage in the exploration and design of high-precision low-loss optical devices.However,the operating bandwidth of the topological states in certain photonic structures is difficult to actively tune and flexibly reconfigure.In this study,we propose a valley topological photonic crystal(TPC)comprising two inverse honeycomb photonic crystals,consisting of hexagonal silicon and Ge2Sb2Te5(GST)rods.When GST transitions from the amorphous phase to the crystalline phase,the edge band of the TPC appears as a significant redshift and is inversed from a“∪”to an“∩”shape with topological phase transition,which enables active tuning of the operating bandwidth and propagation direction of topological edge states.Both the topological edge and corner states in a triangular structure constructed using TPCs can be simultaneously adjusted and reconfigured via GST phase transition,along with a change in the group number of corner states.Using the adjustability of topological edge states and electromagnetic coupling between two different topological bearded interfaces,we develop a multichannel optical router with a high tuning degree of freedom,where channels can be actively reconfigured and their on/off states can be freely switched.Our study provides a strategy for the active regulation of topological states and may be beneficial for the development of reconfigurable topological optical devices.
基金This work was supported by the National Basic Research Program of China(2019YFA0308403)the National Natural Science Foundation of China(11534001,11822407 and 11874274)+2 种基金Natural Science Foundation of Jiangsu Province(BK20170058)a Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)We are grateful to H.M.Weng and H.W.Liu for helpful discussion.
文摘Based on the tight-binding calculations on honeycomb lattice and photonic experimental visualization on artificial graphene(AG), we report the domain-wall-induced gapped topological kink states and topological corner states. In honeycomb lattice, domain walls(DWs) with gapless topological kink states could be induced either by sublattice symmetry breaking or by lattice deformation. We find that the coexistence of these two mechanisms will induce DWs with gapped topological kink states. Significantly, the intersection of these two types of DWs gives rise to topological corner state localized at the crossing point.Through the manipulation of the DWs, we show AG with honeycomb lattice structure not only a versatile platform supporting multiple topological corner modes in a controlled manner, but also possessing promising applications such as fabricating topological quantum dots composed of gapped topological kink states and topological corner states.
基金supported by the Explore Research Project of the General Armament Department (No. NHA13002)the Fundamental Research Funds for the Central Universities (No.NP2016412)the National Natural Science Foundation of China(No.51505261)
文摘Mechanical elastic wheel(ME-wheel)is a new type of non-inflatable safety tyre,and the structure is significantly different from traditional pneumatic tyre.In order to investigate cornering properties of ME-wheel,experimental research on mechanics characteristics of ME-wheel under steady-state cornering conditions are carried out.The test of steady-state cornering properties of ME-wheel at different experimental parameter conditions is conducted by test bench for dynamic mechanical properties of tyre.Cornering property curves are used to analyze the steady-state cornering properties of ME-wheel,namely the variation tendency of lateral force or aligning torque with the increase of side-slip angle.Moreover,evaluation indexes for cornering properties of ME-wheel are extracted and the effect of different experimental parameters(including vertical load,friction coefficient,and speed)on cornering properties of ME-wheel is contrastively analyzed.The proposed research can provide certain reference to facilitate structure parameters and cornering properties optimizing process of ME-wheel.
基金supported by the National Natu-ral Science Foundation of China(Grants No.12174220 and No.12074217)the Shandong Provincial Science Foundation for Excellent Young Scholars(Grant No.ZR2023YQ001)+1 种基金the Taishan Young Scholar Program of Shandong Provincethe Qilu Young Scholar Pro-gram of Shandong University.
文摘Higher-order band topology not only enriches our understanding of topological phases but also unveils pioneering lower-dimensional boundary states,which harbors substantial potential for next-generation device applications.The distinct electronic configurations and tunable attributes of two-dimensional materials position them as a quintessential platform for the realization of second-order topological insulators(SOTIs).This article provides an overview of the research progress in SOTIs within the field of two-dimensional electronic materials,focusing on the characterization of higher-order topological properties and the numerous candidate materials proposed in theoretical studies.These endeavors not only enhance our understanding of higher-order topological states but also highlight potential material systems that could be experimentally realized.
基金supported by the Natural Science Basic Research Program of Shaanxi Province(No.2024JC-JCQN-06)the National Natural Science Foundation of China(Nos.12474337,12304370)Fundamental Research Funds for the Central Universities(No.xzy012024135).
文摘Topological insulators represent a new phase of matter,characterized by conductive surfaces,while their bulk remains insulating.When the dimension of the system exceeds that of the topological state by at least two,the insulators are classified as higher-order topological insulators(HOTI).The appearance of higher-order topological states,such as corner states,can be explained by the filling anomaly,which leads to the fractional spectral charges in the unit cell.Previously reported fractional charges have been quite limited in number and size.In this work,based on the two-dimensional(2D)Su-Schrieffer-Heeger model lattice,we demonstrated a new class of HOTIs with adjustable fractional charges that can take any value ranging from 0 to 1,achieved by utilizing the Lorentz transformation.Furthermore,this transformation generates novel bound-state-in-continuum-like corner states,even when the lattice is in a topological trivial phase,offering a new approach to light beam localization.This work paves the way for fabricating HOTIs with diverse corner states that offer promising applicative potential.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.12304539,12074108,12474151,12347101)the Natural Science Foundation of Chongqing(Grant No.CSTB2022NSCQ-MSX0568)Beijing National Laboratory for Condensed Matter Physics(Grant No.2024BNLCMPKF025)。
文摘In recent years,there has been a surge of interest in higher-order topological phases(HOTPs)across various disciplines within the field of physics.These unique phases are characterized by their ability to harbor topological protected boundary states at lower-dimensional boundaries,a distinguishing feature that sets them apart from conventional topological phases and is attributed to the higher-order bulk-boundary correspondence.Two-dimensional(2D)twisted systems offer an optimal platform for investigating HOTPs,owing to their strong controllability and experimental feasibility.Here,we provide a comprehensive overview of the latest research advancements on HOTPs in 2D twisted multilayer systems.We will mainly review the HOTPs in electronic,magnonic,acoustic,photonic and mechanical twisted systems,and finally provide a perspective of this topic.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 12347156, 12174157, 12074150, and 12174158)the National Key Research and Development Program of China (Grant No. 2022YFA1405200)+1 种基金the Natural Science Foundation of Jiangsu Province (Grant No. BK20230516)the Scientific Research Project of Jiangsu University (Grant No. 550171001)。
文摘We investigate magnonic topology in the breathing Su–Schrieffer–Heeger(SSH) model, incorporating non-Hermitian effects. Our results demonstrate the coexistence of first-and second-order magnonic topologies, with non-Hermitian effects exhibiting size-dependent behavior. In two-dimensional systems, non-Hermitian terms induce a flat band and gap closure along high-symmetry paths, whereas in one-dimensional systems, a finite band gap persists for small system sizes. Additionally, the corner states remain robust, and a pronounced non-Hermitian skin effect emerges. Our findings provide new insights into magnon-based devices, emphasizing the impact of non-Hermitian effects on their design and functionality.
基金Project supported by the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20110002120054)the National High Technology Research and Development Program of China (Grant No. 2011AA030208)
文摘A corner-pumped Nd:YAG/YAG composite slab continuous-wave laser operating at 1064 nm,1074 nm,1112 nm,1116 nm,and 1123 nm simultaneously and a laser that is tunable at these wavelengths are reported for the first time.The maximum output power of the five-wavelength laser is 5.66 W with an optical-to-optical conversion efficiency of 11.3%.After a birefringent filter is inserted in the cavity,the five wavelengths can be separated successfully by rotating the filter.The maximum output powers of the 1064 nm,1074 nm,1112 nm,1116 nm,and 1123 nm lasers are 1.51 W,1.3 W,1.27 W,0.86 W,and 0.72 W,respectively.