The distributed permutation flow shop scheduling problem(DPFSP)has received increasing attention in recent years.The iterated greedy algorithm(IGA)serves as a powerful optimizer for addressing such a problem because o...The distributed permutation flow shop scheduling problem(DPFSP)has received increasing attention in recent years.The iterated greedy algorithm(IGA)serves as a powerful optimizer for addressing such a problem because of its straightforward,single-solution evolution framework.However,a potential draw-back of IGA is the lack of utilization of historical information,which could lead to an imbalance between exploration and exploitation,especially in large-scale DPFSPs.As a consequence,this paper develops an IGA with memory and learning mechanisms(MLIGA)to efficiently solve the DPFSP targeted at the mini-malmakespan.InMLIGA,we incorporate a memory mechanism to make a more informed selection of the initial solution at each stage of the search,by extending,reconstructing,and reinforcing the information from previous solutions.In addition,we design a twolayer cooperative reinforcement learning approach to intelligently determine the key parameters of IGA and the operations of the memory mechanism.Meanwhile,to ensure that the experience generated by each perturbation operator is fully learned and to reduce the prior parameters of MLIGA,a probability curve-based acceptance criterion is proposed by combining a cube root function with custom rules.At last,a discrete adaptive learning rate is employed to enhance the stability of the memory and learningmechanisms.Complete ablation experiments are utilized to verify the effectiveness of the memory mechanism,and the results show that this mechanism is capable of improving the performance of IGA to a large extent.Furthermore,through comparative experiments involving MLIGA and five state-of-the-art algorithms on 720 benchmarks,we have discovered that MLI-GA demonstrates significant potential for solving large-scale DPFSPs.This indicates that MLIGA is well-suited for real-world distributed flow shop scheduling.展开更多
The Internet of Things(IoT)has emerged as an important future technology.IoT-Fog is a new computing paradigm that processes IoT data on servers close to the source of the data.In IoT-Fog computing,resource allocation ...The Internet of Things(IoT)has emerged as an important future technology.IoT-Fog is a new computing paradigm that processes IoT data on servers close to the source of the data.In IoT-Fog computing,resource allocation and independent task scheduling aim to deliver short response time services demanded by the IoT devices and performed by fog servers.The heterogeneity of the IoT-Fog resources and the huge amount of data that needs to be processed by the IoT-Fog tasks make scheduling fog computing tasks a challenging problem.This study proposes an Adaptive Firefly Algorithm(AFA)for dependent task scheduling in IoT-Fog computing.The proposed AFA is a modified version of the standard Firefly Algorithm(FA),considering the execution times of the submitted tasks,the impact of synchronization requirements,and the communication time between dependent tasks.As IoT-Fog computing depends mainly on distributed fog node servers that receive tasks in a dynamic manner,tackling the communications and synchronization issues between dependent tasks is becoming a challenging problem.The proposed AFA aims to address the dynamic nature of IoT-Fog computing environments.The proposed AFA mechanism considers a dynamic light absorption coefficient to control the decrease in attractiveness over iterations.The proposed AFA mechanism performance was benchmarked against the standard Firefly Algorithm(FA),Puma Optimizer(PO),Genetic Algorithm(GA),and Ant Colony Optimization(ACO)through simulations under light,typical,and heavy workload scenarios.In heavy workloads,the proposed AFA mechanism obtained the shortest average execution time,968.98 ms compared to 970.96,1352.87,1247.28,and 1773.62 of FA,PO,GA,and ACO,respectively.The simulation results demonstrate the proposed AFA’s ability to rapidly converge to optimal solutions,emphasizing its adaptability and efficiency in typical and heavy workloads.展开更多
Flexible job shop scheduling problems(FJSP)have received much attention from academia and industry for many years.Due to their exponential complexity,swarm intelligence(SI)and evolutionary algorithms(EA)are developed,...Flexible job shop scheduling problems(FJSP)have received much attention from academia and industry for many years.Due to their exponential complexity,swarm intelligence(SI)and evolutionary algorithms(EA)are developed,employed and improved for solving them.More than 60%of the publications are related to SI and EA.This paper intents to give a comprehensive literature review of SI and EA for solving FJSP.First,the mathematical model of FJSP is presented and the constraints in applications are summarized.Then,the encoding and decoding strategies for connecting the problem and algorithms are reviewed.The strategies for initializing algorithms?population and local search operators for improving convergence performance are summarized.Next,one classical hybrid genetic algorithm(GA)and one newest imperialist competitive algorithm(ICA)with variables neighborhood search(VNS)for solving FJSP are presented.Finally,we summarize,discus and analyze the status of SI and EA for solving FJSP and give insight into future research directions.展开更多
Metaheuristic algorithms are pivotal in cloud task scheduling. However, the complexity and uncertainty of the scheduling problem severely limit algorithms. To bypass this circumvent, numerous algorithms have been prop...Metaheuristic algorithms are pivotal in cloud task scheduling. However, the complexity and uncertainty of the scheduling problem severely limit algorithms. To bypass this circumvent, numerous algorithms have been proposed. The Hiking Optimization Algorithm (HOA) have been used in multiple fields. However, HOA suffers from local optimization, slow convergence, and low efficiency of late iteration search when solving cloud task scheduling problems. Thus, this paper proposes an improved HOA called CMOHOA. It collaborates with multi-strategy to improve HOA. Specifically, Chebyshev chaos is introduced to increase population diversity. Then, a hybrid speed update strategy is designed to enhance convergence speed. Meanwhile, an adversarial learning strategy is introduced to enhance the search capability in the late iteration. Different scenarios of scheduling problems are used to test the CMOHOA’s performance. First, CMOHOA was used to solve basic cloud computing task scheduling problems, and the results showed that it reduced the average total cost by 10% or more. Secondly, CMOHOA has been applied to edge fog cloud scheduling problems, and the results show that it reduces the average total scheduling cost by 2% or more. Finally, CMOHOA reduced the average total cost by 7% or more in scheduling problems for information transmission.展开更多
As a complicated optimization problem,parallel batch processing machines scheduling problem(PBPMSP)exists in many real-life manufacturing industries such as textiles and semiconductors.Machine eligibility means that a...As a complicated optimization problem,parallel batch processing machines scheduling problem(PBPMSP)exists in many real-life manufacturing industries such as textiles and semiconductors.Machine eligibility means that at least one machine is not eligible for at least one job.PBPMSP and scheduling problems with machine eligibility are frequently considered;however,PBPMSP with machine eligibility is seldom explored.This study investigates PBPMSP with machine eligibility in fabric dyeing and presents a novel shuffled frog-leaping algorithm with competition(CSFLA)to minimize makespan.In CSFLA,the initial population is produced in a heuristic and random way,and the competitive search of memeplexes comprises two phases.Competition between any two memeplexes is done in the first phase,then iteration times are adjusted based on competition,and search strategies are adjusted adaptively based on the evolution quality of memeplexes in the second phase.An adaptive population shuffling is given.Computational experiments are conducted on 100 instances.The computational results showed that the new strategies of CSFLA are effective and that CSFLA has promising advantages in solving the considered PBPMSP.展开更多
A well-designed production schedule for cold rolling can enhance steel enterprises'operational efficiency and profitability.Nevertheless,the intricate constraints and numerous steps involved in cold rolling pose c...A well-designed production schedule for cold rolling can enhance steel enterprises'operational efficiency and profitability.Nevertheless,the intricate constraints and numerous steps involved in cold rolling pose challenges to devising a rational scheduling plan.Therefore,considering the practical production constraints,this paper investigates a cold rolling scheduling problem for processing jobs with specific due dates and batch attributions on parallel heterogeneous machines with continuous production requirements.Firstly,the scheduling problem is formulated as a mixed integer linear program(MILP)model with an economic objective.Then,a modified genetic algorithm(GA)is proposed to search for the optimal solution to the MILP problem.Specifically,this method includes a heuristic initialization mechanism to generate feasible initial solutions,three heuristic mutation operators to generate promising candidate solutions,and a parallel computing mechanism to accelerate the evaluation process of the GA.The simulation results demonstrate that the proposed method can be effectively implemented to generate optimized scheduling schemes in the cold rolling process.展开更多
The widespread adoption of cloud computing has underscored the critical importance of efficient resource allocation and management, particularly in task scheduling, which involves assigning tasks to computing resource...The widespread adoption of cloud computing has underscored the critical importance of efficient resource allocation and management, particularly in task scheduling, which involves assigning tasks to computing resources for optimized resource utilization. Several meta-heuristic algorithms have shown effectiveness in task scheduling, among which the relatively recent Willow Catkin Optimization (WCO) algorithm has demonstrated potential, albeit with apparent needs for enhanced global search capability and convergence speed. To address these limitations of WCO in cloud computing task scheduling, this paper introduces an improved version termed the Advanced Willow Catkin Optimization (AWCO) algorithm. AWCO enhances the algorithm’s performance by augmenting its global search capability through a quasi-opposition-based learning strategy and accelerating its convergence speed via sinusoidal mapping. A comprehensive evaluation utilizing the CEC2014 benchmark suite, comprising 30 test functions, demonstrates that AWCO achieves superior optimization outcomes, surpassing conventional WCO and a range of established meta-heuristics. The proposed algorithm also considers trade-offs among the cost, makespan, and load balancing objectives. Experimental results of AWCO are compared with those obtained using the other meta-heuristics, illustrating that the proposed algorithm provides superior performance in task scheduling. The method offers a robust foundation for enhancing the utilization of cloud computing resources in the domain of task scheduling within a cloud computing environment.展开更多
The shop scheduling problem with limited buffers has broad applications in real-world production scenarios,so this research direction is of great practical significance.However,there is currently little research on th...The shop scheduling problem with limited buffers has broad applications in real-world production scenarios,so this research direction is of great practical significance.However,there is currently little research on the hybrid flow shop scheduling problem with limited buffers(LBHFSP).This paper deeply investigates the LBHFSP to optimize the goal of the total completion time.To better solve the LBHFSP,a multi-level subpopulation-based particle swarm optimization algorithm(MLPSO)is proposed,which is founded on the attributes of the LBHFSP and the shortcomings of the basic PSO(particle swarm optimization)algorithm.In MLPSO,firstly,considering the impact of the limited buffers on the process of subsequent operations,a specific circular decoding strategy is developed to accommodate the characteristics of limited buffers.Secondly,an initialization strategy based on blocking time is designed to enhance the quality and diversity of the initial population.Afterward,a multi-level subpopulation collaborative search is developed to prevent being trapped in a local optimum and improve the global exploration capability.Additionally,a local search strategy based on the first blocked job is designed to enhance the MLPSO algorithm’s exploitation capability.Lastly,numerous experiments are carried out to test the performance of the proposed MLPSO by comparing it with classical intelligent optimization and popular algorithms in recent years.The results confirm that the proposed MLPSO has an outstanding performance when compared to other algorithms when solving LBHFSP.展开更多
With the development of economic globalization,distributedmanufacturing is becomingmore andmore prevalent.Recently,integrated scheduling of distributed production and assembly has captured much concern.This research s...With the development of economic globalization,distributedmanufacturing is becomingmore andmore prevalent.Recently,integrated scheduling of distributed production and assembly has captured much concern.This research studies a distributed flexible job shop scheduling problem with assembly operations.Firstly,a mixed integer programming model is formulated to minimize the maximum completion time.Secondly,a Q-learning-assisted coevolutionary algorithmis presented to solve themodel:(1)Multiple populations are developed to seek required decisions simultaneously;(2)An encoding and decoding method based on problem features is applied to represent individuals;(3)A hybrid approach of heuristic rules and random methods is employed to acquire a high-quality population;(4)Three evolutionary strategies having crossover and mutation methods are adopted to enhance exploration capabilities;(5)Three neighborhood structures based on problem features are constructed,and a Q-learning-based iterative local search method is devised to improve exploitation abilities.The Q-learning approach is applied to intelligently select better neighborhood structures.Finally,a group of instances is constructed to perform comparison experiments.The effectiveness of the Q-learning approach is verified by comparing the developed algorithm with its variant without the Q-learning method.Three renowned meta-heuristic algorithms are used in comparison with the developed algorithm.The comparison results demonstrate that the designed method exhibits better performance in coping with the formulated problem.展开更多
Energy storage power plants are critical in balancing power supply and demand.However,the scheduling of these plants faces significant challenges,including high network transmission costs and inefficient inter-device ...Energy storage power plants are critical in balancing power supply and demand.However,the scheduling of these plants faces significant challenges,including high network transmission costs and inefficient inter-device energy utilization.To tackle these challenges,this study proposes an optimal scheduling model for energy storage power plants based on edge computing and the improved whale optimization algorithm(IWOA).The proposed model designs an edge computing framework,transferring a large share of data processing and storage tasks to the network edge.This architecture effectively reduces transmission costs by minimizing data travel time.In addition,the model considers demand response strategies and builds an objective function based on the minimization of the sum of electricity purchase cost and operation cost.The IWOA enhances the optimization process by utilizing adaptive weight adjustments and an optimal neighborhood perturbation strategy,preventing the algorithm from converging to suboptimal solutions.Experimental results demonstrate that the proposed scheduling model maximizes the flexibility of the energy storage plant,facilitating efficient charging and discharging.It successfully achieves peak shaving and valley filling for both electrical and heat loads,promoting the effective utilization of renewable energy sources.The edge-computing framework significantly reduces transmission delays between energy devices.Furthermore,IWOA outperforms traditional algorithms in optimizing the objective function.展开更多
Fabric dyeing is a critical production process in the clothing industry and heavily relies on batch processing machines(BPM).In this study,the parallel BPM scheduling problem with machine eligibility in fabric dyeing ...Fabric dyeing is a critical production process in the clothing industry and heavily relies on batch processing machines(BPM).In this study,the parallel BPM scheduling problem with machine eligibility in fabric dyeing is considered,and an adaptive cooperated shuffled frog-leaping algorithm(ACSFLA)is proposed to minimize makespan and total tardiness simultaneously.ACSFLA determines the search times for each memeplex based on its quality,with more searches in high-quality memeplexes.An adaptive cooperated and diversified search mechanism is applied,dynamically adjusting search strategies for each memeplex based on their dominance relationships and quality.During the cooperated search,ACSFLA uses a segmented and dynamic targeted search approach,while in non-cooperated scenarios,the search focuses on local search around superior solutions to improve efficiency.Furthermore,ACSFLA employs adaptive population division and partial population shuffling strategies.Through these strategies,memeplexes with low evolutionary potential are selected for reconstruction in the next generation,while thosewithhighevolutionarypotential are retained to continue their evolution.Toevaluate the performance of ACSFLA,comparative experiments were conducted using ACSFLA,SFLA,ASFLA,MOABC,and NSGA-CC in 90 instances.The computational results reveal that ACSFLA outperforms the other algorithms in 78 of the 90 test cases,highlighting its advantages in solving the parallel BPM scheduling problem with machine eligibility.展开更多
To improve the traffic scheduling capability in operator data center networks,an analysis prediction and online scheduling mechanism(APOS)is designed,considering both the network structure and the network traffic in t...To improve the traffic scheduling capability in operator data center networks,an analysis prediction and online scheduling mechanism(APOS)is designed,considering both the network structure and the network traffic in the operator data center.Fibonacci tree optimization algorithm(FTO)is embedded into the analysis prediction and the online scheduling stages,the FTO traffic scheduling strategy is proposed.By taking the global optimal and the multi-modal optimization advantage of FTO,the traffic scheduling optimal solution and many suboptimal solutions can be obtained.The experiment results show that the FTO traffic scheduling strategy can schedule traffic in data center networks reasonably,and improve the load balancing in the operator data center network effectively.展开更多
This work is aimed at investigating the online scheduling problem on two parallel and identical machines with a new feature that service requests from various customers are entitled to many different grade of service ...This work is aimed at investigating the online scheduling problem on two parallel and identical machines with a new feature that service requests from various customers are entitled to many different grade of service (GoS) levels, so each job and machine are labelled with the GoS levels, and each job can be processed by a particular machine only when its GoS level is no less than that of the machine. The goal is to minimize the makespan. For non-preemptive version, we propose an optimal online al-gorithm with competitive ratio 5/3. For preemptive version, we propose an optimal online algorithm with competitive ratio 3/2.展开更多
The classical job shop scheduling problem(JSP) is the most popular machine scheduling model in practice and is known as NP-hard.The formulation of the JSP is based on the assumption that for each part type or job ther...The classical job shop scheduling problem(JSP) is the most popular machine scheduling model in practice and is known as NP-hard.The formulation of the JSP is based on the assumption that for each part type or job there is only one process plan that prescribes the sequence of operations and the machine on which each operation has to be performed.However,JSP with alternative machines for various operations is an extension of the classical JSP,which allows an operation to be processed by any machine from a given set of machines.Since this problem requires an additional decision of machine allocation during scheduling,it is much more complex than JSP.We present a domain independent genetic algorithm(GA) approach for the job shop scheduling problem with alternative machines.The GA is implemented in a spreadsheet environment.The performance of the proposed GA is analyzed by comparing with various problem instances taken from the literatures.The result shows that the proposed GA is competitive with the existing approaches.A simplified approach that would be beneficial to both practitioners and researchers is presented for solving scheduling problems with alternative machines.展开更多
The problem of simultaneous scheduling of machines and vehicles in flexible manufacturing system (FMS) was addressed.A spreadsheet based genetic algorithm (GA) approach was presented to solve the problem.A domain inde...The problem of simultaneous scheduling of machines and vehicles in flexible manufacturing system (FMS) was addressed.A spreadsheet based genetic algorithm (GA) approach was presented to solve the problem.A domain independent general purpose GA was used,which was an add-in to the spreadsheet software.An adaptation of the propritary GA software was demonstrated to the problem of minimizing the total completion time or makespan for simultaneous scheduling of machines and vehicles in flexible manufacturing systems.Computational results are presented for a benchmark with 82 test problems,which have been constructed by other researchers.The achieved results are comparable to the previous approaches.The proposed approach can be also applied to other problems or objective functions without changing the GA routine or the spreadsheet model.展开更多
In the classical multiprocessor scheduling problems, it is assumed that the problems are considered in off\|line or on\|line environment. But in practice, problems are often not really off\|line or on\|line but someh...In the classical multiprocessor scheduling problems, it is assumed that the problems are considered in off\|line or on\|line environment. But in practice, problems are often not really off\|line or on\|line but somehow in between. This means that, with respect to the on\|line problem, some further information about the tasks is available, which allows the improvement of the performance of the best possible algorithms. Problems of this class are called semi on\|line ones. The authors studied two semi on\|line multiprocessor scheduling problems, in which, the total processing time of all tasks is known in advance, or all processing times lie in a given interval. They proposed approximation algorithms for minimizing the makespan and analyzed their performance guarantee. The algorithms improve the known results for 3 or more processor cases in the literature.展开更多
The high-performance computing paradigm needs high-speed switching fabrics to meet the heavy traffic generated by their applications.These switching fabrics are efficiently driven by the deployed scheduling algorithms...The high-performance computing paradigm needs high-speed switching fabrics to meet the heavy traffic generated by their applications.These switching fabrics are efficiently driven by the deployed scheduling algorithms.In this paper,we proposed two scheduling algorithms for input queued switches whose operations are based on ranking procedures.At first,we proposed a Simple 2-Bit(S2B)scheme which uses binary ranking procedure and queue size for scheduling the packets.Here,the Virtual Output Queue(VOQ)set with maximum number of empty queues receives higher rank than other VOQ’s.Through simulation,we showed S2B has better throughput performance than Highest Ranking First(HRF)arbitration under uniform,and non-uniform traffic patterns.To further improve the throughput-delay performance,an Enhanced 2-Bit(E2B)approach is proposed.This approach adopts an integer representation for rank,which is the number of empty queues in a VOQ set.The simulation result shows E2B outperforms S2B and HRF scheduling algorithms with maximum throughput-delay performance.Furthermore,the algorithms are simulated under hotspot traffic and E2B proves to be more efficient.展开更多
Task scheduling is the main problem in cloud computing that reduces system performance;it is an important way to arrange user needs and perform multiple goals.Cloud computing is the most popular technology nowadays an...Task scheduling is the main problem in cloud computing that reduces system performance;it is an important way to arrange user needs and perform multiple goals.Cloud computing is the most popular technology nowadays and has many research potential in various areas like resource allocation,task scheduling,security,privacy,etc.To improve system performance,an efficient task-scheduling algorithm is required.Existing task-scheduling algorithms focus on task-resource requirements,CPU memory,execution time,and execution cost.In this paper,a task scheduling algorithm based on a Genetic Algorithm(GA)has been presented for assigning and executing different tasks.The proposed algorithm aims to minimize both the completion time and execution cost of tasks and maximize resource utilization.We evaluate our algorithm’s performance by applying it to two examples with a different number of tasks and processors.The first example contains ten tasks and four processors;the computation costs are generated randomly.The last example has eight processors,and the number of tasks ranges from twenty to seventy;the computation cost of each task on different processors is generated randomly.The achieved results show that the proposed approach significantly succeeded in finding the optimal solutions for the three objectives;completion time,execution cost,and resource utilization.展开更多
A class of nonidentical parallel machine scheduling problems are considered in which the goal is to minimize the total weighted completion time. Models and relaxations are collected. Most of these problems are NP-hard...A class of nonidentical parallel machine scheduling problems are considered in which the goal is to minimize the total weighted completion time. Models and relaxations are collected. Most of these problems are NP-hard, in the strong sense, or open problems, therefore approximation algorithms are studied. The review reveals that there exist some potential areas worthy of further research.展开更多
One of the surface mining methods is open-pit mining,by which a pit is dug to extract ore or waste downwards from the earth’s surface.In the mining industry,one of the most significant difficulties is long-term produ...One of the surface mining methods is open-pit mining,by which a pit is dug to extract ore or waste downwards from the earth’s surface.In the mining industry,one of the most significant difficulties is long-term production scheduling(LTPS)of the open-pit mines.Deterministic and uncertainty-based approaches are identified as the main strategies,which have been widely used to cope with this problem.Within the last few years,many researchers have highly considered a new computational type,which is less costly,i.e.,meta-heuristic methods,so as to solve the mine design and production scheduling problem.Although the optimality of the final solution cannot be guaranteed,they are able to produce sufficiently good solutions with relatively less computational costs.In the present paper,two hybrid models between augmented Lagrangian relaxation(ALR)and a particle swarm optimization(PSO)and ALR and bat algorithm(BA)are suggested so that the LTPS problem is solved under the condition of grade uncertainty.It is suggested to carry out the ALR method on the LTPS problem to improve its performance and accelerate the convergence.Moreover,the Lagrangian coefficients are updated by using PSO and BA.The presented models have been compared with the outcomes of the ALR-genetic algorithm,the ALR-traditional sub-gradient method,and the conventional method without using the Lagrangian approach.The results indicated that the ALR is considered a more efficient approach which can solve a large-scale problem and make a valid solution.Hence,it is more effectual than the conventional method.Furthermore,the time and cost of computation are diminished by the proposed hybrid strategies.The CPU time using the ALR-BA method is about 7.4%higher than the ALR-PSO approach.展开更多
基金supported in part by the National Key Research and Development Program of China under Grant No.2021YFF0901300in part by the National Natural Science Foundation of China under Grant Nos.62173076 and 72271048.
文摘The distributed permutation flow shop scheduling problem(DPFSP)has received increasing attention in recent years.The iterated greedy algorithm(IGA)serves as a powerful optimizer for addressing such a problem because of its straightforward,single-solution evolution framework.However,a potential draw-back of IGA is the lack of utilization of historical information,which could lead to an imbalance between exploration and exploitation,especially in large-scale DPFSPs.As a consequence,this paper develops an IGA with memory and learning mechanisms(MLIGA)to efficiently solve the DPFSP targeted at the mini-malmakespan.InMLIGA,we incorporate a memory mechanism to make a more informed selection of the initial solution at each stage of the search,by extending,reconstructing,and reinforcing the information from previous solutions.In addition,we design a twolayer cooperative reinforcement learning approach to intelligently determine the key parameters of IGA and the operations of the memory mechanism.Meanwhile,to ensure that the experience generated by each perturbation operator is fully learned and to reduce the prior parameters of MLIGA,a probability curve-based acceptance criterion is proposed by combining a cube root function with custom rules.At last,a discrete adaptive learning rate is employed to enhance the stability of the memory and learningmechanisms.Complete ablation experiments are utilized to verify the effectiveness of the memory mechanism,and the results show that this mechanism is capable of improving the performance of IGA to a large extent.Furthermore,through comparative experiments involving MLIGA and five state-of-the-art algorithms on 720 benchmarks,we have discovered that MLI-GA demonstrates significant potential for solving large-scale DPFSPs.This indicates that MLIGA is well-suited for real-world distributed flow shop scheduling.
基金the Deanship of Graduate Studies and Scientific Research at Najran University for funding this work under the Easy Funding Program grant code(NU/EFP/SERC/13/166).
文摘The Internet of Things(IoT)has emerged as an important future technology.IoT-Fog is a new computing paradigm that processes IoT data on servers close to the source of the data.In IoT-Fog computing,resource allocation and independent task scheduling aim to deliver short response time services demanded by the IoT devices and performed by fog servers.The heterogeneity of the IoT-Fog resources and the huge amount of data that needs to be processed by the IoT-Fog tasks make scheduling fog computing tasks a challenging problem.This study proposes an Adaptive Firefly Algorithm(AFA)for dependent task scheduling in IoT-Fog computing.The proposed AFA is a modified version of the standard Firefly Algorithm(FA),considering the execution times of the submitted tasks,the impact of synchronization requirements,and the communication time between dependent tasks.As IoT-Fog computing depends mainly on distributed fog node servers that receive tasks in a dynamic manner,tackling the communications and synchronization issues between dependent tasks is becoming a challenging problem.The proposed AFA aims to address the dynamic nature of IoT-Fog computing environments.The proposed AFA mechanism considers a dynamic light absorption coefficient to control the decrease in attractiveness over iterations.The proposed AFA mechanism performance was benchmarked against the standard Firefly Algorithm(FA),Puma Optimizer(PO),Genetic Algorithm(GA),and Ant Colony Optimization(ACO)through simulations under light,typical,and heavy workload scenarios.In heavy workloads,the proposed AFA mechanism obtained the shortest average execution time,968.98 ms compared to 970.96,1352.87,1247.28,and 1773.62 of FA,PO,GA,and ACO,respectively.The simulation results demonstrate the proposed AFA’s ability to rapidly converge to optimal solutions,emphasizing its adaptability and efficiency in typical and heavy workloads.
基金supported in part by the National Natural Science Foundation of China(61603169,61773192,61803192)in part by the funding from Shandong Provincial Key Laboratory for Novel Distributed Computer Software Technologyin part by Singapore National Research Foundation(NRF-RSS2016-004)
文摘Flexible job shop scheduling problems(FJSP)have received much attention from academia and industry for many years.Due to their exponential complexity,swarm intelligence(SI)and evolutionary algorithms(EA)are developed,employed and improved for solving them.More than 60%of the publications are related to SI and EA.This paper intents to give a comprehensive literature review of SI and EA for solving FJSP.First,the mathematical model of FJSP is presented and the constraints in applications are summarized.Then,the encoding and decoding strategies for connecting the problem and algorithms are reviewed.The strategies for initializing algorithms?population and local search operators for improving convergence performance are summarized.Next,one classical hybrid genetic algorithm(GA)and one newest imperialist competitive algorithm(ICA)with variables neighborhood search(VNS)for solving FJSP are presented.Finally,we summarize,discus and analyze the status of SI and EA for solving FJSP and give insight into future research directions.
基金supported by the National Natural Science Foundation of China (52275480)the Guizhou Provincial Science and Technology Program of Qiankehe Zhongdi Guiding ([2023]02)+1 种基金the Guizhou Provincial Science and Technology Program of Qiankehe Platform Talent Project (GCC[2023]001)the Guizhou Provincial Science and Technology Project of Qiankehe Platform Project (KXJZ[2024]002).
文摘Metaheuristic algorithms are pivotal in cloud task scheduling. However, the complexity and uncertainty of the scheduling problem severely limit algorithms. To bypass this circumvent, numerous algorithms have been proposed. The Hiking Optimization Algorithm (HOA) have been used in multiple fields. However, HOA suffers from local optimization, slow convergence, and low efficiency of late iteration search when solving cloud task scheduling problems. Thus, this paper proposes an improved HOA called CMOHOA. It collaborates with multi-strategy to improve HOA. Specifically, Chebyshev chaos is introduced to increase population diversity. Then, a hybrid speed update strategy is designed to enhance convergence speed. Meanwhile, an adversarial learning strategy is introduced to enhance the search capability in the late iteration. Different scenarios of scheduling problems are used to test the CMOHOA’s performance. First, CMOHOA was used to solve basic cloud computing task scheduling problems, and the results showed that it reduced the average total cost by 10% or more. Secondly, CMOHOA has been applied to edge fog cloud scheduling problems, and the results show that it reduces the average total scheduling cost by 2% or more. Finally, CMOHOA reduced the average total cost by 7% or more in scheduling problems for information transmission.
基金supported by the National Natural Science Foundation of China(Grant Number 61573264).
文摘As a complicated optimization problem,parallel batch processing machines scheduling problem(PBPMSP)exists in many real-life manufacturing industries such as textiles and semiconductors.Machine eligibility means that at least one machine is not eligible for at least one job.PBPMSP and scheduling problems with machine eligibility are frequently considered;however,PBPMSP with machine eligibility is seldom explored.This study investigates PBPMSP with machine eligibility in fabric dyeing and presents a novel shuffled frog-leaping algorithm with competition(CSFLA)to minimize makespan.In CSFLA,the initial population is produced in a heuristic and random way,and the competitive search of memeplexes comprises two phases.Competition between any two memeplexes is done in the first phase,then iteration times are adjusted based on competition,and search strategies are adjusted adaptively based on the evolution quality of memeplexes in the second phase.An adaptive population shuffling is given.Computational experiments are conducted on 100 instances.The computational results showed that the new strategies of CSFLA are effective and that CSFLA has promising advantages in solving the considered PBPMSP.
基金Supported by National Natural Science Foundation of China(Grant No.62273362)National Key Research and Development Program of China(Grant No.2024YFB3312100)。
文摘A well-designed production schedule for cold rolling can enhance steel enterprises'operational efficiency and profitability.Nevertheless,the intricate constraints and numerous steps involved in cold rolling pose challenges to devising a rational scheduling plan.Therefore,considering the practical production constraints,this paper investigates a cold rolling scheduling problem for processing jobs with specific due dates and batch attributions on parallel heterogeneous machines with continuous production requirements.Firstly,the scheduling problem is formulated as a mixed integer linear program(MILP)model with an economic objective.Then,a modified genetic algorithm(GA)is proposed to search for the optimal solution to the MILP problem.Specifically,this method includes a heuristic initialization mechanism to generate feasible initial solutions,three heuristic mutation operators to generate promising candidate solutions,and a parallel computing mechanism to accelerate the evaluation process of the GA.The simulation results demonstrate that the proposed method can be effectively implemented to generate optimized scheduling schemes in the cold rolling process.
文摘The widespread adoption of cloud computing has underscored the critical importance of efficient resource allocation and management, particularly in task scheduling, which involves assigning tasks to computing resources for optimized resource utilization. Several meta-heuristic algorithms have shown effectiveness in task scheduling, among which the relatively recent Willow Catkin Optimization (WCO) algorithm has demonstrated potential, albeit with apparent needs for enhanced global search capability and convergence speed. To address these limitations of WCO in cloud computing task scheduling, this paper introduces an improved version termed the Advanced Willow Catkin Optimization (AWCO) algorithm. AWCO enhances the algorithm’s performance by augmenting its global search capability through a quasi-opposition-based learning strategy and accelerating its convergence speed via sinusoidal mapping. A comprehensive evaluation utilizing the CEC2014 benchmark suite, comprising 30 test functions, demonstrates that AWCO achieves superior optimization outcomes, surpassing conventional WCO and a range of established meta-heuristics. The proposed algorithm also considers trade-offs among the cost, makespan, and load balancing objectives. Experimental results of AWCO are compared with those obtained using the other meta-heuristics, illustrating that the proposed algorithm provides superior performance in task scheduling. The method offers a robust foundation for enhancing the utilization of cloud computing resources in the domain of task scheduling within a cloud computing environment.
基金supported in part by the National Natural Science Foundation of China under Grant No.52175490.
文摘The shop scheduling problem with limited buffers has broad applications in real-world production scenarios,so this research direction is of great practical significance.However,there is currently little research on the hybrid flow shop scheduling problem with limited buffers(LBHFSP).This paper deeply investigates the LBHFSP to optimize the goal of the total completion time.To better solve the LBHFSP,a multi-level subpopulation-based particle swarm optimization algorithm(MLPSO)is proposed,which is founded on the attributes of the LBHFSP and the shortcomings of the basic PSO(particle swarm optimization)algorithm.In MLPSO,firstly,considering the impact of the limited buffers on the process of subsequent operations,a specific circular decoding strategy is developed to accommodate the characteristics of limited buffers.Secondly,an initialization strategy based on blocking time is designed to enhance the quality and diversity of the initial population.Afterward,a multi-level subpopulation collaborative search is developed to prevent being trapped in a local optimum and improve the global exploration capability.Additionally,a local search strategy based on the first blocked job is designed to enhance the MLPSO algorithm’s exploitation capability.Lastly,numerous experiments are carried out to test the performance of the proposed MLPSO by comparing it with classical intelligent optimization and popular algorithms in recent years.The results confirm that the proposed MLPSO has an outstanding performance when compared to other algorithms when solving LBHFSP.
文摘With the development of economic globalization,distributedmanufacturing is becomingmore andmore prevalent.Recently,integrated scheduling of distributed production and assembly has captured much concern.This research studies a distributed flexible job shop scheduling problem with assembly operations.Firstly,a mixed integer programming model is formulated to minimize the maximum completion time.Secondly,a Q-learning-assisted coevolutionary algorithmis presented to solve themodel:(1)Multiple populations are developed to seek required decisions simultaneously;(2)An encoding and decoding method based on problem features is applied to represent individuals;(3)A hybrid approach of heuristic rules and random methods is employed to acquire a high-quality population;(4)Three evolutionary strategies having crossover and mutation methods are adopted to enhance exploration capabilities;(5)Three neighborhood structures based on problem features are constructed,and a Q-learning-based iterative local search method is devised to improve exploitation abilities.The Q-learning approach is applied to intelligently select better neighborhood structures.Finally,a group of instances is constructed to perform comparison experiments.The effectiveness of the Q-learning approach is verified by comparing the developed algorithm with its variant without the Q-learning method.Three renowned meta-heuristic algorithms are used in comparison with the developed algorithm.The comparison results demonstrate that the designed method exhibits better performance in coping with the formulated problem.
基金supported by the Changzhou Science and Technology Support Project(CE20235045)Open Subject of Jiangsu Province Key Laboratory of Power Transmission and Distribution(2021JSSPD12)+1 种基金Talent Projects of Jiangsu University of Technology(KYY20018)Postgraduate Research&Practice Innovation Program of Jiangsu Province(SJCX23_1633).
文摘Energy storage power plants are critical in balancing power supply and demand.However,the scheduling of these plants faces significant challenges,including high network transmission costs and inefficient inter-device energy utilization.To tackle these challenges,this study proposes an optimal scheduling model for energy storage power plants based on edge computing and the improved whale optimization algorithm(IWOA).The proposed model designs an edge computing framework,transferring a large share of data processing and storage tasks to the network edge.This architecture effectively reduces transmission costs by minimizing data travel time.In addition,the model considers demand response strategies and builds an objective function based on the minimization of the sum of electricity purchase cost and operation cost.The IWOA enhances the optimization process by utilizing adaptive weight adjustments and an optimal neighborhood perturbation strategy,preventing the algorithm from converging to suboptimal solutions.Experimental results demonstrate that the proposed scheduling model maximizes the flexibility of the energy storage plant,facilitating efficient charging and discharging.It successfully achieves peak shaving and valley filling for both electrical and heat loads,promoting the effective utilization of renewable energy sources.The edge-computing framework significantly reduces transmission delays between energy devices.Furthermore,IWOA outperforms traditional algorithms in optimizing the objective function.
文摘Fabric dyeing is a critical production process in the clothing industry and heavily relies on batch processing machines(BPM).In this study,the parallel BPM scheduling problem with machine eligibility in fabric dyeing is considered,and an adaptive cooperated shuffled frog-leaping algorithm(ACSFLA)is proposed to minimize makespan and total tardiness simultaneously.ACSFLA determines the search times for each memeplex based on its quality,with more searches in high-quality memeplexes.An adaptive cooperated and diversified search mechanism is applied,dynamically adjusting search strategies for each memeplex based on their dominance relationships and quality.During the cooperated search,ACSFLA uses a segmented and dynamic targeted search approach,while in non-cooperated scenarios,the search focuses on local search around superior solutions to improve efficiency.Furthermore,ACSFLA employs adaptive population division and partial population shuffling strategies.Through these strategies,memeplexes with low evolutionary potential are selected for reconstruction in the next generation,while thosewithhighevolutionarypotential are retained to continue their evolution.Toevaluate the performance of ACSFLA,comparative experiments were conducted using ACSFLA,SFLA,ASFLA,MOABC,and NSGA-CC in 90 instances.The computational results reveal that ACSFLA outperforms the other algorithms in 78 of the 90 test cases,highlighting its advantages in solving the parallel BPM scheduling problem with machine eligibility.
基金supported by National Natural Science Foundation of China(No.62163036).
文摘To improve the traffic scheduling capability in operator data center networks,an analysis prediction and online scheduling mechanism(APOS)is designed,considering both the network structure and the network traffic in the operator data center.Fibonacci tree optimization algorithm(FTO)is embedded into the analysis prediction and the online scheduling stages,the FTO traffic scheduling strategy is proposed.By taking the global optimal and the multi-modal optimization advantage of FTO,the traffic scheduling optimal solution and many suboptimal solutions can be obtained.The experiment results show that the FTO traffic scheduling strategy can schedule traffic in data center networks reasonably,and improve the load balancing in the operator data center network effectively.
基金Project supported by the National Natural Science Foundation of China (No. 10271110) and the Teaching and Research Award Pro-gram for Outstanding Young Teachers in Higher Education, Institu-tions of MOE, China
文摘This work is aimed at investigating the online scheduling problem on two parallel and identical machines with a new feature that service requests from various customers are entitled to many different grade of service (GoS) levels, so each job and machine are labelled with the GoS levels, and each job can be processed by a particular machine only when its GoS level is no less than that of the machine. The goal is to minimize the makespan. For non-preemptive version, we propose an optimal online al-gorithm with competitive ratio 5/3. For preemptive version, we propose an optimal online algorithm with competitive ratio 3/2.
文摘The classical job shop scheduling problem(JSP) is the most popular machine scheduling model in practice and is known as NP-hard.The formulation of the JSP is based on the assumption that for each part type or job there is only one process plan that prescribes the sequence of operations and the machine on which each operation has to be performed.However,JSP with alternative machines for various operations is an extension of the classical JSP,which allows an operation to be processed by any machine from a given set of machines.Since this problem requires an additional decision of machine allocation during scheduling,it is much more complex than JSP.We present a domain independent genetic algorithm(GA) approach for the job shop scheduling problem with alternative machines.The GA is implemented in a spreadsheet environment.The performance of the proposed GA is analyzed by comparing with various problem instances taken from the literatures.The result shows that the proposed GA is competitive with the existing approaches.A simplified approach that would be beneficial to both practitioners and researchers is presented for solving scheduling problems with alternative machines.
文摘The problem of simultaneous scheduling of machines and vehicles in flexible manufacturing system (FMS) was addressed.A spreadsheet based genetic algorithm (GA) approach was presented to solve the problem.A domain independent general purpose GA was used,which was an add-in to the spreadsheet software.An adaptation of the propritary GA software was demonstrated to the problem of minimizing the total completion time or makespan for simultaneous scheduling of machines and vehicles in flexible manufacturing systems.Computational results are presented for a benchmark with 82 test problems,which have been constructed by other researchers.The achieved results are comparable to the previous approaches.The proposed approach can be also applied to other problems or objective functions without changing the GA routine or the spreadsheet model.
文摘In the classical multiprocessor scheduling problems, it is assumed that the problems are considered in off\|line or on\|line environment. But in practice, problems are often not really off\|line or on\|line but somehow in between. This means that, with respect to the on\|line problem, some further information about the tasks is available, which allows the improvement of the performance of the best possible algorithms. Problems of this class are called semi on\|line ones. The authors studied two semi on\|line multiprocessor scheduling problems, in which, the total processing time of all tasks is known in advance, or all processing times lie in a given interval. They proposed approximation algorithms for minimizing the makespan and analyzed their performance guarantee. The algorithms improve the known results for 3 or more processor cases in the literature.
文摘The high-performance computing paradigm needs high-speed switching fabrics to meet the heavy traffic generated by their applications.These switching fabrics are efficiently driven by the deployed scheduling algorithms.In this paper,we proposed two scheduling algorithms for input queued switches whose operations are based on ranking procedures.At first,we proposed a Simple 2-Bit(S2B)scheme which uses binary ranking procedure and queue size for scheduling the packets.Here,the Virtual Output Queue(VOQ)set with maximum number of empty queues receives higher rank than other VOQ’s.Through simulation,we showed S2B has better throughput performance than Highest Ranking First(HRF)arbitration under uniform,and non-uniform traffic patterns.To further improve the throughput-delay performance,an Enhanced 2-Bit(E2B)approach is proposed.This approach adopts an integer representation for rank,which is the number of empty queues in a VOQ set.The simulation result shows E2B outperforms S2B and HRF scheduling algorithms with maximum throughput-delay performance.Furthermore,the algorithms are simulated under hotspot traffic and E2B proves to be more efficient.
文摘Task scheduling is the main problem in cloud computing that reduces system performance;it is an important way to arrange user needs and perform multiple goals.Cloud computing is the most popular technology nowadays and has many research potential in various areas like resource allocation,task scheduling,security,privacy,etc.To improve system performance,an efficient task-scheduling algorithm is required.Existing task-scheduling algorithms focus on task-resource requirements,CPU memory,execution time,and execution cost.In this paper,a task scheduling algorithm based on a Genetic Algorithm(GA)has been presented for assigning and executing different tasks.The proposed algorithm aims to minimize both the completion time and execution cost of tasks and maximize resource utilization.We evaluate our algorithm’s performance by applying it to two examples with a different number of tasks and processors.The first example contains ten tasks and four processors;the computation costs are generated randomly.The last example has eight processors,and the number of tasks ranges from twenty to seventy;the computation cost of each task on different processors is generated randomly.The achieved results show that the proposed approach significantly succeeded in finding the optimal solutions for the three objectives;completion time,execution cost,and resource utilization.
基金the National Natural Science Foundation of China (70631003)the Hefei University of Technology Foundation (071102F).
文摘A class of nonidentical parallel machine scheduling problems are considered in which the goal is to minimize the total weighted completion time. Models and relaxations are collected. Most of these problems are NP-hard, in the strong sense, or open problems, therefore approximation algorithms are studied. The review reveals that there exist some potential areas worthy of further research.
文摘One of the surface mining methods is open-pit mining,by which a pit is dug to extract ore or waste downwards from the earth’s surface.In the mining industry,one of the most significant difficulties is long-term production scheduling(LTPS)of the open-pit mines.Deterministic and uncertainty-based approaches are identified as the main strategies,which have been widely used to cope with this problem.Within the last few years,many researchers have highly considered a new computational type,which is less costly,i.e.,meta-heuristic methods,so as to solve the mine design and production scheduling problem.Although the optimality of the final solution cannot be guaranteed,they are able to produce sufficiently good solutions with relatively less computational costs.In the present paper,two hybrid models between augmented Lagrangian relaxation(ALR)and a particle swarm optimization(PSO)and ALR and bat algorithm(BA)are suggested so that the LTPS problem is solved under the condition of grade uncertainty.It is suggested to carry out the ALR method on the LTPS problem to improve its performance and accelerate the convergence.Moreover,the Lagrangian coefficients are updated by using PSO and BA.The presented models have been compared with the outcomes of the ALR-genetic algorithm,the ALR-traditional sub-gradient method,and the conventional method without using the Lagrangian approach.The results indicated that the ALR is considered a more efficient approach which can solve a large-scale problem and make a valid solution.Hence,it is more effectual than the conventional method.Furthermore,the time and cost of computation are diminished by the proposed hybrid strategies.The CPU time using the ALR-BA method is about 7.4%higher than the ALR-PSO approach.