CdSe nanoplatelets(NPLs)are promising candidates for on-chip light sources,yet their performance is hindered by surface defects and inefficient optical gain.Herein,we demonstrate that CdSeS crown passivation significa...CdSe nanoplatelets(NPLs)are promising candidates for on-chip light sources,yet their performance is hindered by surface defects and inefficient optical gain.Herein,we demonstrate that CdSeS crown passivation significantly enhances the photophysical property of CdSe NPLs.Laser spectroscopy techniques reveal suppressed electronic and hole trapping at lateral surfaces,leading to a 4.2-fold increase in photoluminescence quantum yield and a shortened emission lifetime from13.5 to 4.8 ns.In addition,amplified spontaneous emission is achieved under nanosecond pulse pumping,with thresholds of0.75 to 0.16 mJ/cm^(2)for CdSe and CdSe/CdSeS NPLs,respectively.By integrating CdSe/CdSeS NPLs with high-refractiveindex SiO2scatters,coherent random lasing is realized at a threshold of 0.21 mJ/cm^(2).These findings highlight the critical role of lateral surface passivation in optimizing optical gain and pave the way for low-cost,multifunctional nanophotonic devices.展开更多
Charge carrier dynamics essentially determines the performance of various optoelectronic applications of colloidal semiconductor nanocrystals.Among them,two-dimensional nanoplatelets provide new adjustment freedom for...Charge carrier dynamics essentially determines the performance of various optoelectronic applications of colloidal semiconductor nanocrystals.Among them,two-dimensional nanoplatelets provide new adjustment freedom for their unique core/crown heterostructures.Herein,we demonstrate that by fine-tuning the core size and the lateral quantum confinement,the charge carrier transfer rate from the crown to the core can be varied by one order of magnitude in CdSe/CdSeS core/alloy-crown nanoplatelets.In addition,the transfer can be affected by a carrier blocking mechanism,i.e.,the filled carriers hinder further possible transfer.Furthermore,we found that the biexciton interaction is oppositely affected by quantum confinement and electron delocalization,resulting in a non-monotonic variation of the biexciton binding energy with the emission wavelength.This work provides new observations and insights into the charge carrier transfer dynamics and exciton interactions in colloidal nanoplatelets and will promote their further applications in lasing,display,sensing,etc.展开更多
Accurate crown control is paramount for ensuring the quality of hot-rolled strip products.Given the multitude of influencing parameters and the intricate coupling and genetic relationships among them,the conventional ...Accurate crown control is paramount for ensuring the quality of hot-rolled strip products.Given the multitude of influencing parameters and the intricate coupling and genetic relationships among them,the conventional crown control method is no longer sufficient to meet the precision requirements of schedule-free rolling.To address this limitation,an optimization framework for hot-rolled strip crown control was developed based on model-driven digital twin(MDDT).This framework enhances the strip crown control precision by facilitating collaborative operations among physical entities,virtual models,and functional application layers.In virtual modeling,a data-driven approach that integrates the extreme gradient boosting and the improved Harris hawk optimization algorithm was firstly proposed to fit the relationship between key process parameters and strip crown,and a global-local collaborative training strategy was proposed to enhance the model adaptability to diverse working conditions.Subsequently,the influence of crucial process factors on the virtual model was examined through model responses.Furthermore,a novel optimization mode for crown control based on MDDT was established by aligning and reconstructing both the physical and virtual models,thereby enhancing the crown control precision.Finally,data trials were conducted to validate the effectiveness of the proposed framework.The results indicated that the proposed method exhibited satisfactory performance and could be effectively utilized to improve the crown control precision.展开更多
Deep tight reservoirs exhibit complex stress and seepage fields due to varying pore structures,thus the seepage characteristics are significant for enhancing oil production.This study conducted triaxial compression an...Deep tight reservoirs exhibit complex stress and seepage fields due to varying pore structures,thus the seepage characteristics are significant for enhancing oil production.This study conducted triaxial compression and permeability tests to investigate the mechanical and seepage properties of tight sandstone.A digital core of tight sandstone was built using Computed Tomography(CT)scanning,which was divided into matrix and pore phases by a pore equivalent diameter threshold.A fluid-solid coupling model was established to investigate the seepage characteristics at micro-scale.The results showed that increasing the confining pressure decreased porosity,permeability,and flow velocity,with the pore phase becoming the dominant seepage channel.Cracks and large pores closed first under increasing pressure,resulted in a steep drop in permeability.However,permeability slightly decreased under high confining pressure,which followed a first-order exponential function.Flow velocity increased with seepage pressure.And the damage mainly occurred in stress-concentration regions under low seepage pressure.Seepage behavior followed linear Darcy flow,the damage emerged at seepage entrances under high pressure,which decreased rock elastic modulus and significantly increased permeability.展开更多
Research on the mechanical–electrical properties is crucial for designing and preparing high-temperature superconducting(HTS)cables.Various winding core structures can influence the mechanical–electrical behavior of...Research on the mechanical–electrical properties is crucial for designing and preparing high-temperature superconducting(HTS)cables.Various winding core structures can influence the mechanical–electrical behavior of cables,but the impact of alterations in the winding core structure on the mechanical–electrical behavior of superconducting cables remains unclear.This paper presents a 3D finite element model to predict the performance of three cables with different core structures when subjected to transverse compression and axial tension.The three cables analyzed are CORC(conductor-on-round-core),CORT(conductor-on-round-tube),and HFRC(conductor-on-spiral-tube).A parametric analysis is carried out by varying the core diameter and inner-to-outer diameter ratio.Results indicate that the CORT cable demonstrates better performance in transverse compression compared to the CORC cable,aligning with experimental data.Among the three cables,the HFRC cables exhibit the weakest resistance to transverse deformation.However,the HFRC cable demonstrates superior tensile deformation resistance compared to the CORT cable,provided that the transverse compression properties are maintained.Finite element results also show that the optimum inner-to-outer diameter ratios for achieving the best transverse compression performance are approximately 0.8 for CORT cables and 0.6 for HFRC cables.Meanwhile,the study explores the effect of structural changes in HTS cable winding cores on their electromagnetic properties.It recommends utilizing small tape gaps,lower frequencies,and spiral core construction to minimize eddy losses.The findings presented in this paper offer valuable insights for the commercialization and practical manufacturing of HTS cables.展开更多
The application of liquid core reduction(LCR)technology in thin slab continuous casting can refine the internal microstruc-tures of slabs and improve their production efficiency.To avoid crack risks caused by large de...The application of liquid core reduction(LCR)technology in thin slab continuous casting can refine the internal microstruc-tures of slabs and improve their production efficiency.To avoid crack risks caused by large deformation during the LCR process and to minimize the thickness of the slab in bending segments,the maximum theoretical reduction amount and the corresponding reduction scheme for the LCR process must be determined.With SPA-H weathering steel as a specific research steel grade,the distributions of tem-perature and deformation fields of a slab with the LCR process were analyzed using a three-dimensional thermal-mechanical finite ele-ment model.High-temperature tensile tests were designed to determine the critical strain of corner crack propagation and intermediate crack initiation with various strain rates and temperatures,and a prediction model of the critical strain for two typical cracks,combining the effects of strain rate and temperature,was proposed by incorporating the Zener-Hollomon parameter.The crack risks with different LCR schemes were calculated using the crack risk prediction model,and the maximum theoretical reduction amount for the SPA-H slab with a transverse section of 145 mm×1600 mm was 41.8 mm,with corresponding reduction amounts for Segment 0 to Segment 4 of 15.8,7.3,6.5,6.4,and 5.8 mm,respectively.展开更多
For the first time,the linear and nonlinear vibrations of composite rectangular sandwich plates with various geometric patterns of lattice core have been analytically examined in this work.The plate comprises a lattic...For the first time,the linear and nonlinear vibrations of composite rectangular sandwich plates with various geometric patterns of lattice core have been analytically examined in this work.The plate comprises a lattice core located in the middle and several homogeneous orthotropic layers that are symmetrical relative to it.For this purpose,the partial differential equations of motion have been derived based on the first-order shear deformation theory,employing Hamilton’s principle and Von Kármán’s nonlinear displacement-strain relations.Then,the nonlinear partial differential equations of the plate are converted into a time-dependent nonlinear ordinary differential equation(Duffing equation)by applying the Galerkin method.From the solution of this equation,the natural frequencies are extracted.Then,to calculate the non-linear frequencies of the plate,the non-linear equation of the plate has been solved analytically using the method of multiple scales.Finally,the effect of some critical parameters of the system,such as the thickness,height,and different angles of the stiffeners on the linear and nonlinear frequencies,has been analyzed in detail.To confirmthe solution method,the results of this research have been compared with the reported results in the literature and finite elements in ABAQUS,and a perfect match is observed.The results reveal that the geometry and configuration of core ribs strongly affect the natural frequencies of the plate.展开更多
Core power is a key parameter of nuclear reactor.Traditionally,the proportional-integralderivative(PID)controllers are used to control the core power.Fractional-order PID(FOPID)controller represents the cutting edge i...Core power is a key parameter of nuclear reactor.Traditionally,the proportional-integralderivative(PID)controllers are used to control the core power.Fractional-order PID(FOPID)controller represents the cutting edge in core power control research.In comparing with the integer-order models,fractional-order models describe the variation of core power more accurately,thus provide a comprehensive and realistic depiction for the power and state changes of reactor core.However,current fractional-order controllers cannot adjust their parameters dynamically to response the environmental changes or demands.In this paper,we aim at the stable control and dynamic responsiveness of core power.Based on the strong selflearning ability of artificial neural network(ANN),we propose a composite controller combining the ANN and FOPID controller.The FOPID controller is firstly designed and a back propagation neural network(BPNN)is then utilized to optimize the parameters of FOPID.It is shown by simulation that the composite controller enables the real-time parameter tuning via ANN and retains the advantage of FOPID controller.展开更多
Lead chalcohalides(PbYX,X=Cl,Br,I;Y=S,Se)is an extension of the classic Pb chalcogenides(PbY).Constructing the heterogeneous integration with PbYX and PbY material systems makes it possible to achieve significantly im...Lead chalcohalides(PbYX,X=Cl,Br,I;Y=S,Se)is an extension of the classic Pb chalcogenides(PbY).Constructing the heterogeneous integration with PbYX and PbY material systems makes it possible to achieve significantly improved optoelectronic performance.In this work,we studied the effect of introducing halogen precursors on the structure of classical PbS nanocrystals(NCs)during the synthesis process and realized the preparation of PbS/Pb_(3)S_(2)X_(2) core/shell structure for the first time.The core/shell structure can effectively improve their optical properties.Furthermore,our approach enables the synthesis of Pb_(3)S_(2)Br_(2) that had not yet been reported.Our results not only provide valuable insights into the heterogeneous integration of PbYX and PbY materials to elevate material properties but also provide an effective method for further expanding the preparation of PbYX material systems.展开更多
The pore structures of the Majiagou Formation in the Ordos Basin are complex,featuring micro-and nano-scale intra-crystalline and inter-crystalline pores that significantly impact hydrocarbon storage and flow.Precisel...The pore structures of the Majiagou Formation in the Ordos Basin are complex,featuring micro-and nano-scale intra-crystalline and inter-crystalline pores that significantly impact hydrocarbon storage and flow.Precisely characterizing the rock internal structures is crucial for reservoir exploration and development.However,it is difficult to accurately characterize the pore structure of rock using traditional imaging methods to meet the simulation requirements.In this context,this study focuses on high-resolution 3D digital core reconstruction using the SliceGAN model.Specifically,the Modular Automated Processing System(MAPS)image and Quanti-tative Evaluation of Minerals by Scanning Electron Microscopy(QEMSCAN)image were combined to divide MAPS into three categories:pore,dolomite,and calcite.Then,through the SliceGAN algorithm,the 3D digital core was reconstructed.To evaluate the reconstruction,the auto-correlation function,two-point probability function,porosity,mineral content,and specific surface area were employed.The results show that the SliceGAN can effectively capture the micro-features in the core,and the internal structure of the generated core was consistent with that of the original core.This study provided a new sight for reconstructing cores with complex pore structures and strong heterogeneity and innovatively supports tight carbonate reservoir characterization and evaluation.展开更多
BACKGROUND Pain in the back or pelvis or fear of back pain may affect the timing or cocontraction of the core muscles.In both static and dynamic movements,the Sahrmann core stability test provides an assessment of cor...BACKGROUND Pain in the back or pelvis or fear of back pain may affect the timing or cocontraction of the core muscles.In both static and dynamic movements,the Sahrmann core stability test provides an assessment of core muscle activation and a person's ability to stabilize the lumbopelvic complex.Preparatory cues and images can be used to increase the activation of these muscles.To attain optimal movement patterns,it will be necessary to determine what cueing will give the most effective results for core stability.AIM To investigate the effects of external and internal cues on core muscle activation during the Sahrmann five-level core stability test.METHODS Total 68 participants(21.83±3.47 years)were randomly allocated to an external(n=35)or internal cue group(n=33).Participants performed the Sahrmann fivelevel core stability test without a cue as baseline and the five-level stability exercises with an internal or external cue.External cue group received a pressure biofeedback unit(PBU),and the internal cue group received an audio cue.A Delsys Trigno^(TM)surface electromyography unit was used for muscle activation from the rectus abdominis,external oblique,and transverse abdominis/internal oblique muscles.RESULTS Linear mixed effects model analysis showed that cueing had a significant effect on core muscle activation(P=0.001);however,there was no significant difference between cue types(internal or external)(P=0.130).CONCLUSION Both external and internal cueing have significant effects on core muscle activation during the Sahrmann five-level core stability test and the PBU does not create higher muscle activation than internal cueing.展开更多
This study presents a significant advancement in the vibration analysis of functionally graded sandwich plates with auxetic cores by introducing a general viscoelastic foundation model that more accurately reflects th...This study presents a significant advancement in the vibration analysis of functionally graded sandwich plates with auxetic cores by introducing a general viscoelastic foundation model that more accurately reflects the complex interactions between the plate and the foundation.The novelty of this study is that the proposed viscoelastic foundation model incorporates elastic and damping effects in both the Winkler and Pasternak layers.To develop the theoretical framework for this analysis,the higher-order shear deformation theory is employed,while Hamilton's principle is used to derive the governing equations of motion.The closed-form solution is used to determine the damped vibration behaviors of the sandwich plates.The precision and robustness of the proposed mathematical model are validated through several comparison studies with existing numerical results.A detailed parametric study is conducted to investigate the influence of various parameters,including the elastic and damping coefficients of the foundation,the material gradation,and the properties of the auxetic core on the vibration behavior of the plates.The numerical results provide new insights into the vibration characteristics of sandwich plates with auxetic cores resting on viscoelastic foundation,highlighting the significant role of the two damping coefficients and auxetic cores in the visco-vibration behavior of the plates.展开更多
The separation of lithium isotopes (^(6)Li and ^(7)Li) is of great importance for the nuclear industry.The lithium amalgam method is the only lithium isotopes separation process in industry,and the extensive use of me...The separation of lithium isotopes (^(6)Li and ^(7)Li) is of great importance for the nuclear industry.The lithium amalgam method is the only lithium isotopes separation process in industry,and the extensive use of mercury has raised concerns about its potential environmental hazards,which have prompted the search for more efficient and environmentally friendly alternatives.Crown ethers can bind lithium ions highly selectively and separate lithium isotopes effectively.A chemical exchange-based lithium isotopes separation method using crown ether decorated materials could be a viable and cost-effective alternative to the lithium amalgam method.In this review,we provide a systematic summary of the recent advances in lithium isotopes separation using crown ethers decorated materials.展开更多
A novel temperature-preserved core chamber designed for depths exceeding 5000 m has been developed to enhance the scientific understanding of deep oil and gas reservoirs.This temperature-preserved core chamber employs...A novel temperature-preserved core chamber designed for depths exceeding 5000 m has been developed to enhance the scientific understanding of deep oil and gas reservoirs.This temperature-preserved core chamber employs an innovative vacuum layer for temperature preservation and is compatible with a temperature-pressure preserved coring system.The design principles and key parameters of the temperature-preserved core chamber were determined through static analysis.Numerical simulations assessed the mechanical properties of 70,85,and 100 MPa core chambers under conditions of 120-150℃.The results demonstrate that the temperature-preserved core chambers withstand the applied stresses without plastic deformation,and the vacuum layer maintains its integrity under these conditions.A 70 MPa class core chamber prototype was manufactured,and system integration tests were performed on a self-developed in-situ coring platform.The system demonstrated stable operation at 70 MPa for 120 min,with pressure fluctuations within 5%.Additionally,the integrated system operated without interference,enabling the successful extraction of cores with a 50 mm diameter.These findings provide valuable theoretical guidance and design recommendations for advancing oil and gas in-situ temperature-pressure preserved coring technologies in high-temperature and high-pressure environments.展开更多
With the continuous deepening of vocational education reform,core literacy,as an important concept of educational reform,has gradually been introduced into English teaching.The cultivation of core literacy requires st...With the continuous deepening of vocational education reform,core literacy,as an important concept of educational reform,has gradually been introduced into English teaching.The cultivation of core literacy requires students not only to master basic language knowledge but also to flexibly use cross-cultural communication skills,innovative thinking,and professional literacy to solve problems in actual work situations.In this context,constructing a vocational English evaluation system based on core literacy has become an urgent need to improve the quality of vocational English teaching and cultivate high-quality applied talents.Therefore,the following will focus on exploring the relevant content of the vocational English evaluation system in order to provide some help.展开更多
The authors regret that the declaration of Acknowledgement as below is missing in the paper:AcknowledgementWe are grateful to the Department of Biology and Postgraduate Sciences-Biology of the Universidad del Valle,Ca...The authors regret that the declaration of Acknowledgement as below is missing in the paper:AcknowledgementWe are grateful to the Department of Biology and Postgraduate Sciences-Biology of the Universidad del Valle,Cali-Colombia for their support of the project;to Wilmar Torres MSc.for his statistical advice;to the biologist Helen Burnham MSc.for the translation of the document;to Isabel Castro and all the members of the Ornithology and Animal Behaviour Laboratory-OYCA of Universidad del Valle for their invaluable support in the field.We sincerely thank the anonymous re-viewers for their invaluable feedback and contributions to our manuscript.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.62174079)Guangdong Provincial Quantum Science Strategic Initiative(Grant No.GDZX2404006)Science,Technology and Innovation Commission of Shenzhen Municipality(Grant No.JCYJ20220530113015035)。
文摘CdSe nanoplatelets(NPLs)are promising candidates for on-chip light sources,yet their performance is hindered by surface defects and inefficient optical gain.Herein,we demonstrate that CdSeS crown passivation significantly enhances the photophysical property of CdSe NPLs.Laser spectroscopy techniques reveal suppressed electronic and hole trapping at lateral surfaces,leading to a 4.2-fold increase in photoluminescence quantum yield and a shortened emission lifetime from13.5 to 4.8 ns.In addition,amplified spontaneous emission is achieved under nanosecond pulse pumping,with thresholds of0.75 to 0.16 mJ/cm^(2)for CdSe and CdSe/CdSeS NPLs,respectively.By integrating CdSe/CdSeS NPLs with high-refractiveindex SiO2scatters,coherent random lasing is realized at a threshold of 0.21 mJ/cm^(2).These findings highlight the critical role of lateral surface passivation in optimizing optical gain and pave the way for low-cost,multifunctional nanophotonic devices.
基金This work was supported by the National Natural Science Foundation of China(No.61875002)the National Key R&D Program of China(No.2018YFA0306302)+4 种基金the Beijing Natural Science Foundation(No.Z190005)the Program of State Key Laboratory of Quantum Optics and Quantum Optics Devices(No.KF202208)The author acknowledges the support of the Strategic Priority Research Program of Chinese Academy of Sciences(No.XDB36000000)the National Natural Science Foundation of China(Nos.11874130 and 22073022)the support from the DNL Cooperation Fund,CAS(No.DNL202016)of Dalian National Laboratory for Clean Energy。
文摘Charge carrier dynamics essentially determines the performance of various optoelectronic applications of colloidal semiconductor nanocrystals.Among them,two-dimensional nanoplatelets provide new adjustment freedom for their unique core/crown heterostructures.Herein,we demonstrate that by fine-tuning the core size and the lateral quantum confinement,the charge carrier transfer rate from the crown to the core can be varied by one order of magnitude in CdSe/CdSeS core/alloy-crown nanoplatelets.In addition,the transfer can be affected by a carrier blocking mechanism,i.e.,the filled carriers hinder further possible transfer.Furthermore,we found that the biexciton interaction is oppositely affected by quantum confinement and electron delocalization,resulting in a non-monotonic variation of the biexciton binding energy with the emission wavelength.This work provides new observations and insights into the charge carrier transfer dynamics and exciton interactions in colloidal nanoplatelets and will promote their further applications in lasing,display,sensing,etc.
基金financially supported by the National Key Research and Development Program of China(Grant No.2023YFB3710204)Guangxi Science and Technology Major Program(Grant No.AA23023028-1)+1 种基金Natural Science Foundation of Heilongjiang Province of China for Distinguished Young Scientists(Grant No.JQ2022E007)Xinjiang Production and Construction Corps Science and Technology Plan(Grant No.2023AA003).
文摘Accurate crown control is paramount for ensuring the quality of hot-rolled strip products.Given the multitude of influencing parameters and the intricate coupling and genetic relationships among them,the conventional crown control method is no longer sufficient to meet the precision requirements of schedule-free rolling.To address this limitation,an optimization framework for hot-rolled strip crown control was developed based on model-driven digital twin(MDDT).This framework enhances the strip crown control precision by facilitating collaborative operations among physical entities,virtual models,and functional application layers.In virtual modeling,a data-driven approach that integrates the extreme gradient boosting and the improved Harris hawk optimization algorithm was firstly proposed to fit the relationship between key process parameters and strip crown,and a global-local collaborative training strategy was proposed to enhance the model adaptability to diverse working conditions.Subsequently,the influence of crucial process factors on the virtual model was examined through model responses.Furthermore,a novel optimization mode for crown control based on MDDT was established by aligning and reconstructing both the physical and virtual models,thereby enhancing the crown control precision.Finally,data trials were conducted to validate the effectiveness of the proposed framework.The results indicated that the proposed method exhibited satisfactory performance and could be effectively utilized to improve the crown control precision.
基金financially supported by the National Natural Science Foundation of China(Nos.42272153 and 42472195)the Research Fund of PetroChina Tarim Oilfield Company(No.671023060003)the Research Fund of China National Petroleum Corporation Limited(No.2023ZZ16YJ04).
文摘Deep tight reservoirs exhibit complex stress and seepage fields due to varying pore structures,thus the seepage characteristics are significant for enhancing oil production.This study conducted triaxial compression and permeability tests to investigate the mechanical and seepage properties of tight sandstone.A digital core of tight sandstone was built using Computed Tomography(CT)scanning,which was divided into matrix and pore phases by a pore equivalent diameter threshold.A fluid-solid coupling model was established to investigate the seepage characteristics at micro-scale.The results showed that increasing the confining pressure decreased porosity,permeability,and flow velocity,with the pore phase becoming the dominant seepage channel.Cracks and large pores closed first under increasing pressure,resulted in a steep drop in permeability.However,permeability slightly decreased under high confining pressure,which followed a first-order exponential function.Flow velocity increased with seepage pressure.And the damage mainly occurred in stress-concentration regions under low seepage pressure.Seepage behavior followed linear Darcy flow,the damage emerged at seepage entrances under high pressure,which decreased rock elastic modulus and significantly increased permeability.
基金supported by the National Natural Science Foundation of China(12072136).
文摘Research on the mechanical–electrical properties is crucial for designing and preparing high-temperature superconducting(HTS)cables.Various winding core structures can influence the mechanical–electrical behavior of cables,but the impact of alterations in the winding core structure on the mechanical–electrical behavior of superconducting cables remains unclear.This paper presents a 3D finite element model to predict the performance of three cables with different core structures when subjected to transverse compression and axial tension.The three cables analyzed are CORC(conductor-on-round-core),CORT(conductor-on-round-tube),and HFRC(conductor-on-spiral-tube).A parametric analysis is carried out by varying the core diameter and inner-to-outer diameter ratio.Results indicate that the CORT cable demonstrates better performance in transverse compression compared to the CORC cable,aligning with experimental data.Among the three cables,the HFRC cables exhibit the weakest resistance to transverse deformation.However,the HFRC cable demonstrates superior tensile deformation resistance compared to the CORT cable,provided that the transverse compression properties are maintained.Finite element results also show that the optimum inner-to-outer diameter ratios for achieving the best transverse compression performance are approximately 0.8 for CORT cables and 0.6 for HFRC cables.Meanwhile,the study explores the effect of structural changes in HTS cable winding cores on their electromagnetic properties.It recommends utilizing small tape gaps,lower frequencies,and spiral core construction to minimize eddy losses.The findings presented in this paper offer valuable insights for the commercialization and practical manufacturing of HTS cables.
基金supported by the National Natural Science Foundation of China(No.52474355)the Liaoning Province Science and Technology Plan Joint Program(Key Research and Development Program Project),China(Nos.2022JH25/10200003 and 2023JH2/101800058).
文摘The application of liquid core reduction(LCR)technology in thin slab continuous casting can refine the internal microstruc-tures of slabs and improve their production efficiency.To avoid crack risks caused by large deformation during the LCR process and to minimize the thickness of the slab in bending segments,the maximum theoretical reduction amount and the corresponding reduction scheme for the LCR process must be determined.With SPA-H weathering steel as a specific research steel grade,the distributions of tem-perature and deformation fields of a slab with the LCR process were analyzed using a three-dimensional thermal-mechanical finite ele-ment model.High-temperature tensile tests were designed to determine the critical strain of corner crack propagation and intermediate crack initiation with various strain rates and temperatures,and a prediction model of the critical strain for two typical cracks,combining the effects of strain rate and temperature,was proposed by incorporating the Zener-Hollomon parameter.The crack risks with different LCR schemes were calculated using the crack risk prediction model,and the maximum theoretical reduction amount for the SPA-H slab with a transverse section of 145 mm×1600 mm was 41.8 mm,with corresponding reduction amounts for Segment 0 to Segment 4 of 15.8,7.3,6.5,6.4,and 5.8 mm,respectively.
文摘For the first time,the linear and nonlinear vibrations of composite rectangular sandwich plates with various geometric patterns of lattice core have been analytically examined in this work.The plate comprises a lattice core located in the middle and several homogeneous orthotropic layers that are symmetrical relative to it.For this purpose,the partial differential equations of motion have been derived based on the first-order shear deformation theory,employing Hamilton’s principle and Von Kármán’s nonlinear displacement-strain relations.Then,the nonlinear partial differential equations of the plate are converted into a time-dependent nonlinear ordinary differential equation(Duffing equation)by applying the Galerkin method.From the solution of this equation,the natural frequencies are extracted.Then,to calculate the non-linear frequencies of the plate,the non-linear equation of the plate has been solved analytically using the method of multiple scales.Finally,the effect of some critical parameters of the system,such as the thickness,height,and different angles of the stiffeners on the linear and nonlinear frequencies,has been analyzed in detail.To confirmthe solution method,the results of this research have been compared with the reported results in the literature and finite elements in ABAQUS,and a perfect match is observed.The results reveal that the geometry and configuration of core ribs strongly affect the natural frequencies of the plate.
文摘Core power is a key parameter of nuclear reactor.Traditionally,the proportional-integralderivative(PID)controllers are used to control the core power.Fractional-order PID(FOPID)controller represents the cutting edge in core power control research.In comparing with the integer-order models,fractional-order models describe the variation of core power more accurately,thus provide a comprehensive and realistic depiction for the power and state changes of reactor core.However,current fractional-order controllers cannot adjust their parameters dynamically to response the environmental changes or demands.In this paper,we aim at the stable control and dynamic responsiveness of core power.Based on the strong selflearning ability of artificial neural network(ANN),we propose a composite controller combining the ANN and FOPID controller.The FOPID controller is firstly designed and a back propagation neural network(BPNN)is then utilized to optimize the parameters of FOPID.It is shown by simulation that the composite controller enables the real-time parameter tuning via ANN and retains the advantage of FOPID controller.
基金supported by the National Key Research and Development Program of China(Grant No.2022YFE0110300)the National Natural Science Foundation of China(Grant Nos.52372215,92163114,and 52202274)+5 种基金the Natural Science Foundation of Jiangsu Province of China(Grant No.BK20230504)the Special Fund for the"Dual Carbon"Science and Technology Innovation of Jiangsu province(Industrial Prospect and Key Technology Research program)(Grant Nos.BE2022023 and BE2022021)the Natural Science Foundation of the Jiangsu Higher Education Institutions of China(Grant No.21KJA430004)Gusu Innovation and Entre preneurship Leading Talent Program(Grant No.ZXL2022451)the China Postdoctoral Science Foundation(Grant No.2023M732523)supported by Suzhou Key Laboratory of Functional Nano&Soft Materials,Collaborative Innovation Center of Suzhou Nano Science&Technology,the 111 Project.
文摘Lead chalcohalides(PbYX,X=Cl,Br,I;Y=S,Se)is an extension of the classic Pb chalcogenides(PbY).Constructing the heterogeneous integration with PbYX and PbY material systems makes it possible to achieve significantly improved optoelectronic performance.In this work,we studied the effect of introducing halogen precursors on the structure of classical PbS nanocrystals(NCs)during the synthesis process and realized the preparation of PbS/Pb_(3)S_(2)X_(2) core/shell structure for the first time.The core/shell structure can effectively improve their optical properties.Furthermore,our approach enables the synthesis of Pb_(3)S_(2)Br_(2) that had not yet been reported.Our results not only provide valuable insights into the heterogeneous integration of PbYX and PbY materials to elevate material properties but also provide an effective method for further expanding the preparation of PbYX material systems.
基金financially supported by the open fund of Key Lab-oratory of Exploration Technologies for Oil and Gas Resources(Yangtze University),Ministry of Education,NO PI2023-03the open foundation of the National Engineering Laboratory for Exploration and Develop-ment of Low-Permeability Oil&Gas Fields and the National Natural Science Foundation of China(No.42474159).
文摘The pore structures of the Majiagou Formation in the Ordos Basin are complex,featuring micro-and nano-scale intra-crystalline and inter-crystalline pores that significantly impact hydrocarbon storage and flow.Precisely characterizing the rock internal structures is crucial for reservoir exploration and development.However,it is difficult to accurately characterize the pore structure of rock using traditional imaging methods to meet the simulation requirements.In this context,this study focuses on high-resolution 3D digital core reconstruction using the SliceGAN model.Specifically,the Modular Automated Processing System(MAPS)image and Quanti-tative Evaluation of Minerals by Scanning Electron Microscopy(QEMSCAN)image were combined to divide MAPS into three categories:pore,dolomite,and calcite.Then,through the SliceGAN algorithm,the 3D digital core was reconstructed.To evaluate the reconstruction,the auto-correlation function,two-point probability function,porosity,mineral content,and specific surface area were employed.The results show that the SliceGAN can effectively capture the micro-features in the core,and the internal structure of the generated core was consistent with that of the original core.This study provided a new sight for reconstructing cores with complex pore structures and strong heterogeneity and innovatively supports tight carbonate reservoir characterization and evaluation.
文摘BACKGROUND Pain in the back or pelvis or fear of back pain may affect the timing or cocontraction of the core muscles.In both static and dynamic movements,the Sahrmann core stability test provides an assessment of core muscle activation and a person's ability to stabilize the lumbopelvic complex.Preparatory cues and images can be used to increase the activation of these muscles.To attain optimal movement patterns,it will be necessary to determine what cueing will give the most effective results for core stability.AIM To investigate the effects of external and internal cues on core muscle activation during the Sahrmann five-level core stability test.METHODS Total 68 participants(21.83±3.47 years)were randomly allocated to an external(n=35)or internal cue group(n=33).Participants performed the Sahrmann fivelevel core stability test without a cue as baseline and the five-level stability exercises with an internal or external cue.External cue group received a pressure biofeedback unit(PBU),and the internal cue group received an audio cue.A Delsys Trigno^(TM)surface electromyography unit was used for muscle activation from the rectus abdominis,external oblique,and transverse abdominis/internal oblique muscles.RESULTS Linear mixed effects model analysis showed that cueing had a significant effect on core muscle activation(P=0.001);however,there was no significant difference between cue types(internal or external)(P=0.130).CONCLUSION Both external and internal cueing have significant effects on core muscle activation during the Sahrmann five-level core stability test and the PBU does not create higher muscle activation than internal cueing.
基金the funding of the Deanship of Graduate Studies and Scientific Research,Jazan University,Saudi Arabia,through project number:RG24-M027.
文摘This study presents a significant advancement in the vibration analysis of functionally graded sandwich plates with auxetic cores by introducing a general viscoelastic foundation model that more accurately reflects the complex interactions between the plate and the foundation.The novelty of this study is that the proposed viscoelastic foundation model incorporates elastic and damping effects in both the Winkler and Pasternak layers.To develop the theoretical framework for this analysis,the higher-order shear deformation theory is employed,while Hamilton's principle is used to derive the governing equations of motion.The closed-form solution is used to determine the damped vibration behaviors of the sandwich plates.The precision and robustness of the proposed mathematical model are validated through several comparison studies with existing numerical results.A detailed parametric study is conducted to investigate the influence of various parameters,including the elastic and damping coefficients of the foundation,the material gradation,and the properties of the auxetic core on the vibration behavior of the plates.The numerical results provide new insights into the vibration characteristics of sandwich plates with auxetic cores resting on viscoelastic foundation,highlighting the significant role of the two damping coefficients and auxetic cores in the visco-vibration behavior of the plates.
基金support from the National Natural Science Foundation of China (Grant No.U21B2094 and Grant No.U2067212)。
文摘The separation of lithium isotopes (^(6)Li and ^(7)Li) is of great importance for the nuclear industry.The lithium amalgam method is the only lithium isotopes separation process in industry,and the extensive use of mercury has raised concerns about its potential environmental hazards,which have prompted the search for more efficient and environmentally friendly alternatives.Crown ethers can bind lithium ions highly selectively and separate lithium isotopes effectively.A chemical exchange-based lithium isotopes separation method using crown ether decorated materials could be a viable and cost-effective alternative to the lithium amalgam method.In this review,we provide a systematic summary of the recent advances in lithium isotopes separation using crown ethers decorated materials.
基金the financial support from the National Key R&D Program of China(No.2022YFB3706604)the National Natural Science Foundation of China(52304033)+2 种基金the National Natural Science Foundation of China(No.51827901)Sichuan Science and Technology Program(2023NSFSC0790)China Postdoctoral Science Foundation(No.2023M742446)。
文摘A novel temperature-preserved core chamber designed for depths exceeding 5000 m has been developed to enhance the scientific understanding of deep oil and gas reservoirs.This temperature-preserved core chamber employs an innovative vacuum layer for temperature preservation and is compatible with a temperature-pressure preserved coring system.The design principles and key parameters of the temperature-preserved core chamber were determined through static analysis.Numerical simulations assessed the mechanical properties of 70,85,and 100 MPa core chambers under conditions of 120-150℃.The results demonstrate that the temperature-preserved core chambers withstand the applied stresses without plastic deformation,and the vacuum layer maintains its integrity under these conditions.A 70 MPa class core chamber prototype was manufactured,and system integration tests were performed on a self-developed in-situ coring platform.The system demonstrated stable operation at 70 MPa for 120 min,with pressure fluctuations within 5%.Additionally,the integrated system operated without interference,enabling the successful extraction of cores with a 50 mm diameter.These findings provide valuable theoretical guidance and design recommendations for advancing oil and gas in-situ temperature-pressure preserved coring technologies in high-temperature and high-pressure environments.
文摘With the continuous deepening of vocational education reform,core literacy,as an important concept of educational reform,has gradually been introduced into English teaching.The cultivation of core literacy requires students not only to master basic language knowledge but also to flexibly use cross-cultural communication skills,innovative thinking,and professional literacy to solve problems in actual work situations.In this context,constructing a vocational English evaluation system based on core literacy has become an urgent need to improve the quality of vocational English teaching and cultivate high-quality applied talents.Therefore,the following will focus on exploring the relevant content of the vocational English evaluation system in order to provide some help.
文摘The authors regret that the declaration of Acknowledgement as below is missing in the paper:AcknowledgementWe are grateful to the Department of Biology and Postgraduate Sciences-Biology of the Universidad del Valle,Cali-Colombia for their support of the project;to Wilmar Torres MSc.for his statistical advice;to the biologist Helen Burnham MSc.for the translation of the document;to Isabel Castro and all the members of the Ornithology and Animal Behaviour Laboratory-OYCA of Universidad del Valle for their invaluable support in the field.We sincerely thank the anonymous re-viewers for their invaluable feedback and contributions to our manuscript.