The third-generation vortex identification method of Liutex(previously called Rortex)was introduced by the team led by Prof.Chaoqun Liu from University of Texas at Arlington to mathematically extract the rigid rotatio...The third-generation vortex identification method of Liutex(previously called Rortex)was introduced by the team led by Prof.Chaoqun Liu from University of Texas at Arlington to mathematically extract the rigid rotation part from the fluid motion,and thus to define and visualize vortices.Unlike the vorticity-based first generation and the scalar-valued second generation,Q,λ2,Δandλci methods for example,the Liutex vector provides a unique,mathematical and systematic way to define vortices and visualize vortical structures from multiple perspectives without ambiguity.In this article,we summarize the recent developments of the Liutex framework and discuss the Liutex theoretical system including its existence,uniqueness,stability,Galilean invariance,locality and globality,decomposition in tensor and vector forms,Liutex similarity in turbulence,and multiple Liutex-based vortex visualization methods including Liutex lines,Liutex magnitude iso-surfaces,Liutex-Ωmethod,and Liutex core line method,etc..Thereafter,the six core elements of vortex identification,including(1)absolute strength,(2)relative strength,(3)local rotational axis,(4)vortex rotation axes,(5)vortex core size,(6)vortex boundary,are used as touchstones against which the Liutex vortex identification system is examined.It is demonstrated with illustrative examples that the Liutex system is able to give complete and precise information of all six core elements in contrast to the failure and inaccuracy of the first and second-generation methods.The important concept that vorticity cannot represent vortex and the superiority of the Liutex system over previous methods are reiterated and stated in appropriate places throughout the paper.Finally,the article concludes with future perspectives,especially the application of the Liutex system in studying turbulence mechanisms encouraged by the discovery of Liutex similarity law.As a newly defined physical quantity,Liutex may open a door for quantified vortex and turbulence research including Liutex(vortex)dynamics and lead the community out of the shadow of turbulence research which traditionally relies on observations,graphics,assumptions,hypotheses,and other qualitative analyses.An optimistic projection is that the Liutex system could be critical to investigation of the vortex dynamics in applications from hydrodynamics,aerodynamics,oceanography,meteorology,etc.and to research of the generation,sustenance,modelling and controlling of turbulence.展开更多
The objective of this study was to investigate the vertical distribution of rare earth elements (REEs) in a natural wetland soil core to understand the influence of natural and anthropogenic activities on geochemica...The objective of this study was to investigate the vertical distribution of rare earth elements (REEs) in a natural wetland soil core to understand the influence of natural and anthropogenic activities on geochemical behavior of REEs. A natural wetland soil core of 95 cm was collected from the Sanjiang Plain in China and sliced into 5 cm slices for analyses of REEs, Fe, Al, Mn, Sc, Y, and soil organic matter (SOM). Results indicated that SOM was accumulated in the upper part of the soil core (0 to 20 cm depth), while Fe and Mn was reductively leached from the upper part of the soil core and accumulated in the low part. The content of total REEs ranged from 137.9 to 225.9 mg/kg in the soil core. Content profiles obtained for all REEs were almost identical except for Ce. The highest contents of REEs generally occurred at about 20 cm depth, but enrichment factor (EF) of REEs except Ce was usually the highest in the surface horizon. Average EF ranged from 1.1 for La to 2.1 for Gd. The pronounced shift in EF occurred at about 40 cm depth and it gradually increased from 40 cm depth to surface (except for Ce), probably suggesting anthropogenic atmospheric deposition of REEs. In comparison with chondrite, Eu was depleted in all horizons, while Ce was negatively anomalous in the top horizons and positively anomalous in the bottom horizons. This positive anomaly of Ce in the bottom horizons was due to its preferential adsorption on Fe and Mn oxides, relative to other REEs. Although both natural and anthropogenic activi-ties influence the geochemical behaviors of REEs in soils, enrichment or mobility of REEs is low in the natural wetland soil core of the San-jiang Plain.展开更多
Eight-element contents of 653 unpolished rice samples harvested from Xingping experiment farm, Yunnan Province under the same ecological conditions were analyzed by ICP-AES method. The mineral elements content were cl...Eight-element contents of 653 unpolished rice samples harvested from Xingping experiment farm, Yunnan Province under the same ecological conditions were analyzed by ICP-AES method. The mineral elements content were closely related to low diversity, high-yielding, and multi-resistance breeding; The K, Mg, Ca and Mn content in high-yielding and resistant varieties were high, and other nutrients such as P, Fe, Zn and Cu were low, which was connected with the heredity and physiological mechanism of mineral nutrients. There is zonal distribution of mineral elements content from Yunnan rice, especially for P, Fe, Zn and Cu co-related with the diversity center, paddy versus upland, glutinous and non-glutinous, glume-hair versus nuda, rice color, rice flavor, soft rice versus non-soft rice, but it did not find any association with indica-japonica types. The results supported the ecological variety group view of 5-grade taxonomic system species-subspecies-ecological groups-ecological variety groups - varietal types' .展开更多
A geochemical analysis of rare-earth elements (REEs) in 97 samples collected from the core of deep-water Well LS-A located at the Lingnan Low Uplift Area of the Qiongdongnan Basin is conducted, with the pur-pose of ...A geochemical analysis of rare-earth elements (REEs) in 97 samples collected from the core of deep-water Well LS-A located at the Lingnan Low Uplift Area of the Qiongdongnan Basin is conducted, with the pur-pose of revealing the changes of sedimentary source and environment in the study region since Oligocene and evaluating the response of geochemical characteristics of REEs to the tectonic evolution. In the core samples, both∑REE and∑LREE (LREE is short for light-group REEs) fluctuate in a relatively wide range, while∑HREE (HREE is short for heavy-group REEs) maintains a relatively stable level. With the stratigraphic chronology becoming newer, both∑REE and∑LREE show a gradually rising trend overall. The∑REE of the core is relatively high from the bottom of Yacheng Formation (at a well depth of 4 207 m) to the top of Ledong Formation, and the REEs show partitioning characteristics of the enrichment of LREE, the stable content of HREE, and the negative anomaly of Eu to varying degrees. Overall the geochemical characteristics of REEs are relatively approximate to those of China's neritic sediments and loess, with significant "continental ori-entation". The∑REE of the core is relatively low in the lower part of Yacheng Formation (at a well depth of 4 207-4 330 m), as shown by the REEs partitioning characteristics of the depletion of LREE, the relative enrich-ment of HREE, and the positive anomaly of Eu; the geochemical characteristics of REEs are approximate to those of oceanic crust and basalt overall, indicating that the provenance is primarily composed of volcanic eruption matters. As shown by the analyses based on sequence stratigraphy and mineralogy, the provenance in study region in the early Oligocene mainly resulted from the volcanic materials of the peripheral uplift ar-eas; the continental margin materials from the north contributed only insignificantly; the provenance devel-oped to a certain extent in the late Oligocene. Since the Miocene, the provenance has ceaselessly expanded from proximal to distal realm, embodying a characteristic of multi-source sedimentation. In the core strata with 31.5, 28.4, 25.5, 23, and 16 Ma from today, the geochemical parameters of REEs and Th/Sc ratio have significant saltation, embodying the tectonic movement events in the evolution of the Qiongdongnan Basin. In the tectonic evolution history of the South China Sea, the South China Sea Movement (34-25 Ma BP, early expansion of the South China Sea), Baiyun Movement (23 Ma BP), late expansion movement (23.5-16.5 Ma BP), expansion-settlement transition, and other important events are all clearly recorded by the geochemi-cal characteristics of REEs in the core.展开更多
<div style="text-align:justify;"> Currently, coupled mode theory (CMT) is widely used for calculating the coupling coefficient of twin-core fibers (TCFs) that are used in a broad range of important app...<div style="text-align:justify;"> Currently, coupled mode theory (CMT) is widely used for calculating the coupling coefficient of twin-core fibers (TCFs) that are used in a broad range of important applications. This approach is highly accurate for scenarios with weak coupling between the cores but shows significant errors in the strong coupling scenarios, necessitating the use of a more accurate method for coupling coefficient calculations. Therefore, in this work, we calculate the coupling coefficients of TCFs using the supermode theory with finite element method (FEM) that has higher accuracy than CMT, particularly for the strong coupling TCF. To investigate the origin of the differences between the results obtained by these two methods, the modal field distributions of the supermodes of TCF are simulated and analyzed in detail. </div>展开更多
Two kinds of fabricated hollow-core photonic crystal fibres (HC-PCFs) arc studied using finite element method (FEM) because the structures of the fibres are special, Normalized transmission spectra and transverse ...Two kinds of fabricated hollow-core photonic crystal fibres (HC-PCFs) arc studied using finite element method (FEM) because the structures of the fibres are special, Normalized transmission spectra and transverse intensity distribution of the modes are calculated and measured. And the dispersion characteristics of these two kinds of HC- PCFs were analysed from 400 nm to 800 nm. Simulated and measured results show that the special structure could affect the properties of HC-PCFs, By comparing the simulated values with the measured results, it can be clarified that FEM is feasible and accurate for analysing photonic crystal fibres whose structures are irregular and complex.展开更多
The paper describes a simulated experiment that focuses on the numeric computation of magnetic loss in the laminated core of a single-phase power transformer. The students’ laboratory work is part of the library of e...The paper describes a simulated experiment that focuses on the numeric computation of magnetic loss in the laminated core of a single-phase power transformer. The students’ laboratory work is part of the library of experiments of the Electrical Machines virtual laboratory and makes use of the two-dimensional open-access electromagnetic field analysis software Finite Element Method Magnetics. The idea of the simulated exercise is to demonstrate how the magnetic loss caused by time-varying excitations affects the magnetic permeability, <em>μ</em>, of the laminated core and the terminal quantities of the energizing winding. A parametric analysis employing different values for the electrical conductivity and maximum hysteresis-induced angle of the laminated material yields five different field problems with increasing magnetic loss. Electric circuits characterized by the (<em>I-V</em>) operating point and reflected impedance of the energizing winding provide the information required to compute the changes in real power Δ<em>P</em>, reactive power Δ<em>Q</em> and magnetically stored energy Δ<em>W</em><sub>m</sub> between successive problems characterized by increasing magnetic loss. The concept of reflected impedance helps to explain the physical meaning of the changes in power dissipation and energy storage in the laminated core.展开更多
基金This work was mainly supported by the Department of Mathematics of University of Texas at Arlington where the corresponding author,Dr.Chaoqun Liu,is the full-time professor。
文摘The third-generation vortex identification method of Liutex(previously called Rortex)was introduced by the team led by Prof.Chaoqun Liu from University of Texas at Arlington to mathematically extract the rigid rotation part from the fluid motion,and thus to define and visualize vortices.Unlike the vorticity-based first generation and the scalar-valued second generation,Q,λ2,Δandλci methods for example,the Liutex vector provides a unique,mathematical and systematic way to define vortices and visualize vortical structures from multiple perspectives without ambiguity.In this article,we summarize the recent developments of the Liutex framework and discuss the Liutex theoretical system including its existence,uniqueness,stability,Galilean invariance,locality and globality,decomposition in tensor and vector forms,Liutex similarity in turbulence,and multiple Liutex-based vortex visualization methods including Liutex lines,Liutex magnitude iso-surfaces,Liutex-Ωmethod,and Liutex core line method,etc..Thereafter,the six core elements of vortex identification,including(1)absolute strength,(2)relative strength,(3)local rotational axis,(4)vortex rotation axes,(5)vortex core size,(6)vortex boundary,are used as touchstones against which the Liutex vortex identification system is examined.It is demonstrated with illustrative examples that the Liutex system is able to give complete and precise information of all six core elements in contrast to the failure and inaccuracy of the first and second-generation methods.The important concept that vorticity cannot represent vortex and the superiority of the Liutex system over previous methods are reiterated and stated in appropriate places throughout the paper.Finally,the article concludes with future perspectives,especially the application of the Liutex system in studying turbulence mechanisms encouraged by the discovery of Liutex similarity law.As a newly defined physical quantity,Liutex may open a door for quantified vortex and turbulence research including Liutex(vortex)dynamics and lead the community out of the shadow of turbulence research which traditionally relies on observations,graphics,assumptions,hypotheses,and other qualitative analyses.An optimistic projection is that the Liutex system could be critical to investigation of the vortex dynamics in applications from hydrodynamics,aerodynamics,oceanography,meteorology,etc.and to research of the generation,sustenance,modelling and controlling of turbulence.
基金Project supported by National Natural Science Foundation of China (40930740)
文摘The objective of this study was to investigate the vertical distribution of rare earth elements (REEs) in a natural wetland soil core to understand the influence of natural and anthropogenic activities on geochemical behavior of REEs. A natural wetland soil core of 95 cm was collected from the Sanjiang Plain in China and sliced into 5 cm slices for analyses of REEs, Fe, Al, Mn, Sc, Y, and soil organic matter (SOM). Results indicated that SOM was accumulated in the upper part of the soil core (0 to 20 cm depth), while Fe and Mn was reductively leached from the upper part of the soil core and accumulated in the low part. The content of total REEs ranged from 137.9 to 225.9 mg/kg in the soil core. Content profiles obtained for all REEs were almost identical except for Ce. The highest contents of REEs generally occurred at about 20 cm depth, but enrichment factor (EF) of REEs except Ce was usually the highest in the surface horizon. Average EF ranged from 1.1 for La to 2.1 for Gd. The pronounced shift in EF occurred at about 40 cm depth and it gradually increased from 40 cm depth to surface (except for Ce), probably suggesting anthropogenic atmospheric deposition of REEs. In comparison with chondrite, Eu was depleted in all horizons, while Ce was negatively anomalous in the top horizons and positively anomalous in the bottom horizons. This positive anomaly of Ce in the bottom horizons was due to its preferential adsorption on Fe and Mn oxides, relative to other REEs. Although both natural and anthropogenic activi-ties influence the geochemical behaviors of REEs in soils, enrichment or mobility of REEs is low in the natural wetland soil core of the San-jiang Plain.
文摘Eight-element contents of 653 unpolished rice samples harvested from Xingping experiment farm, Yunnan Province under the same ecological conditions were analyzed by ICP-AES method. The mineral elements content were closely related to low diversity, high-yielding, and multi-resistance breeding; The K, Mg, Ca and Mn content in high-yielding and resistant varieties were high, and other nutrients such as P, Fe, Zn and Cu were low, which was connected with the heredity and physiological mechanism of mineral nutrients. There is zonal distribution of mineral elements content from Yunnan rice, especially for P, Fe, Zn and Cu co-related with the diversity center, paddy versus upland, glutinous and non-glutinous, glume-hair versus nuda, rice color, rice flavor, soft rice versus non-soft rice, but it did not find any association with indica-japonica types. The results supported the ecological variety group view of 5-grade taxonomic system species-subspecies-ecological groups-ecological variety groups - varietal types' .
基金The National Major Project of Science and Technology of China under contract No.2011ZX05025-002-03
文摘A geochemical analysis of rare-earth elements (REEs) in 97 samples collected from the core of deep-water Well LS-A located at the Lingnan Low Uplift Area of the Qiongdongnan Basin is conducted, with the pur-pose of revealing the changes of sedimentary source and environment in the study region since Oligocene and evaluating the response of geochemical characteristics of REEs to the tectonic evolution. In the core samples, both∑REE and∑LREE (LREE is short for light-group REEs) fluctuate in a relatively wide range, while∑HREE (HREE is short for heavy-group REEs) maintains a relatively stable level. With the stratigraphic chronology becoming newer, both∑REE and∑LREE show a gradually rising trend overall. The∑REE of the core is relatively high from the bottom of Yacheng Formation (at a well depth of 4 207 m) to the top of Ledong Formation, and the REEs show partitioning characteristics of the enrichment of LREE, the stable content of HREE, and the negative anomaly of Eu to varying degrees. Overall the geochemical characteristics of REEs are relatively approximate to those of China's neritic sediments and loess, with significant "continental ori-entation". The∑REE of the core is relatively low in the lower part of Yacheng Formation (at a well depth of 4 207-4 330 m), as shown by the REEs partitioning characteristics of the depletion of LREE, the relative enrich-ment of HREE, and the positive anomaly of Eu; the geochemical characteristics of REEs are approximate to those of oceanic crust and basalt overall, indicating that the provenance is primarily composed of volcanic eruption matters. As shown by the analyses based on sequence stratigraphy and mineralogy, the provenance in study region in the early Oligocene mainly resulted from the volcanic materials of the peripheral uplift ar-eas; the continental margin materials from the north contributed only insignificantly; the provenance devel-oped to a certain extent in the late Oligocene. Since the Miocene, the provenance has ceaselessly expanded from proximal to distal realm, embodying a characteristic of multi-source sedimentation. In the core strata with 31.5, 28.4, 25.5, 23, and 16 Ma from today, the geochemical parameters of REEs and Th/Sc ratio have significant saltation, embodying the tectonic movement events in the evolution of the Qiongdongnan Basin. In the tectonic evolution history of the South China Sea, the South China Sea Movement (34-25 Ma BP, early expansion of the South China Sea), Baiyun Movement (23 Ma BP), late expansion movement (23.5-16.5 Ma BP), expansion-settlement transition, and other important events are all clearly recorded by the geochemi-cal characteristics of REEs in the core.
文摘<div style="text-align:justify;"> Currently, coupled mode theory (CMT) is widely used for calculating the coupling coefficient of twin-core fibers (TCFs) that are used in a broad range of important applications. This approach is highly accurate for scenarios with weak coupling between the cores but shows significant errors in the strong coupling scenarios, necessitating the use of a more accurate method for coupling coefficient calculations. Therefore, in this work, we calculate the coupling coefficients of TCFs using the supermode theory with finite element method (FEM) that has higher accuracy than CMT, particularly for the strong coupling TCF. To investigate the origin of the differences between the results obtained by these two methods, the modal field distributions of the supermodes of TCF are simulated and analyzed in detail. </div>
基金Project supported by the State Key Development Program for Basic Research of China (Grant No 2003CB314905)the National High Technology Development Program of China (Grant No 2003AA311010)
文摘Two kinds of fabricated hollow-core photonic crystal fibres (HC-PCFs) arc studied using finite element method (FEM) because the structures of the fibres are special, Normalized transmission spectra and transverse intensity distribution of the modes are calculated and measured. And the dispersion characteristics of these two kinds of HC- PCFs were analysed from 400 nm to 800 nm. Simulated and measured results show that the special structure could affect the properties of HC-PCFs, By comparing the simulated values with the measured results, it can be clarified that FEM is feasible and accurate for analysing photonic crystal fibres whose structures are irregular and complex.
文摘The paper describes a simulated experiment that focuses on the numeric computation of magnetic loss in the laminated core of a single-phase power transformer. The students’ laboratory work is part of the library of experiments of the Electrical Machines virtual laboratory and makes use of the two-dimensional open-access electromagnetic field analysis software Finite Element Method Magnetics. The idea of the simulated exercise is to demonstrate how the magnetic loss caused by time-varying excitations affects the magnetic permeability, <em>μ</em>, of the laminated core and the terminal quantities of the energizing winding. A parametric analysis employing different values for the electrical conductivity and maximum hysteresis-induced angle of the laminated material yields five different field problems with increasing magnetic loss. Electric circuits characterized by the (<em>I-V</em>) operating point and reflected impedance of the energizing winding provide the information required to compute the changes in real power Δ<em>P</em>, reactive power Δ<em>Q</em> and magnetically stored energy Δ<em>W</em><sub>m</sub> between successive problems characterized by increasing magnetic loss. The concept of reflected impedance helps to explain the physical meaning of the changes in power dissipation and energy storage in the laminated core.