期刊文献+
共找到812篇文章
< 1 2 41 >
每页显示 20 50 100
Purification and Spectral Characteristics of Cytochrome b-559 from Oxygen-evolving Photosystem Ⅱ Core Complexes of Spinach and Rice
1
作者 辛越勇 郁飞 +2 位作者 唐崇钦 李良璧 匡廷云 《Acta Botanica Sinica》 CSCD 2000年第12期1225-1230,共6页
Cytochrome b_559 in photosystem Ⅱ reaction center was purified from spinach ( Spinacia oleracea L.) and rice ( Oryza sativa L.) by a rapid and simple procedure. Their low temperature fluorescence emission and e... Cytochrome b_559 in photosystem Ⅱ reaction center was purified from spinach ( Spinacia oleracea L.) and rice ( Oryza sativa L.) by a rapid and simple procedure. Their low temperature fluorescence emission and excitation spectra, ultraviolet fluorescence spectra and absolute absorption spectra were presented. The author's purification methods, which enhanced the yield of pure protein and shorted the time for isolation, have several advantages: 1. use of oxygen_evolving PSⅡ core complexes as the starting material in order to avoid disturbing from other cytochromes; 2. isocratic elution of cytochrome b_559 from a DEAE_Sephacel column for eliminating the impurity and yielding the protein in pure state; 3. a simple column procedure for removal of excess Triton X_100. Purified cytochromes b_559 from these species have similar optical spectra and mobility during gel electrophoresis under native conditions. From the results of novel electrophoresis (Tricine_SDS_PAGE), cytochrome b_559 from both spinach and rice reveal two polypeptide bands (apparent molecular weight 9 kD and 4 kD, respectively). By measuring of 77 K fluorescence spectra, it was shown that for the purified cytochrome b_559 there were two excitation peaks at 439 nm and 413 nm, and two emission peaks at 563 nm and 668 nm. This is the first indication that Cyt b_559 is able to emit fluorescence and also transfer excited electrons to chlorophyll. By the use of ultraviolet fluorescence spectra, it was demonstrated for the first time that the location of Trp residue could be in the hydrophobic transmembrane region of cytochrome b_559. 展开更多
关键词 cytochrome b_559 oxygen evolution PSⅡ core complexes Tricine_SDS_PAGE optical spectra
在线阅读 下载PDF
Pre-Alpine extensional tectonics of a peridotitelocalized oceanic core complex in the Late Jurassic,high-pressure Monviso ophiolite(Western Alps)
2
作者 Gianni Balestro Andrea Festa +1 位作者 Yildirim Dilek Paola Tartarotti 《Episodes》 2015年第4期266-282,共17页
The Late Jurassic Monviso ophiolite in the Western Alps is a multiply deformed,eclogite-facies metaophiolite that represents a remnant of the Alpine Tethyan oceanic lithosphere.The recent recognition of a pre-Alpine d... The Late Jurassic Monviso ophiolite in the Western Alps is a multiply deformed,eclogite-facies metaophiolite that represents a remnant of the Alpine Tethyan oceanic lithosphere.The recent recognition of a pre-Alpine detachment fault in the Lower Tectonic Unit of this ophiolite has led to the discovery of an oceanic core complex,which developed during the initial stages of the tectonic evolution of the Alpine Tethys.The NNWstriking,20–25-km-long shear zone(Baracun Shear Zone)contains ductilely to cataclastically deformed blocks and clasts of Fe-Ti and Mg-Al metagabbros in a matrix made of mylonitic serpentinite and talc-chlorite schist with high Ni–Cr concentrations and high Cl contents.Intensely sheared ophicarbonate rocks and brecciated serpentinite within this shear zone are deformed by the Alpine-phase S1 foliation and D2 folds,providing a critical age constraint for the timing of its formation.Metabasaltic–metasedimentary rocks in the hanging wall increase in thickness away from the shear zone,characteristic of syn-extensional rock sequences in supradetachment basins. 展开更多
关键词 monviso ophiolite detachment fault oceanic core complexwhich pre alpine extensional tectonics late jurassic oceanic core complex PERIDOTITE eclogite facies metaophiolite
在线阅读 下载PDF
Multistage Extension and Age Dating of the Xiaoqinling Metamorphic Core Complex,Central China 被引量:25
3
作者 ZHANG Jinjiang ZHENG Yadong 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 1999年第2期139-147,共9页
Abstract There are two extensional systems in the Xiaoqinling metamorphic core complex (XMCC). One is the detachment fault system developed along the peripheries of the XMCC, which extended in an ESE-WNW direction and... Abstract There are two extensional systems in the Xiaoqinling metamorphic core complex (XMCC). One is the detachment fault system developed along the peripheries of the XMCC, which extended in an ESE-WNW direction and whose upper plate moved towards the WNW. The other extensional system includes the retrograde shear zones and normal faults developed within the XMCC, which represent the collapse of the XMCC. Ar-Ar and K-Ar dating shows that the extension of the detachment fault system continued from 135 to 123 Ma, i.e. in the late stage of its evolution at about 127 Ma. The collapse represented by the extensional system within the XMCC was operative during 120–106 Ma, and its main activity occurred about 116 Ma ago. These suggest that the XMCC experienced two extensional stages in its evolution, i.e., the syn-orogenic regional extension and post-orogenic collapse extension. 展开更多
关键词 Xiaoqinling metamorphic core complex (XMCC) MULTISTAGE EXTENSION detachment fault COLLAPSE AGES
在线阅读 下载PDF
Application of General Shear Theory to the Study of Formation Mechanism of the Metamorphic Core Complex:A Case Study of Xiaoqinling in Central China 被引量:22
4
作者 ZHANG Jinjiang ZHENG Yadong LIU Shuwen 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2000年第1期19-28,共10页
: The kinematic vorticity number and strain of the mylonitic zone related to the detachment fault increase from ESE to WNW along the moving direction of the upper plate of the Xiaoqinling metamorphic core complex (XMC... : The kinematic vorticity number and strain of the mylonitic zone related to the detachment fault increase from ESE to WNW along the moving direction of the upper plate of the Xiaoqinling metamorphic core complex (XMCC) and the geometry of quartz c-axis fabrics changes progressively from crossed girdles to single girdles in the same direction. Therefore, pure shear is dominant in the ESE part of the XMCC while simple shear becomes increasingly important towards WNW. However, the shear type does not change with the strain across the shear zone, thus the variation of shear type is of significance in indicating the formation mechanism. The granitic plutons within the XMCC came from the deep source and their emplacement was an active and forceful upwelling prior to the detachment faulting. The PTt path demonstrates that magmatism is an important cause for the formation of the XMCC. The formation mechanism of the XMCC is supposed to be active plutonism and passive detachment. Crustal thickening and magmatic doming caused necking extension with pure shear, and magmatic heating and doming resulted in detachment extension with simple shear and formed the XMCC. 展开更多
关键词 Xiaoqinling Metamorphic core complex (XMCC) formation mechanism shear type MAGMATISM PTt path
在线阅读 下载PDF
Extension of the Louzidian Metamorphic Core Complex and Development of Supradetachment Basins in Southern Chifeng,Inner Mongolia,China 被引量:19
5
作者 WANGXinshe ZHENGYadong JIAWen 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2004年第1期237-245,共9页
The Louzidian metamorphic core complex (LMCC) in southern Chifeng is located on the northern margin of the North China craton. Structural analyses of the LMCC and its extensional detachment system indicate that the LM... The Louzidian metamorphic core complex (LMCC) in southern Chifeng is located on the northern margin of the North China craton. Structural analyses of the LMCC and its extensional detachment system indicate that the LMCC experienced two-stage extension. The ductile regime experienced top-to-northeast shearing extension and the brittle detachment fault underwent top-down-outwards slipping. Between these two stages, a semi-ductile regime recorded the transition from ductile to brittle. The hanging wall of the detachment fault is similar to those classic supradetachment basins in western North America. Analyses of provenance and paleocurrent directions in the basins show that there were two filling stages. In the early stage, materials came from the southwest margin of the basin and the hanging wall of the detachment system and were transported from southwest to northeast; while in the late stage, deposits were derived from the footwall of the detachment fault and transported outwards to the two sides of the core complex. Since the filling period of the basins is from the late Jurassic to the late Cretaceous and it is coeval with the extension, the two filling stages reflect the two-stage history of the detachment fault. The large-scale late Jurassic underplating in the deep crust of the Chifeng area led to thickening and heating of the middle-upper crust and trigged the extension at depths and volcanism on the surface. In the early Cretaceous the upper plate of the detachment fault moved northeastwards and sediments were transported from southwest to northeast, while in the late Cretaceous the core complex was uplifted rapidly, the original basin was separated by the uplifted core, and lower-plate-derived debris was deposited in the adjacent upper-plate basins of the detachment fault. Evidentially, the development of the supradetachment basins were controlled by the extension and in turn the fillings in the basins recorded information of the extension, which has provided new evidence for kinematic interpretation of the Louzidian core complex. 展开更多
关键词 Metamorphic core complex extension stage supradetachment basin Louzidian southern Chifeng
在线阅读 下载PDF
The Liaonan Metamorphic Core Complex: Constitution, Structure and Evolution 被引量:8
6
作者 LIU Junlai GUAN Huimei JI Mo CAO Shuyun HU Ling 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2006年第4期502-513,共12页
The Liaonan metamorphic core complex (mcc) has a three-layer structure and is constituted by five parts, i.e. a detachment fault zone, an allochthonous upper plate and an supradetachment basin above the fault zone, ... The Liaonan metamorphic core complex (mcc) has a three-layer structure and is constituted by five parts, i.e. a detachment fault zone, an allochthonous upper plate and an supradetachment basin above the fault zone, and highly metamorphosed rocks and intrusive rocks in the lower plate. The allochthonous upper plate is mainly of Neoproterozoic and Paleozoic rocks weakly deformed and metamorphosed in pre-Indosinan stage. Above these rocks is a small-scale supradetachment basin of Cretaceous sedimentary and volcanic rocks. The lower plate is dominated by Archean TTG gneisses with minor amount of supracrustal rocks. The Archean rocks are intruded by late Mesozoic synkinematic monzogranitic and granitic plutons. Different types of fault rocks, providing clues to the evolution of the detachment fault zone, are well-preserved in the fault zone, e.g. mylonitic gneiss, mylonites, brecciated mylonites, microbreccias and pseudotachylites. Lineations in lower plate granitic intrusions have consistent orientation that indicate uniform top-to-NW shearing along the main detachment fault zone. This also provides evidence for the synkinematic characteristics of the granitic plutons in the lower plate. Structural analysis of the different parts in the mcc and isotopic dating of plutonic rocks from the lower plate and mylonitic rocks from detachment fault zone suggest that exhumation of the mcc started with regional crustal extension due to crustal block rotation and tangential shearing. The extension triggered magma formation, upwelling and emplacement. This event ended with appearance of pseudotachylite and fault gauges formed at the uppermost crustal level. U-Pb dating of single zircon grains from granitic rocks in the lower plate gives an age of 130±2.5 Ma, and biotite grains from the main detachment fault zone have ^40Ar-^39Ar ages of 108-119 Ma. Several aspects may provide constraints for the exhumation of the Liaonan mcc. These include regional extensional setting, cover/basement contact, temporal and spatial coupling of extension and magmatism, basin development and evolution of fault tectonites along detachment fault zone. We propose that the exhumation of the Liaonan mcc resulted from regional extension and thinning of crust or lithosphere in eastern North China, and accompanied with synkinematic intrusion of granitic plutons, formation of detachment fault zone, uplifting and exhumation of lower-plate rocks, and appearance of supradetachment basin. 展开更多
关键词 Liaonan metamorphic core complex crustal and lithosphere thinning crustal extension late Mesozoic
在线阅读 下载PDF
Metamorphic Core Complexes and Its Significance in the Continental Crustal Evolution 被引量:4
7
作者 Song Honglin Wei BizeDepartment of Geology , China University of Geosciences , Wuhan 430074 《Journal of Earth Science》 SCIE CAS CSCD 1990年第1期115-125,136,共12页
Metamorphic core complexes are a basic structural pattern related to extensional tectonics. Several characteristics of different scales of metamorphic core complexes in the Fangshan and Yunmengshan (Beijing) , Zhongti... Metamorphic core complexes are a basic structural pattern related to extensional tectonics. Several characteristics of different scales of metamorphic core complexes in the Fangshan and Yunmengshan (Beijing) , Zhongtiaoshan (Shanxi) , and Dengfong (Henan) are examined. A three-layer model for metam orphic core complexes is suggested . The conclusion is that metam orphic core complexes are the result of multiphase intracontinental crustal extensions and are an important tectonic pattern. which exposes the basement metam orphic rocks to the ground surface in the intracontinental cover . 展开更多
关键词 metamorphic core complex denudational fault system extensional tectonics
在线阅读 下载PDF
Numerical modeling of metamorphic core complex formation:Implications for the destruction of the North China Craton 被引量:6
8
作者 ZiQi Ma Gang Lu +1 位作者 JianFeng Yang Liang Zhao 《Earth and Planetary Physics》 EI CSCD 2022年第2期191-203,共13页
Widespread magmatism, metamorphic core complexes(MCCs), and significant lithospheric thinning occurred during the Mesozoic in the North China Craton(NCC). It has been suggested that the coeval exhumation of MCCs with ... Widespread magmatism, metamorphic core complexes(MCCs), and significant lithospheric thinning occurred during the Mesozoic in the North China Craton(NCC). It has been suggested that the coeval exhumation of MCCs with uniform northwest-southeast shear senses and magmatism probably resulted from a decratonization event during the retreat of the paleo-Pacific Plate. Here we used two-dimensional finite element thermomechanical numerical models to investigate critical parameters controlling the formation of MCCs under far-field extensional stress. We observed three end-member deformation modes: the MCC mode, the symmetric-dome mode, and the pure-shear mode. The MCC mode requires a Moho temperature of ≥700 ℃ and an extensional strain rate of ≥5 × 10^(-16)s^(-1), implying that the lithosphere had already thinned when the MCC was formed in the Mesozoic. Considering that the widespread MCCs have the same northwest-southeast extension direction in the NCC, we suggest that the MCCs are surface expressions of both large-scale extension and craton destruction and that rollback of the paleo-Pacific slab might be the common driving force. 展开更多
关键词 metamorphic core complex North China Craton numerical modeling EXTENSION
在线阅读 下载PDF
FEM simulation of formation of metamorphic core complex with ANSYS software 被引量:2
9
作者 Guoqing YIN Wei JIN Xianli YANG 《Global Geology》 2007年第1期110-112,共3页
This study utilizes ANSYS to establish FEM's model of metamorphic core complex,and used thermal-structure analysis to simulate metamorphic core complex's temperature field and stress field.The metamorphic core... This study utilizes ANSYS to establish FEM's model of metamorphic core complex,and used thermal-structure analysis to simulate metamorphic core complex's temperature field and stress field.The metamorphic core complex formation mechanism is discussed.The simulation results show that the temperature field change appearing as the earth surface's temperature is the lowest,and the temperature of metamorphic core complex's nucleus is the highest.The temperature field is higher along with depth increase,and the stress field change appearing as the biggest stress occurs in the nucleus.The next stress field occurs at the top of the cover. 展开更多
关键词 ANSYS metamorphic core complex numerical simulation
在线阅读 下载PDF
Structural Analysis of Jianglang Metamorphic Core Complex in Western Margin of yangtze Crston,Sichuan Province
10
作者 Song Honglin Fu Zhaoren Yan DanpingDepartment of Geology and Mineral Resources , China University of Geosciences , Beijing 100083 《Journal of Earth Science》 SCIE CAS CSCD 1995年第2期13-17,共5页
There is a belt of metamorphic core complexes in the western margin of the Yangtze craton . The geological setting of the belt is similar to that of the Cordilleran metamorphic core complexes . A typical one in this b... There is a belt of metamorphic core complexes in the western margin of the Yangtze craton . The geological setting of the belt is similar to that of the Cordilleran metamorphic core complexes . A typical one in this belt is the Jianglang metamorphic core complex , which has a configuration consisting of three layers : a core complex consisting of Mesoproterozoic schist sequence . a ductile middle slab consisting of Paleozoic meta- sedimentary -basalt characterized by the development of ' folding layer' and an upper cover consisting of Xikang Group which has suffered both buckling and flattening . A detachment fault developed along the contact boundary between the cover and basement causes the omission of Upper Sinian and Cambrian at the base of cover . A lot of normal ductile shear zones developed in the cover causes the thinning of it . All the features show that the early extension results in the thinning of crust , but the formation of the dome and exposure of basement rocks may be the results of superimposing of the E-W directed contraction and the following southward thrusting during Indosinian to Yanshanian orogeny . Syntectonic plutonism and pervasive thermo - metamor-phism in the cover suggest that the thermal uplift also causes the uplift of the MCC . 展开更多
关键词 metamorphic core complex extensional structure western margin of Yangtzecraton thermal uplift.
在线阅读 下载PDF
Structural Analysis for Qazzaz Metamorphic Core Complex,Northwestern Arabian Shield,Saudi Arabia
11
作者 Mansour H.AL-HASHIM Osama M.K.KASSEM 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2024年第5期1187-1201,共15页
Identifying deformational mechanisms and associated structures at various scales,ranging from regional-scale structures to microscopic fabric,is crucial for the assessment of tectonic development.Thirty-three samples ... Identifying deformational mechanisms and associated structures at various scales,ranging from regional-scale structures to microscopic fabric,is crucial for the assessment of tectonic development.Thirty-three samples were taken from the Qazzaz metamorphic core complex to estimate the finite strain for felsic and mafic minerals.These samples included gneisses rocks,monzogranite,and metavolcano-sedimentary rocks for both the Thalbah and Bayda groups.Using the Rf/j and Fry methods,the axial ratios(XZ)range about 2.20 to 7.10 and 1.90 to 9.10,respectively.For various rock units,the strain measurements show moderate to highly deformation.Most of the observed samples show shallow WNW dipping along a N to WNW trend of finite strain(X).The short axes(Z)based to be subvertical foliation related with a subhorizontal foliation.The results demonstrate that contacts generated at semi-brittle to ductile deformation and that the strain of magnitude has the same value for different lithologic units.It concluded that nappe generation in orogens results from pure shear deformation. 展开更多
关键词 Finite strain metamorphic core complex Qazzaz area Saudi Arabia
在线阅读 下载PDF
Spectral Properties and Characterization of the Modified PSⅡCore Complexes
12
作者 LI Shu-Qin CHEN Yao-Dong +2 位作者 TANG Chong-Qin LI Liang-Bi KUANG Ting-Yun 《Acta Botanica Sinica》 CSCD 2000年第6期643-645,共3页
Even though light is the unique source of enengy forphotosynthesis,it can also be hannful to plant,Photoin-hibition occurs when light energy absorption largely ex-ceeds the energy consumption of photosynthetic reactio... Even though light is the unique source of enengy forphotosynthesis,it can also be hannful to plant,Photoin-hibition occurs when light energy absorption largely ex-ceeds the energy consumption of photosynthetic reactions.Today,the mechanisnu of photoinhibition has become amajor topic of photosynthesis research.It is generally ae-cepted that PS IⅡis affected predominantly by photounhi-bition[1],which causes a loss of electron transfer caparityand oxygen evolution activity,bleaching of pigment,degradation of D,and other proteins,croes-linking be-tween polypeptidesi. 展开更多
关键词 PSⅡcore complexes spectral properties MODIFICATION
在线阅读 下载PDF
Resonance Raman Spectra of Purified PS Ⅱ Core Antenna Complexes CP43 and CP47 被引量:2
13
作者 单际修 杨昆云 +7 位作者 冯丽洁 李良璧 匡廷云 王居硕 赵南明 刘玉龙 朱恪 杨国桢 《Acta Botanica Sinica》 CSCD 1999年第3期280-284,共5页
PSⅡ core antenna complexes, CP43 and CP47, were purified from spinach (Spinacia oleracea L.) by DEAE Fractogel TSK 650S anion exchange chromatography. Their normal temperature (298 K) resonance Raman spectra were... PSⅡ core antenna complexes, CP43 and CP47, were purified from spinach (Spinacia oleracea L.) by DEAE Fractogel TSK 650S anion exchange chromatography. Their normal temperature (298 K) resonance Raman spectra were measured. The results suggest that all β carotenoids bound to CP43 and CP47 are in all trans configuration and likely in twisted conformations. 展开更多
关键词 PSⅡ core antenna complexes CP43 CP47 Resonance Raman spectrum β carotene
在线阅读 下载PDF
Oxygen-evolving Activity in Photosystem II Core Complex of Photosynthetic Membrane in the Presence of Native Lipid 被引量:3
14
作者 阳振乐 王则能 +1 位作者 李良璧 匡廷云 《Chinese Journal of Chemistry》 SCIE CAS CSCD 2002年第6期576-582,共7页
The techniques of oxygen electrode polarography and Fourier transform infrared (FT IR) spectroscopy were employed to explore the involvement of digalactosyl diacylglycerol (DGDG) in functional and structural roles in... The techniques of oxygen electrode polarography and Fourier transform infrared (FT IR) spectroscopy were employed to explore the involvement of digalactosyl diacylglycerol (DGDG) in functional and structural roles in the photosystem II core complex (PSIICC). It was shown that DGDG exhibited the ability to stimulate the oxygen evolution in PSIICC, which was accompanied by the changes in the structures of PSIICC proteins. The results revealed that there existed hydrogen bonding interactions between DGDG molecules and PSIICC proteins. It is most likely that the sites of PSIICC interaction with DGDG are in the extrinsic protein of 33 kDa. 展开更多
关键词 photosystem II core complex digalactosyl diacylglycerol oxygen evolution protein structure
原文传递
Deformation characteristics and genesis of the Waziyu metamorphic core complex in western Liaoning of China 被引量:4
15
作者 ZHANG BiLong ZHU Guang +3 位作者 CHEN Yin PIAO XueFeng JU LinXue WANG HaoQian 《Science China Earth Sciences》 SCIE EI CAS 2012年第11期1764-1781,共18页
The Waziyu metamorphic core complex is situated at the eastern end of the Yanshan tectonic belt.The NNE-striking detachment ductile shear zone in the core complex lies between the Archean metamorphic basement and Fuxi... The Waziyu metamorphic core complex is situated at the eastern end of the Yanshan tectonic belt.The NNE-striking detachment ductile shear zone in the core complex lies between the Archean metamorphic basement and Fuxin-Yixian rift basin,dips NW gently,and shows corrugation folds.Exposure structures,microstructures,and quartz C-axis fabrics all indicate top-to-the WNW sense of shear,i.e.,ca.285°,for the shear zone.Estimates of the deformation temperatures(ca.550-250°C) demonstrate its mid-crustal origination and progressive deformation from deep to shallow levels.The northern segment of the shear zone shows relatively weak exhumation with exposures of low-temperature mylonites whereas its middle and southern segments have more intense uplifting with exposures of high-temperature mylonites.Biotite and muscovite 40 Ar/39 Ar ages,U-Pb dating results of zircon from dikes and plutons as well as formation ages of the supra-detachment basin all suggest the formation time of 135-100 Ma for the core complex.The formation was also associated with syntectonic emplacement of the Early Cretaceous Shishan pluton.The western margin of the core complex was truncated by the Sunjiawan-Shaohuyingzi brittle normal fault when it uplifted to shallow crust levels,and finally exhumed to near-surface levels.The core complex was developed by the rolling-hinge model under WNW-ESE extension during the Early Cretaceous peak destruction of the North China Craton.Ductile flow did not appear in the lower plate,therefore not supporting the low-crust gravitational collapse. 展开更多
关键词 Waziyu metamorphic core complex detachment shear zone 40 Ar/39 Ar dating rolling-hinge model craton destruction
原文传递
Determining the key conditions for the formation of metamorphic core complexes by geodynamic modeling and insights into the destruction of North China Craton 被引量:3
16
作者 LU Gang ZHAO Liang +2 位作者 ZHENG TianYu WANG Kun YANG JianFeng 《Science China Earth Sciences》 SCIE EI CAS CSCD 2016年第9期1873-1884,共12页
Metamorphic core complex(MCC) is characterized by the exhumation of lower crust over a large-scale detachment fault, providing natural records for tectonic extension. MCCs are widely identified in the North China Crat... Metamorphic core complex(MCC) is characterized by the exhumation of lower crust over a large-scale detachment fault, providing natural records for tectonic extension. MCCs are widely identified in the North China Craton(NCC), which have been intensively studied on their structural and geological characteristics. Yet, the condition for the formation of MCCs and their link with NCC destruction are still in debate. In this study, we perform numerical simulations to investigate MCC formation under extension, with a focus on the effect of crustal rheologies. Results indicate that three end-member modes of deformation may occur: the metamorphic core complex mode, the detachment fault-uplifting mode and the pure shear mode. Weaker lower crust and stronger upper crust may promote the formation of MCC. In contrast, stronger lower crust(>1.3×1021 Pa s) may prohibit the exhumation of lower crust(detachment fault-uplifting mode), while weaker upper crust(<7.8×1021 Pa s) may fail to develop detachment faults(pure shear mode). Given that cratons typically have a strong crust, we suggest that the lower crust of NCC was weakened prior to extension, which promoted the formation of MCC in a later stage under the back-arc extension. 展开更多
关键词 Metamorphic core complex Numerical modeling North China Craton EXTENSION
原文传递
Structure, evolution and regional tectonic implications of the Queshan metamorphic core complex in eastern Jiaodong Peninsula of China 被引量:22
17
作者 XIA ZengMing LIU JunLai +3 位作者 NI JinLong ZHANG TingTing SHI XingMing WU Yun 《Science China Earth Sciences》 SCIE EI CAS CSCD 2016年第5期997-1013,共17页
The Queshan MCC is an important example of a crustal extensional structure in the eastern Jiaodong Peninsula along the southeastern margin of the NCC in the Early Cretaceous. The MCC is a typical Cordilleran-type core... The Queshan MCC is an important example of a crustal extensional structure in the eastern Jiaodong Peninsula along the southeastern margin of the NCC in the Early Cretaceous. The MCC is a typical Cordilleran-type core complex with a three-layered structure:(1) the upper plate is constituted by the Cretaceous supradetachment basin and Paleoproterozoic basement;(2) the lower plate comprises the Neoarchean high-grade metamorphic complexes and late Mesozoic granitic intrusions; and(3) the two plates are separated by a master detachment fault. A series of late NEN-oriented brittle faults superimposed on and destructed the early MCC. Petrology, geometry, kinematics, macro- and micro-structures and quartz c-axis fabrics imply that the MCC has a progressive exhumation history from middle-lower to subsurface level(via middle-upper crustal level) under the nearly WNW-ESE regional extensional regime. We present structural and geochronological evidence to constrain the exhumation of the Queshan MCC from ca. 135 to 113 Ma. Based on the comprehensive analysis of the different patterns of extensional structures in the Jiaodong and Liaodong Peninsula, we have defined the Jiao-Liao Early Cretaceou extensional province and further divided the crustal extension of it into two stages: the first stage was the intense flow of the middle-lower crust and the second stage was the extension of the middle-upper crust. Combining the tectonic setting, the lithosphere thinning in the Jiao-Liao Early Cretaceous extensional province can be considered a typical model for the response of crust-mantle detachment faulting under regional extension in East Asia. 展开更多
关键词 Jiaodong Peninsula Queshan metamorphic core complex Detachment fault zone Jiao-Liao Early Cretaceous extensional province North China Craton
原文传递
AN ENORMOUS THRUST NAPPE AND EXTENSIONAL METAMORPHIC CORE COMPLEX NEWLY DISCOVERED IN SINO-MONGOLIAN BOUNDARY AREA 被引量:28
18
作者 郑亚东 王士政 王玉芳 《Science China Chemistry》 SCIE EI CAS 1991年第9期1145-1154,共10页
An enormous thrust nappe and a metamorphic core complex of extensional origin have been recently discovered within the Hercynian-Indosinian orogen of Inner Mongolia. Both features are of the Mesozoic age, but the form... An enormous thrust nappe and a metamorphic core complex of extensional origin have been recently discovered within the Hercynian-Indosinian orogen of Inner Mongolia. Both features are of the Mesozoic age, but the former is older. The thrust nappe strikes WNW-ESE and Proterozoic dolomite was thrust southwards atop strata ranging from the Cambrian to the Triassic in age. The visible displacement of the thrust is ca. 70 km and the deduced one is over 140 km. The metamorphic core complex (mainly mylonites) extends in an N-E direction, forming itself into a dome geometry and lying under an extensional detachment fault. The mylonitic foliation dips gently and the stretching mineral lineation, as a whole, plunges SSE. Various shear sense markers show a normal-sense shear movement. Some significant problems atise from the coexistence of nappe and extensional structures at a postoro-genic stage. 展开更多
关键词 NAPPE KLIPPE metamorphie core complex mylonite.
原文传递
Deformation characteristics and formation mechanism of the Yunmengshan metamorphic core complex 被引量:13
19
作者 Yin Chen Guang Zhu +1 位作者 Dazhi Jiang Shaoze Lin 《Chinese Science Bulletin》 SCIE EI CAS 2014年第20期2419-2438,共20页
The Yunmengshan metamorphic core complex in the middle part of the Yanshan Fold and Thrust Belt records crust extension processes of the eastern North China Craton during its peak destruction.Development of the metamo... The Yunmengshan metamorphic core complex in the middle part of the Yanshan Fold and Thrust Belt records crust extension processes of the eastern North China Craton during its peak destruction.Development of the metamorphic core complex was controlled by the generally NNE-striking Dashuiyu Shear Zone.The shear zone dips SE and becomes shallower NE-wards,leading to exposures of a ductile shear zone in the southern and middle parts and brittle faults in the northern part.Exposure structures,microstructures,and quartz C-axis fabrics indicate that the ductile shear zone belongs to an extensional shear zone with a top-to-the-SE shear sense.Deformation temperatures of 300–520°C suggest a midcrustal origin for the ductile shear zone.A ductile deformation belt in the footwall of the shear zone is only as wide as 1–3 km,indicating no widespread mid-crustal ductile flow in the region during the deformation.Zircon U–Pb dating of dykes and plutons as well as hornblende and biotite40Ar/39Ar dating demonstrate that the metamorphic core complex originated at 135 Ma and experienced intense shearing of the Dashuiyu Shear Zone,development of the supradetachment basins,and synkinematic intrusion during 135–125 Ma.The metamorphic core complex was subjected to rapid exhumation during 125–114 Ma when the Dashuiyu Shear Zone suffered continuous activity and passive doming.The shear zone and its hanging wall were cut or replaced by a series of brittle faults when they wereuplifted to a brittle regime,showing that exhumation took place in continuous extensional activities.The metamorphic core complex turned into slow exhumation in an extensional regime in the following latest Early Cretaceous.The evolution history suggests that the Yunmengshan metamorphic core complex was developed by the rolling-hinge model,a common formation mechanism for intraplate metamorphic core complexes in the North China Craton,under the continuous NW–SE extension during the Early Cretaceous(135–100 Ma). 展开更多
关键词 变质核杂岩 变形温度 云蒙山 机制 锆石U-PB年龄 韧性剪切带 特征和 折返过程
在线阅读 下载PDF
Genesis of the Hongzhen metamorphic core complex and its tectonic implications 被引量:10
20
作者 ZHU Guang XIE ChengLong +3 位作者 XIANG BiWei HU ZhaoQi WANG YongSheng LI Xing 《Science China Earth Sciences》 SCIE EI CAS 2007年第5期649-659,共11页
The Hongzhen metamorphic core complex is situated in the Yangtze plate to the east of the Dabie oro- genic belt. Its ductile detachment zone in the foot wall overprints on the metamorphic complex of the Proterozoic Do... The Hongzhen metamorphic core complex is situated in the Yangtze plate to the east of the Dabie oro- genic belt. Its ductile detachment zone in the foot wall overprints on the metamorphic complex of the Proterozoic Dongling Group. The present profile of the ductile shear zone with consistent SW-dipping mineral elongation lineation shows antiform and reversed S-shape from northeast to southwest respectively. Exposure structures, microstructures and quartz C-axis fabric all indicate top-to-SW movement for the ductile shear zone. Recrystallisation types of quartz and feldspar in the mylonites demonstrate that the shear zone was developed under the amphibolite facies condition and at mid-crust levels. The metamorphic core complex formed in the Early Cretaceous with a muscovite plateau age of 124.8±1.2 Ma. Regional NE-SW extension along a SW-dipping, gentle detachment zone was responsible for formation of the core complex. Intrusion of the Hongzhen granite with a biotite plateau age of 124.8±1.2 Ma rendered the ductile shear zone curved, uplifted and final localization of the core complex. The Hongzhen metamorphic core complex suggests that the Early Cretaceous magma- tism in this region took place under the condition of regional extension and the eastern Yangtze plate also experienced lithospheric thinning. 展开更多
关键词 YANGTZE plate Hongzhen METAMORPHIC core complex DUCTILE shear zone LITHOSPHERIC THINNING
原文传递
上一页 1 2 41 下一页 到第
使用帮助 返回顶部