期刊文献+
共找到216,440篇文章
< 1 2 250 >
每页显示 20 50 100
Recent Progresses in Synthesis of Cyclic Polymers in Large-scale and Some Functionalized Composites
1
作者 QU Kairu GUO Lyuzhou +3 位作者 WANG Wenbin YAN Xuzhou CAO Xuezheng YANG Zhenzhong 《高等学校化学学报》 北大核心 2026年第1期42-57,共16页
Among various architectures of polymers,end-group-free rings have attracted growing interests due to their distinct physicochemical performances over the linear counterparts which are exemplified by reduced hydrodynam... Among various architectures of polymers,end-group-free rings have attracted growing interests due to their distinct physicochemical performances over the linear counterparts which are exemplified by reduced hydrodynamic size and slower degradation.It is key to develop facile methods to large-scale synthesis of polymer rings with tunable compositions and microstructures.Recent progresses in large-scale synthesis of polymer rings against single-chain dynamic nanoparticles,and the example applications in synchronous enhancing toughness and strength of polymer nanocomposites are summarized.Once there is the breakthrough in rational design and effective large-scale synthesis of polymer rings and their functional derivatives,a family of cyclic functional hybrids would be available,thus providing a new paradigm in developing polymer science and engineering. 展开更多
关键词 Cyclic polymer Large-scale synthesis Single-chain nanoparticle Performance composite
在线阅读 下载PDF
CoMoNiO-S/nickel foam heterostructure composite for efficient oxygen evolution catalysis performance
2
作者 YANG Hong SHAO Shengjuan +2 位作者 LI Baoyi LU Yifan LI Na 《无机化学学报》 北大核心 2026年第1期203-215,共13页
A composite electrocatalyst,CoMoNiO-S/NF-110(NF is nickel foam),was synthesized through electrodeposition,followed by pyrolysis and then the vulcanization process.CoMoNiO-S/NF-110 exhibited a structure where Ni3S2 and... A composite electrocatalyst,CoMoNiO-S/NF-110(NF is nickel foam),was synthesized through electrodeposition,followed by pyrolysis and then the vulcanization process.CoMoNiO-S/NF-110 exhibited a structure where Ni3S2 and Mo2S3 nanoparticles were integrated at the edges of Co3O4 nanosheets,creating a rich,heterogeneous interface that enhances the synergistic effects of each component.In an alkaline electrolyte,the synthesized CoMoNiO-S/NF-110 exhibited superior electrocatalytic performance for oxygen evolution reaction(OER),achieving current densities of 100 and 200 mA·cm^(-2) with low overpotentials of 199.4 and 224.4 mV,respectively,outperforming RuO2 and several high-performance Mo and Ni-based catalysts.This excellent performance is attributed to the rich interface formed between the components and active sites exposed by the defect structure. 展开更多
关键词 oxygen evolution reaction VULCANIZATION composite electrocatalyst MoNi-based catalyst
在线阅读 下载PDF
Design and synthesis of KIT-5/Beta composites under varied hydrothermal temperatures and evaluation of their hydrodenitrogenation performance
3
作者 LIU Xing GUO Shaoqing +7 位作者 CUI Haitao LI Zhenrong LI Xin WANG Lei WU Xingjie WANG Xiaoxiao YUAN Lijing ZHAO Liangfu 《燃料化学学报(中英文)》 北大核心 2026年第1期46-57,共12页
KIT-5/Beta composite supports were synthesized using an in situ self-assembly hydrothermal method,and NiW/KIT-5/Beta catalysts were prepared by impregnation.A series of characterization techniques were utilized to eva... KIT-5/Beta composite supports were synthesized using an in situ self-assembly hydrothermal method,and NiW/KIT-5/Beta catalysts were prepared by impregnation.A series of characterization techniques were utilized to evaluate the influence of varying hydrothermal synthesis temperatures on the physicochemical properties of both the KIT-5/Beta supports and the resulting catalysts.The catalytic performances of catalysts were evaluated under reaction conditions of 320℃,4 MPa H_(2)pressure,and a weight hourly space velocity(WHSV)of 4.8 h^(-1)for hydrodenitrogenation(HDN)of quinoline.The results indicated that the specific surface area and pore structure of the materials could be effectively regulated by adjusting the hydrothermal synthesis temperature,which in turn influenced the number of active sites on the catalyst.The NiW/KB-125 catalyst,synthesized at 125℃,presented the highest quinoline HDN efficiency(96.8%),which can be attributed to its favorable pore channel structure,greater Brønsted acid number,higher degree of metal sulfidation(80.12%)and appropriate metal-support interaction(MSI). 展开更多
关键词 mesoporous-microporous material KIT-5/Beta composite NiWS QUINOLINE HYDRODENITROGENATION
在线阅读 下载PDF
Post-synthetic modification strategy to construct Co-MOF composites for boosting oxygen evolution reaction activity
4
作者 ZHENG Haifeng GUO Xingzhe +5 位作者 WEI Yunwei WANG Xinfang QI Huimin YAN Yuting ZHANG Jie LI Bingwen 《无机化学学报》 北大核心 2026年第1期193-202,共10页
The poor electrical conductivity of metal-organic frameworks(MOFs)limits their electrocatalytic performance in the oxygen evolution reaction(OER).In this study,a Py@Co-MOF composite material based on pyrene(Py)molecul... The poor electrical conductivity of metal-organic frameworks(MOFs)limits their electrocatalytic performance in the oxygen evolution reaction(OER).In this study,a Py@Co-MOF composite material based on pyrene(Py)molecules and{[Co2(BINDI)(DMA)_(2)]·DMA}_(n)(Co-MOF,H4BINDI=N,N'-bis(5-isophthalic acid)naphthalenediimide,DMA=N,N-dimethylacetamide)was synthesized via a one-pot method,leveragingπ-πinteractions between pyrene and Co-MOF to modulate electrical conductivity.Results demonstrate that the Py@Co-MOF catalyst exhibited significantly enhanced OER performance compared to pure Co-MOF or pyrene-based electrodes,achieving an overpotential of 246 mV at a current density of 10 mA·cm^(-2) along with excellent stability.Density functional theory(DFT)calculations reveal that the formation of O*in the second step is the rate-determining step(RDS)during the OER process on Co-MOF,with an energy barrier of 0.85 eV due to the weak adsorption affinity of the OH*intermediate for Co sites.CCDC:2419276. 展开更多
关键词 PYRENE metal-organic frameworks composite catalyst oxygen evolution reaction density functional theory
在线阅读 下载PDF
Enhanced electromagnetic wave absorption in biochar/yttrium iron garnet hybrid composites for electromagnetic interference shielding applications
5
作者 Ozgur Yasin Keskin 《International Journal of Minerals,Metallurgy and Materials》 2026年第1期335-346,共12页
Biochar and biochar composites are versatile materials that can be used in many applications.In this study,biochar was prepared from sawdust and combined with the yttrium iron garnet(YIG)nanocrystal to investigate the... Biochar and biochar composites are versatile materials that can be used in many applications.In this study,biochar was prepared from sawdust and combined with the yttrium iron garnet(YIG)nanocrystal to investigate the shielding effectiveness of the composite structure.Firstly,the effect of the pyrolysis temperature on the shielding effectiveness of biochar was investigated.Secondly,biochars combined with YIG nanocrystals with different contents and shielding effectiveness of the composites were investigated.The electromagnetic effectiveness of the samples was investigated within the X band(8-12 GHz).The findings indicate that biochar demonstrates enhanced absorption properties with elevated pyrolysis temperatures.Biochars demonstrated an approximate 40 d B shielding effectiveness,while YIG exhibited approximately 7 d B,corresponding to absorption at 8 GHz.However,the combination of biochar and YIG exhibited exceptional absorption,reaching 67.12 d B at 8 GHz. 展开更多
关键词 BIOCHAR electromagnetic shielding electromagnetic wave absorption composite
在线阅读 下载PDF
On AlN_(P)/Mg-Zn-Cu cast composites with low expansion and high thermal conductivity
6
作者 Shu-sen Wu Lu Chen +2 位作者 Shu-lin Lü Wei Guo Jian-yu Li 《China Foundry》 2026年第1期101-107,共7页
There is an urgent need to develop magnesium-matrix materials that exhibit both high thermal conductivity and low thermal expansion to ensure compatibility with chips.This study aims to develop a Mg-Zn-Cu alloy with h... There is an urgent need to develop magnesium-matrix materials that exhibit both high thermal conductivity and low thermal expansion to ensure compatibility with chips.This study aims to develop a Mg-Zn-Cu alloy with high thermal conductivity.Furthermore,it explores the preparation of AlN_(P)/Mg-Zn-Cu composites featuring low coefficients of thermal expansion.The stir casting method was utilized to fabricate the composites and an investigation was conducted to examine their microstructure and thermal properties.Results indicate that the addition of AlN_(P)reduces the thermal expansion coefficient while maintaining relatively high thermal conductivity.Specifically,the AlN_(P)/Mg-0.5Zn-0.5Cu composite with 30wt.%AlN_(P)achieves a thermal conductivity of 132.7 W·m^(-1)·K^(-1)and a thermal expansion coefficient of 18.5×10^(-6)K^(-1),rendering it suitable for electronic packaging applications where thermal management is critical. 展开更多
关键词 thermal expansion thermal conductivity magnesium-matrix composites Mg-Zn-Cu alloy
在线阅读 下载PDF
The Microstructure and Properties of Graphene/Copper Composite Wires
7
作者 CHEN Wei CHEN Yufei +2 位作者 KUANG Meizhou CHEN Haibing LIN Gaoyong 《Journal of Wuhan University of Technology(Materials Science)》 2026年第1期1-7,共7页
In this study,multilayer lamination welding was employed to prepare graphene/copper(Gr/Cu)composite billets from graphene-coated copper foils,followed by multi-pass cold drawing to produce Φ1 mm Gr/Cu composite wires... In this study,multilayer lamination welding was employed to prepare graphene/copper(Gr/Cu)composite billets from graphene-coated copper foils,followed by multi-pass cold drawing to produce Φ1 mm Gr/Cu composite wires.Microstructure and property analyses in both the cold-drawn and annealed states show that the incorporation of graphene significantly improves the ductility and electrical conductivity of the copper wire.After annealing at 350℃ for 30 minutes,the composite wire demonstrates a tensile strength of 270 MPa and an electrical conductivity of 102.74%IACS,both superior to those of pure copper wire under identical conditions.At 150℃,the electrical conductivity of the annealed composite wire reaches 72.60%IACS,notably higher than the 68.19%IACS of pure copper.The results suggest that graphene is uniformly distributed within the composite wire,with minimal impact on conductivity,while effectively refining the copper grain structure to enhance ductility.Moreover,graphene suppresses copper lattice vibrations at elevated temperatures,reducing the rate of conductivity degradation. 展开更多
关键词 copper-based composite wire GRAPHENE electrical conductivity cold drawing ANNEALING
原文传递
Influence of interface shape on microstructure and mechanical properties of Mg/Al composite plates fabricated by hot-pressing
8
作者 Shi-jun TAN Bo SONG +6 位作者 Hao-hua XU Ting-ting LIU Jia SHE Sheng-feng GUO Xian-hua CHEN Kai-hong ZHENG Fu-sheng PAN 《Transactions of Nonferrous Metals Society of China》 2026年第1期124-143,共20页
A new method was proposed for preparing AZ31/1060 composite plates with a corrugated interface,which involved cold-pressing a corrugated surface on the Al plate and then hot-pressing the assembled Mg/Al plate.The resu... A new method was proposed for preparing AZ31/1060 composite plates with a corrugated interface,which involved cold-pressing a corrugated surface on the Al plate and then hot-pressing the assembled Mg/Al plate.The results show that cold-pressing produces intense plastic deformation near the corrugated surface of the Al plate,which promotes dynamic recrystallization of the Al substrate near the interface during the subsequent hot-pressing.In addition,the initial corrugation on the surface of the Al plate also changes the local stress state near the interface during hot pressing,which has a large effect on the texture components of the substrates near the corrugated interface.The construction of the corrugated interface can greatly enhance the shear strength by 2−4 times due to the increased contact area and the strong“mechanical gearing”effect.Moreover,the mechanical properties are largely depended on the orientation relationship between corrugated direction and loading direction. 展开更多
关键词 Mg/Al composite plate interface shape MICROSTRUCTURE mechanical properties TEXTURE
在线阅读 下载PDF
Horizontal Bearing Capacity of Monocolumn Composite Bucket Foundations for Offshore Wind Turbines
9
作者 Hongyan Ding Renhao Wang +1 位作者 Puyang Zhang Conghuan Le 《哈尔滨工程大学学报(英文版)》 2026年第1期162-174,共13页
Monocolumn composite bucket foundation is a new type of offshore wind energy foundation.Its bearing characteristics under shallow bedrock conditions and complex geological conditions have not been extensively studied.... Monocolumn composite bucket foundation is a new type of offshore wind energy foundation.Its bearing characteristics under shallow bedrock conditions and complex geological conditions have not been extensively studied.Therefore,to analyze its bearing characteristics under complex conditions-such as silty soil,chalky soil,and shallow bedrock-this paper employs finite element software to establish various soil combination scenarios.The load-displacement curves of the foundations under these scenarios are calculated to subsequently evaluate the horizontal ultimate bearing capacity.This study investigates the effects of shallow bedrock depth,the type of soil above the bedrock,the thickness of layered soil,and the quality of layered soil on the bearing characteristics of the monocolumn composite bucket foundation.Based on the principle of single-variable control,the ultimate bearing capacity characteristics of the foundation under different conditions are compared.The distribution of soil pressure inside and outside the bucket wall on the compressed side of the foundation,along with the plastic strain of the soil at the base of the foundation,is also analyzed.In conclusion,shallow bedrock somewhat reduces foundation bearing capacity.Under shallow bedrock conditions,the degree of influence on foundation bearing capacity characteristics can considerably vary on different upper soils.The thickness of each soil layer and the depth to bedrock in stratified soils also affect the bearing capacity of the foundation.The findings of this paper provide a theoretical reference for related foundation design and construction.In practice,the bearing performance of the foundation can be enhanced by improvingthe soil quality in the bucket,adjusting the penetration depth,adjusting the percentage of different types of soil layers in the bucket,and applying other technical construction methods. 展开更多
关键词 Monocolumn composite bucket foundations Shallow bedrock Bearing characteristics Offshore wind power Silty soil Chalky soil
在线阅读 下载PDF
Regularly Arranged Micropore Architecture Enables Efficient Lithium-Ion Transport in SiO_(x)/ Artificial Graphite Composite Electrode
10
作者 Jaejin Lim Dongyoon Kang +4 位作者 Cheol Bak Seungyeop Choi Mingyu Lee Hongkyung Lee Yong Min Lee 《Nano-Micro Letters》 2026年第3期103-120,共18页
To enhance the electrochemical performance of lithium-ion battery anodes with higher silicon content,it is essential to engineer their microstructure for better lithium-ion transport and mitigated volume change as wel... To enhance the electrochemical performance of lithium-ion battery anodes with higher silicon content,it is essential to engineer their microstructure for better lithium-ion transport and mitigated volume change as well.Herein,we suggest an effective approach to control the micropore structure of silicon oxide(SiO_(x))/artificial graphite(AG)composite electrodes using a perforated current collector.The electrode features a unique pore structure,where alternating high-porosity domains and low-porosity domains markedly reduce overall electrode resistance,leading to a 20%improvement in rate capability at a 5C-rate discharge condition.Using microstructure-resolved modeling and simulations,we demonstrate that the patterned micropore structure enhances lithium-ion transport,mitigating the electrolyte concentration gradient of lithium-ion.Additionally,perforating current collector with a chemical etching process increases the number of hydrogen bonding sites and enlarges the interface with the SiO_(x)/AG composite electrode,significantly improving adhesion strength.This,in turn,suppresses mechanical degradation and leads to a 50%higher capacity retention.Thus,regularly arranged micropore structure enabled by the perforated current collector successfully improves both rate capability and cycle life in SiO_(x)/AG composite electrodes,providing valuable insights into electrode engineering. 展开更多
关键词 Lithium-ion battery SiO_(x)/artificial graphite composite electrode Microstructure PORE Perforated current collector
在线阅读 下载PDF
Optimized fiber allocation for enhanced impact resistance in composites through damage mode suppression
11
作者 Noha M.Hassan Zied Bahroun +2 位作者 Mahmoud I.Awad Rami As'ad El-Cheikh Amer Kaiss 《Defence Technology(防务技术)》 2026年第1期316-329,共14页
Variable stiffness composites present a promising solution for mitigating impact loads via varying the fiber volume fraction layer-wise,thereby adjusting the panel's stiffness.Since each layer of the composite may... Variable stiffness composites present a promising solution for mitigating impact loads via varying the fiber volume fraction layer-wise,thereby adjusting the panel's stiffness.Since each layer of the composite may be affected by a different failure mode,the optimal fiber volume fraction to suppress damage initiation and evolution is different across the layers.This research examines how re-allocating the fibers layer-wise enhances the composites'impact resistance.In this study,constant stiffness panels with the same fiber volume fraction throughout the layers are compared to variable stiffness ones by varying volume fraction layer-wise.A method is established that utilizes numerical analysis coupled with optimization techniques to determine the optimal fiber volume fraction in both scenarios.Three different reinforcement fibers(Kevlar,carbon,and glass)embedded in epoxy resin were studied.Panels were manufactured and tested under various loading conditions to validate results.Kevlar reinforcement revealed the highest tensile toughness,followed by carbon and then glass fibers.Varying reinforcement volume fraction significantly influences failure modes.Higher fractions lead to matrix cracking and debonding,while lower fractions result in more fiber breakage.The optimal volume fraction for maximizing fiber breakage energy is around 45%,whereas it is about 90%for matrix cracking and debonding.A drop tower test was used to examine the composite structure's behavior under lowvelocity impact,confirming the superiority of Kevlar-reinforced composites with variable stiffness.Conversely,glass-reinforced composites with constant stiffness revealed the lowest performance with the highest deflection.Across all reinforcement materials,the variable stiffness structure consistently outperformed its constant stiffness counterpart. 展开更多
关键词 Sandwich panel Fiber reinforced plastic composites Finite element analysis Variable stiffness Impact resistance Regression analysis Process optimization
在线阅读 下载PDF
Gyroid-structured SiOC composite with excellent broadband microwave absorption and load-bearing performance
12
作者 Hanjun Wei Siyu Chen +5 位作者 Zhiyong Chen Lu Tang Jimei Xue Cunxian Wang Zhijun Wang Ying Li 《Defence Technology(防务技术)》 2026年第1期277-288,共12页
Designing materials with both structural load-bearing capacity and broadband electromagnetic(EM)wave absorption properties remains a significant challenge.In this work,SiOC/SiC/SiO_(2)composite with gyroid structures ... Designing materials with both structural load-bearing capacity and broadband electromagnetic(EM)wave absorption properties remains a significant challenge.In this work,SiOC/SiC/SiO_(2)composite with gyroid structures were prepared through digital light processing(DLP)3D printing,polymer-derived ceramics(PDCs),chemical vapor infiltration(CVI),and oxidation technologies.The incorporation of the CVISiC phase effectively increases the dissipation capability,while the synergistic interaction between the gyroid structure and SiO_(2)phase significantly improves impedance matching performance.The SiOC/SiC/SiO_(2)composite achieved a minimum reflection loss(RL min)of-62.2 d B at 4.3 mm,and the effective absorption bandwidth(EAB)covered the X-band,with a thickness range of 4.1 mm-4.65 mm.The CST simulation results explain the broadband and low-frequency absorption characteristics,with an EAB of 8.4 GHz(9.6-18 GHz)and an RL min of-21.5 dB at 5 GHz.The excellent EM wave attenuation performance is associated primarily with polarization loss,conduction loss,the gyroid structure's enhancement of multiple reflections and scattering of EM waves,and the resonance effect between the structural units.The SiOC/SiC/SiO_(2)composite also demonstrated strong mechanical properties,with a maximum compressive failure strength of 31.6 MPa in the height direction.This work opens novel prospects for the development of multifunctional structural wave-absorbing materials suitable for broadband microwave absorption and load-bearing properties. 展开更多
关键词 Digital light processing Gyroid structure SiOC/SiC/SiO_(2)composite Microwave absorption Load-bearing properties
在线阅读 下载PDF
A review of electroslag remelting composite technologies
13
作者 Yu Wang Yan-chun Lou +5 位作者 Fang Wang Heng Cao Yun-bao Gao Ling Zhao Zhi Han Meng Li 《China Foundry》 2026年第1期1-19,共19页
Electroslag remelting(ESR) is an important metallurgical process for producing high-purity materials with homogeneous compositions and sound microstructures,and its typical products are ingots or simple castings.The c... Electroslag remelting(ESR) is an important metallurgical process for producing high-purity materials with homogeneous compositions and sound microstructures,and its typical products are ingots or simple castings.The core principle involves the resistive melting of a consumable electrode within a slag pool,followed by the refining of molten metal droplets as they traverse the slag,and subsequent sequential solidification in a water-cooled mold.However,conventional ESR processes face limitations in producing large or complex-shaped components,enhancing production efficiency,achieving highly specialized microstructures,and meeting ultra-high purity demands for advanced applications.Advanced composite ESR technologies have been developed to overcome these limitations by innovatively modifying key process aspects.For instance,electrode systems are improved using vibration,rotation,or multiple electrodes.Enhanced mold design and solidification control are achieved through techniques including conductive molds,mold rotation,and ingot withdrawal.Precise control of the process is realized through the use of protective gas,vacuum,or elevated pressure,as well as the application of external fields such as magnetic fields or ultrasonic vibration.This review comprehensively summarizes these advanced techniques,examining their principles and characteristics,and discussing their specific advantages and challenges. 展开更多
关键词 electroslag remelting(ESR) composite electroslag technology near-net shape casting high purity materials process modification external field assisted casting
在线阅读 下载PDF
Effect and mechanism of Ti−O solid solution layer on interfacial bonding strength of cold roll bonded titanium/stainless steel laminated composite plate
14
作者 Zhi-yan YANG Xue-feng LIU +1 位作者 Hong-ting CHEN Xin MA 《Transactions of Nonferrous Metals Society of China》 2026年第1期171-182,共12页
Titanium plates with a Ti−O solid solution surface-hardened layer were cold roll-bonded with 304 stainless steel plates with high work hardening rates.The evolution and mechanisms affecting the interfacial bonding str... Titanium plates with a Ti−O solid solution surface-hardened layer were cold roll-bonded with 304 stainless steel plates with high work hardening rates.The evolution and mechanisms affecting the interfacial bonding strength in titanium/stainless steel laminated composites were investigated.Results indicate that the hardened layer reduces the interfacial bonding strength from over 261 MPa to less than 204 MPa.During the cold roll-bonding process,the hardened layer fractures,leading to the formation of multi-scale cracks that are difficult for the stainless steel to fill.This not only hinders the development of an interlocking interface but also leads to the presence of numerous microcracks and hardened blocks along the nearly straight interface,consequently weakening the interfacial bonding strength.In metals with high work hardening rates,the conventional approach of enhancing interface interlocking and improving interfacial bonding strength by using a surface-hardened layer becomes less effective. 展开更多
关键词 titanium/stainless steel laminated composite plate Ti−O solid solution hardened layer interlocking interface formation mechanism interfacial bonding strength
在线阅读 下载PDF
Graphene Aerogel Composites with Self‑Organized Nanowires‑Packed Honeycomb Structure for Highly Efficient Electromagnetic Wave Absorption 被引量:1
15
作者 Xiao You Huiying Ouyang +6 位作者 Ruixiang Deng Qiuqi Zhang Zhenzhong Xing Xiaowu Chen Qingliang Shan Jinshan Yang Shaoming Dong 《Nano-Micro Letters》 SCIE EI CAS 2025年第2期533-547,共15页
With vigorous developments in nanotechnology,the elaborate regulation of microstructure shows attractive potential in the design of electromagnetic wave absorbers.Herein,a hierarchical porous structure and composite h... With vigorous developments in nanotechnology,the elaborate regulation of microstructure shows attractive potential in the design of electromagnetic wave absorbers.Herein,a hierarchical porous structure and composite heterogeneous interface are constructed successfully to optimize the electromagnetic loss capacity.The macro–micro-synergistic graphene aerogel formed by the ice template‑assisted 3D printing strategy is cut by silicon carbide nanowires(SiC_(nws))grown in situ,while boron nitride(BN)interfacial structure is introduced on graphene nanoplates.The unique composite structure forces multiple scattering of incident EMWs,ensuring the combined effects of interfacial polarization,conduction networks,and magnetic-dielectric synergy.Therefore,the as-prepared composites present a minimum reflection loss value of−37.8 dB and a wide effective absorption bandwidth(EAB)of 9.2 GHz(from 8.8 to 18.0 GHz)at 2.5 mm.Besides,relying on the intrinsic high-temperature resistance of SiC_(nws) and BN,the EAB also remains above 5.0 GHz after annealing in air environment at 600℃ for 10 h. 展开更多
关键词 Hierarchical porous structure Interface High-temperature resistance Graphene aerogel composites Electromagnetic wave absorption
在线阅读 下载PDF
Advancements and Challenges in Organic–Inorganic Composite Solid Electrolytes for All‑Solid‑State Lithium Batteries 被引量:1
16
作者 Xueyan Zhang Shichao Cheng +4 位作者 Chuankai Fu Geping Yin Liguang Wang Yongmin Wu Hua Huo 《Nano-Micro Letters》 SCIE EI CAS 2025年第1期46-97,共52页
To address the limitations of contemporary lithium-ion batteries,particularly their low energy density and safety concerns,all-solid-state lithium batteries equipped with solid-state electrolytes have been identified ... To address the limitations of contemporary lithium-ion batteries,particularly their low energy density and safety concerns,all-solid-state lithium batteries equipped with solid-state electrolytes have been identified as an up-and-coming alternative.Among the various SEs,organic–inorganic composite solid electrolytes(OICSEs)that combine the advantages of both polymer and inorganic materials demonstrate promising potential for large-scale applications.However,OICSEs still face many challenges in practical applications,such as low ionic conductivity and poor interfacial stability,which severely limit their applications.This review provides a comprehensive overview of recent research advancements in OICSEs.Specifically,the influence of inorganic fillers on the main functional parameters of OICSEs,including ionic conductivity,Li+transfer number,mechanical strength,electrochemical stability,electronic conductivity,and thermal stability are systematically discussed.The lithium-ion conduction mechanism of OICSE is thoroughly analyzed and concluded from the microscopic perspective.Besides,the classic inorganic filler types,including both inert and active fillers,are categorized with special emphasis on the relationship between inorganic filler structure design and the electrochemical performance of OICSEs.Finally,the advanced characterization techniques relevant to OICSEs are summarized,and the challenges and perspectives on the future development of OICSEs are also highlighted for constructing superior ASSLBs. 展开更多
关键词 composite solid electrolytes Inorganic filler Interfacial stability Li-ion conduction mechanism Characterization techniques
在线阅读 下载PDF
Preparation and Performance of Large-Size Seamless Zirconium-Titanium-Steel Composite Plate 被引量:1
17
作者 Wu Jiangtao Wang Ding +7 位作者 Huang Xingli Zou Juntao Zhang Penghui Gao Ruibo Yang Huan Zhang Tao Ren Qianyu Wei Yong 《稀有金属材料与工程》 北大核心 2025年第2期319-326,共8页
Zirconium-titanium-steel composite plate with the size of 2500 mm×7800 mm×(3+0.7+22)mm was prepared by explosive welding+rolling method,and its properties were analyzed by ultrasonic nondestructive testing,p... Zirconium-titanium-steel composite plate with the size of 2500 mm×7800 mm×(3+0.7+22)mm was prepared by explosive welding+rolling method,and its properties were analyzed by ultrasonic nondestructive testing,phased array waveform shape,interface structure shape,electronic scanning,and mechanical property testing.Results show that the rolling temperature of zirconiumtitanium complex should be controlled at 760°C,and the rolling reduction of each pass should be controlled at 10%–25%.The explosive velocity to prepare zirconium-titanium-steel composite plates should be controlled at 2450–2500 m/s,the density should be 0.78 g/cm3,the stand-off height should be 12 mm,and the explosive height of Zone A and Zone B should be 45–50 mm.Explosive welding combined with rolling method reduces the impact of explosive welding and multiple heat treatment on material properties.Meanwhile,the problems of surface wrinkling and cracking,which occur during the preparation process of large-sized zirconiumtitanium-steel composite plate,can be solved. 展开更多
关键词 large-size seamless zirconium-titanium-steel composite plate explosive welding+rolling phased array interface structure
原文传递
Construction of iron manganese metal-organic framework-derived manganese ferrite/carbon-modified graphene composites toward broadband and efficient electromagnetic dissipation 被引量:3
18
作者 Baohua Liu Shuai Liu +1 位作者 Zaigang Luo Ruiwen Shu 《International Journal of Minerals,Metallurgy and Materials》 2025年第3期546-555,共10页
The preparation of carbon-based electromagnetic wave(EMW)absorbers possessing thin matching thickness,wide absorption bandwidth,strong absorption intensity,and low filling ratio remains a huge challenge.Metal-organic ... The preparation of carbon-based electromagnetic wave(EMW)absorbers possessing thin matching thickness,wide absorption bandwidth,strong absorption intensity,and low filling ratio remains a huge challenge.Metal-organic frameworks(MOFs)are ideal self-sacrificing templates for the construction of carbon-based EMW absorbers.In this work,bimetallic FeMn-MOF-derived MnFe_(2)O_(4)/C/graphene composites were fabricated via a two-step route of solvothermal reaction and the following pyrolysis treatment.The results re-veal the evolution of the microscopic morphology of carbon skeletons from loofah-like to octahedral and then to polyhedron and pomegran-ate after the adjustment of the Fe^(3+)to Mn^(2+)molar ratio.Furthermore,at the Fe^(3+)to Mn^(2+)molar ratio of 2:1,the obtained MnFe_(2)O_(4)/C/graphene composite exhibited the highest EMW absorption capacity.Specifically,a minimum reflection loss of-72.7 dB and a max-imum effective absorption bandwidth of 5.1 GHz were achieved at a low filling ratio of 10wt%.In addition,the possible EMW absorp-tion mechanism of MnFe_(2)O_(4)/C/graphene composites was proposed.Therefore,the results of this work will contribute to the construction of broadband and efficient carbon-based EMW absorbers derived from MOFs. 展开更多
关键词 metal-organic frameworks GRAPHENE magnetic composites morphology regulation electromagnetic dissipation
在线阅读 下载PDF
Research progress of structural regulation and composition optimization to strengthen absorbing mechanism in emerging composites for efficient electromagnetic protection 被引量:4
19
作者 Pengfei Yin Di Lan +7 位作者 Changfang Lu Zirui Jia Ailing Feng Panbo Liu Xuetao Shi Hua Guo Guanglei Wu Jian Wang 《Journal of Materials Science & Technology》 2025年第1期204-223,共20页
With the increasing complexity of the current electromagnetic environment,excessive microwave radi-ation not only does harm to human health but also forms various electromagnetic interference to so-phisticated electro... With the increasing complexity of the current electromagnetic environment,excessive microwave radi-ation not only does harm to human health but also forms various electromagnetic interference to so-phisticated electronic instruments.Therefore,the design and preparation of electromagnetic absorbing composites represent an efficient approach to mitigate the current hazards of electromagnetic radiation.However,traditional electromagnetic absorbers are difficult to satisfy the demands of actual utilization in the face of new challenges,and emerging absorbents have garnered increasing attention due to their structure and performance-based advantages.In this review,several emerging composites of Mxene-based,biochar-based,chiral,and heat-resisting are discussed in detail,including their synthetic strategy,structural superiority and regulation method,and final optimization of electromagnetic absorption ca-pacity.These insights provide a comprehensive reference for the future development of new-generation electromagnetic-wave absorption composites.Moreover,the potential development directions of these emerging absorbers have been proposed as well. 展开更多
关键词 Microwave absorption Structural regulation Performance optimization Emerging composites Synthetic strategy
原文传递
Femtosecond laser rotary drilling for SiC_(f)/SiC composites 被引量:3
20
作者 Feng YANG Zhigang DONG +3 位作者 Renke KANG Hongbin MA Guangyi MA Yan BAO 《Chinese Journal of Aeronautics》 2025年第2期478-490,共13页
SiC_(f)/SiC ceramic matrix composites(SiC_(f)/SiC composites)are difficult to drill small holes due to their heterogeneity,high hardness,and low electrical conductivity.In order to solve the difficulties of poor quali... SiC_(f)/SiC ceramic matrix composites(SiC_(f)/SiC composites)are difficult to drill small holes due to their heterogeneity,high hardness,and low electrical conductivity.In order to solve the difficulties of poor quality and low efficiency when drilling small holes,a novel femtosecond laser rotary drilling(FLRD)technique is proposed.Beam kinematic paths and experimental studies were carried out to analyze the effects of processing parameters on the drilling results in the two-step drilling process.In the through-hole drilling stage,the material removal rate increases with increasing laser power,decreasing feed speed and decreasing pitch.As for the finishing stage of drilling,the exit diameter increased with increasing laser power and decreasing feed speed.The drilling parameters were selected by taking the processing efficiency of through-hole and the quality of finished hole as the constraint criteria.Holes with a diameter of 500μm were drilled using FLRD in 3 mm thick SiC_(f)/SiC composites with a drilling time<150 s.The hole aspect ratio was 6,the taper<0.2°,and there was no significant thermal damage at the orifice or the wall of the hole.The FLRD provides a solution for precision machining of small holes in difficult-to-machine materials by offering the advantages of high processing quality and short drilling times. 展开更多
关键词 Ceramic matrix composites Femtosecond lasers DRILLING HIGH-QUALITY Film cooling holes
原文传递
上一页 1 2 250 下一页 到第
使用帮助 返回顶部