The catalytic epoxidation of olefin was investigated on two copper complex-modified molybdenum oxides with a 3D supramolecular structure, [Cu(bipy)]4[Mo15O47].2H2O (1) and [Cu1(bix)][(Cu1bix) (δ-MoVl8O26)0....The catalytic epoxidation of olefin was investigated on two copper complex-modified molybdenum oxides with a 3D supramolecular structure, [Cu(bipy)]4[Mo15O47].2H2O (1) and [Cu1(bix)][(Cu1bix) (δ-MoVl8O26)0.5] (2) (bipy = 4,4'-bipyridine, bix = 1,4-bis(imidazole-1-ylmethyl)benzene). Both compounds were catalytically active and stable for the epoxidation of cyclooctene, 1-octene, and styrene with tert-butyl hydroperoxide (t-BuOOH) as oxidant. The excellent catalytic performance was attributed to the presence of stable coordination bonds between the molybdenum oxide and copper complex, which resulted in the formation of easily accessible Mo species with high electropositivity. In addition, the copper complex also acted as an active site for the activation of t-BuOOH, thus im- proving these copper complex-modified polyoxometalates.展开更多
Rice-duck (RD) and rice-fish (RF) ecological systems are major complex planting and breeding models of rice paddy fields in southern China. Studying the methane (CH4) and nitrous oxide (N2O) emissions and thei...Rice-duck (RD) and rice-fish (RF) ecological systems are major complex planting and breeding models of rice paddy fields in southern China. Studying the methane (CH4) and nitrous oxide (N2O) emissions and their economic value from these two ecosystems can provide theoretical and practical basis for further development and utilization of these classical agricultural techniques. CH4 and N2O emissions from RD and RF ecological systems were measured in situ by using static chambers technique. Using global warming potentials (GWPs), we assessed the greenhouse effect of CH4 and N2O and their economic value. Results showed that the peaks of CH4 emission fluxes from RD and RF appeared at full tillering stage and at heading stage, and the average emission fluxes were significantly (P〈 0.05) lower than that from CK. N2O fluxes remained low when the field is flooded and high after draining the water. Compared with CK, the total amount of N2O emissions was significantly (P〈0.05) higher and slightly lower than those from RD and RF, respectively. In 2006 and 2007, the total greenhouse effect of CH4 and N20 from RD and RF were 4 728.3 and 4 611 kg CO2 ha^-1, 4 545 and 4 754.3 kg CO2 ha^-1, respectively. The costs of greenhouse effect were 970.89 and 946.81 RMB yuan ha^-1, and 933.25 and 976.23 RMB yuan ha^-1, respectively, which were significant lower than those from CK (5 997.6 and 5 391.5 RMB yuan ha^-1). Except for the environment cost of CH4 and N2O, the economic benefits from RD and RF were 2 210.64 and 4 881.92 RMB yuan ha^-1; 3 798.37 and 5 310.64 RMB yuan ha^-1, respectively, higher than those from CK. Therefore, RD and RF complex ecological planting and breeding models can effectively decrease and control CH4 and N2O emissions, and they are two of the effective strategies to reduce greenhouse gases from rice paddy fields and contribute in alleviating global warming. Thus, their adoption is important to the environment together with their economy benefits.展开更多
Highly ordered mesoporous NiMoO4 material was successfully synthesized using mesoporous silica KIT-6 as hard template via vacuum nanocasting method. The structure was characterized by means of XRD, TEM, N2 adsorption-...Highly ordered mesoporous NiMoO4 material was successfully synthesized using mesoporous silica KIT-6 as hard template via vacuum nanocasting method. The structure was characterized by means of XRD, TEM, N2 adsorption-desorption, Raman and FT-IR. The mesoporous NiMoO4 with the coexistence of a-NiMoO4 and fl-NiMoO4 showed well-ordered mesoporous structure, a bimodal pore size distribution and crystalline framework. The catalytic performance of NiMoOa was investigated for oxidative dehydrogenation of propane. It is demonstrated that the mesoporous NiMoO4 catalyst with more surface active oxygen species showed better catalytic performance in oxidative dehydrogena- tion of propane in comparison with bulk NiMoO4.展开更多
A series of Ce1-xFexO2 (x=0, 0.2, 0.4, 0.6, 0.8, 1) complex oxide catalysts were prepared using the coprecipitation method. The catalysts were characterized by means of XRD and H2-TPR. The reactions between methane ...A series of Ce1-xFexO2 (x=0, 0.2, 0.4, 0.6, 0.8, 1) complex oxide catalysts were prepared using the coprecipitation method. The catalysts were characterized by means of XRD and H2-TPR. The reactions between methane and lattice oxygen from the complex oxides were investigated. The characteristic results revealed that the combination of Ce and Fe oxide in the catalysts could lower the temperature necessary to reduce the cerium oxide. The catalytic activity for selective CH4 oxidation was strongly influenced by dropped Fe species. Adding the appropriate amount of Fe2O3 to CeO2 could promote the action between CH4 and CeO2. Dispersed Fe2O3 first returned to the original state and would then virtually form the Fe species on the catalyst, which could be considered as the active site for selective CH4 oxidation. The appearance of carbon formation was significant and the oxidation of carbon appeared to be the rate-determining step; the amounts of surface reducible oxygen species in CeO2 were also relevant to the activity. Among all the catalysts, Ce0.6Fe0.402 exhibited the best activity, which converted 94.52% of CH4 at 900 ℃.展开更多
A series of CeO2/SiO2 and SixCe1–xO2 complex oxides supported on an activated Al2TiO5-TiO2-SiO2 complex phase (ATS) ceramics were prepared by step impregnation and co-impregnation methods, and characterized by N2-BET...A series of CeO2/SiO2 and SixCe1–xO2 complex oxides supported on an activated Al2TiO5-TiO2-SiO2 complex phase (ATS) ceramics were prepared by step impregnation and co-impregnation methods, and characterized by N2-BET, XRD, SEM and NH3-TPD techniques. The effects of reaction temperature, CeO2/SiO2 loadings and Si/Ce molar ratio on the granular catalysts for NO selective catalytic reduction with ammonia (NH3-SCR) were studied. Results indicated that both CeO2/SiO2/ATS and CeO2/ATS catalysts showed the same ac...展开更多
The cerium iron complex oxides oxygen carrier was prepared by the co-precipitation method. The reactions between methane and lattice oxygen from the complex oxides were investigated in a fixed micro-reactor system. Th...The cerium iron complex oxides oxygen carrier was prepared by the co-precipitation method. The reactions between methane and lattice oxygen from the complex oxides were investigated in a fixed micro-reactor system. The reduced oxygen carder could be re-oxidized by air and its initial state could be restored. The characterizations of the oxygen carders were studied using XRD, O2-TPD, and H2-TPR. The results showed that the bulk lattice oxygen of CeO2-Fe2O3 was found to be suitable for the partial oxidation of methane to synthesis gas. There were two kinds of oxygen species on the oxygen carrier: the stronger oxygen species that was responsible for the complete oxidation of methane, and the weaker oxygen species (bulk lattice oxygen) that was responsible for the selective oxidation of methane to CO and H2 at a higher temperature. Then, the lost bulk lattice oxygen could be selectively supplemented by air re-oxidation at an appropriate reaction condition. CeFeO3 appeared on the oxygen carrier after 10 successive redox cycles, however, it was not bad for the selectivity of CO and H2.展开更多
Sn-aniline complex was prepared by a simple procedure. Cyclic and acyclic ketones were oxidized into lactones or esters with very high selectivity and yield with 30% hydrogen peroxide in the presence of Sn-aniline com...Sn-aniline complex was prepared by a simple procedure. Cyclic and acyclic ketones were oxidized into lactones or esters with very high selectivity and yield with 30% hydrogen peroxide in the presence of Sn-aniline complex.展开更多
A series of perovskite-type complex oxides LaNi1-xRuxO3 were prepared and studied by means of XRD. The effects of some factors on th complex oxides were discussed. Each kind of those perovskite-type complex oxides was...A series of perovskite-type complex oxides LaNi1-xRuxO3 were prepared and studied by means of XRD. The effects of some factors on th complex oxides were discussed. Each kind of those perovskite-type complex oxides was used to prepare cathode by composite-electroplating technique. The cathodes were electrochemically charactrized. The results show that these novel cathode exhibit high activities and excellent stabilities during long-term continuous electrolysis with some current interruptions.展开更多
The effect of temperature on leaching behavior of copper minerals with different occurrence states in complex copper oxide ores was carried out by phase analysis means of XRD, optical microscopy and SEM-EDS. The resul...The effect of temperature on leaching behavior of copper minerals with different occurrence states in complex copper oxide ores was carried out by phase analysis means of XRD, optical microscopy and SEM-EDS. The results indicated that at ambient temperature, the easily leached copper oxide minerals were completely dissolved, while the bonded copper minerals were insoluble. At lukewarm temperature of 40℃, it was mainly the dissolution of copper in isomorphism state. With increasing temperature to 60℃, the copper leaching rate in the adsorbed state was significantly accelerated. In addition, when the temperature increased to 80℃, the isomorphic copper was completely leached, leaving 11.2% adsorbed copper un-leached. However, the copper in feldspar-quartz-copper-iron colloid state was not dissolved throughout the leaching process. Overall, the leaching rates of copper in different copper minerals decreased in the order: malachite, pseudo-malachite > chrysocolla > copper-bearing chlorite > copper-bearing muscovite > copper-bearing biotite > copper-bearing limonite > feldspar-quartz-copper-iron colloid.展开更多
Copolymerization of propylene oxide (PO) and ethylene oxide (EO) using double metal cyanide (DMC) complex as the catalyst was carried out. The structure of random copolymers was confirmed by C-13-NMR and IR spectra. H...Copolymerization of propylene oxide (PO) and ethylene oxide (EO) using double metal cyanide (DMC) complex as the catalyst was carried out. The structure of random copolymers was confirmed by C-13-NMR and IR spectra. H-1-NMR analysis shows that the EO content in the copolymer is the same as that in the initial monomer feed. Moderate molecular weight copolymers with various EO content were obtained and their values of molecular weight distribution (MWD) fell in the range of 1.21-1.55. It was found that the molecular weight of copolymers is controlled by the mass ratio of EO+PO to initiator moles used, The reaction rate as well as polymer yield decrease with increasing EO content in the feed composition.展开更多
Catalytic wet air oxidation(CWAO) can degrade some refractory pollutants at a low cost to improve the biodegradability of wastewater. However, in the presence of high temperature and high pressure and strong oxidizing...Catalytic wet air oxidation(CWAO) can degrade some refractory pollutants at a low cost to improve the biodegradability of wastewater. However, in the presence of high temperature and high pressure and strong oxidizing free radicals, the stability of catalysts is often insufficient, which has become a bottleneck in the application of CWAO. In this paper, a copper-based catalyst with excellent hydrothermal stability was designed and prepared. TiO_(2) with excellent stability was used as the carrier to ensure the longterm anchoring of copper and reduce the leaching of the catalyst. The one pot sol–gel method was used to ensure the super dispersion and uniform distribution of copper nanoparticles on the carrier, so as to ensure that more active centers could be retained in a longer period. Experiments show that the catalyst prepared by this method has good stability and catalytic activity, and the catalytic effect is not significantly reduced after 10 cycles of use. The oxidation degradation experiment of m-cresol with the strongest biological toxicity and the most difficult to degrade in coal chemical wastewater was carried out with this catalyst. The results showed that under the conditions of 140℃, 2 MPa and 2 h, m-cresol with a concentration of up to 1000 mg·L^(-1) could be completely degraded, and the COD removal rate could reach 79.15%. The biological toxicity of wastewater was significantly reduced. The development of the catalyst system has greatly improved the feasibility of CWAO in the treatment of refractory wastewater such as coal chemical wastewater.展开更多
The 1,3,5-triazine diphosphine oxide ligands with donor-acceptor properties formed strong complexes with europium(Ⅲ) ion in acetonitrile. Spectrophotometric titrations and mass spectra indicated that two ligands co...The 1,3,5-triazine diphosphine oxide ligands with donor-acceptor properties formed strong complexes with europium(Ⅲ) ion in acetonitrile. Spectrophotometric titrations and mass spectra indicated that two ligands coordinated to one europium ion. The stability constants varied from 11.64 to 14.60 (log 13). Binary complexes exhibited rather weak luminescence in solution. 1,3,5-triazine diphosphine oxides engaged as co-ligands in Eu(Ⅲ) (2-thenoyltrifluoroacetonate)3 complex contributed to the overall photoluminescence and allowed for excitation with longer wavelengths than the parent complex.展开更多
In this manuscript, we have demonstrated the delicate design and synthesis of bimetallic oxides nanoparticles derived from metal–oleate complex embedded in 3D graphene networks(MnO/CoMn_2O_4 GN), as an anode mater...In this manuscript, we have demonstrated the delicate design and synthesis of bimetallic oxides nanoparticles derived from metal–oleate complex embedded in 3D graphene networks(MnO/CoMn_2O_4 GN), as an anode material for lithium ion batteries. The novel synthesis of the MnO/CoMn_2O_4 GN consists of thermal decomposition of metal–oleate complex containing cobalt and manganese metals and oleate ligand, forming bimetallic oxides nanoparticles, followed by a selfassembly route with reduced graphene oxides. The MnO/CoMn_2O_4 GN composite, with a unique architecture of bimetallic oxides nanoparticles encapsulated in 3D graphene networks, rationally integrates several benefits including shortening the di usion path of Li^+ ions, improving electrical conductivity and mitigating volume variation during cycling. Studies show that the electrochemical reaction processes of MnO/Co Mn_2O_4 GN electrodes are dominated by the pseudocapacitive behavior, leading to fast Li^+ charge/discharge reactions. As a result, the MnO/CoMn_2O_4 GN manifests high initial specific capacity, stable cycling performance, and excellent rate capability.展开更多
The bidentate phosphine oxide ligand 1,8-bis(diphenylphosphino) naphthalene oxide (NAPO) and its EuⅢ complex 1 Eu(TTA)3(NAPO) (TTA=2-thenoyltrifluoroacetonate) were chosen to study the effect of bidentate phosphine o...The bidentate phosphine oxide ligand 1,8-bis(diphenylphosphino) naphthalene oxide (NAPO) and its EuⅢ complex 1 Eu(TTA)3(NAPO) (TTA=2-thenoyltrifluoroacetonate) were chosen to study the effect of bidentate phosphine oxide ligand on the photophysical properties of the corresponding complex. The intramolecular energy transfer processes of 1 were studied. The investigation showed that with bidentate structure NAPO could suppress solvent-induced quenching by enforcing the ligand-ligand interaction and the rigidi...展开更多
Hydrotalcites known as anionic clays are found in nature. Hydrotalcites, hydrotalcite-like compounds, and calcined hydrotalcites (as mixed or complex oxides) as highly active, selective catalysts play an important rol...Hydrotalcites known as anionic clays are found in nature. Hydrotalcites, hydrotalcite-like compounds, and calcined hydrotalcites (as mixed or complex oxides) as highly active, selective catalysts play an important role in many base/catalyzed reactions. Mg/Al hydrotalcite (MAH) as precursor was used to prepare Mg/Al metal complex oxides (MAO), used as epoxidation catalysts in the current research. In this paper, some primary physical and catalytic properties of MAH and MAO were investigated. The results indicated that the qualified MAH (Mg/Al mol ratio of 3) can be achieved when the suspension was crystallized under 80°C for 16h, and after being filtered, dried at 100 °C for 5h in a oven. MAO was prepared by calcining MAH for 4h in a muffle furnace, and calcination temperature was determined to be 500 °C by a differential scanning calorimeter (DSC). Crystal structure and parameters of MAH and MAO were characterized by X/ray diffraction (XRD), good crystal structure was observed and typical peaks of MAH were detected when 2θ was at 11.5 (003), 23.0 (006), 35.0 (009), and 61.0 (110), respectively. The morphology of calcined precursor, i.e. MAO, was investigated with scanning electron microscopy (SEM);the finer lamellar structure and smaller average size of 3μm was observed. Molding research was performed and confirmed by SEM, the results indicated that the surface bulge and cavity with size of several micrometers were increased, which simultaneously suggested the increasing of specific surface area. The catalytic activity of molding MAO was finally examined by using octanol as starting reagent and ethylene oxide as reactant, and narrower molecular distribution was observed comparing with the traditional catalyst-KOH.展开更多
The title zinc(Ⅱ) complex salt [Zn(H2O)6](ClO4)2-(PNOS)4, where PNOS is derived from picolinaldehyde N-oxide with semicarbazone, has been prepared and structurally characterized by X-ray single-crystal analys...The title zinc(Ⅱ) complex salt [Zn(H2O)6](ClO4)2-(PNOS)4, where PNOS is derived from picolinaldehyde N-oxide with semicarbazone, has been prepared and structurally characterized by X-ray single-crystal analysis. It crystallizes in triclinic, space group PI with a = 7.529(3), b = 10.206(4), c = 14.678(6)A, a = 86.293(6), β= 87.686(7), γ= 81.382(6)°, C28H44Cl2N16O22Zn, Mr = 1093.06, V = 1112.3(8) ,A^3 Z = 1, Dc = 1.632 g/cm^3, S = 1.089, μ(MoKa) = 0.773 mm^-1, F(000) = 564, the final R = 0.0438 and wR = 0.1076 for 3888 independent reflections with Rint = 0.0224. The crystal structure possesses a [Zn(H2O)6]^2+ cation, two ClO4^- anions and four PNOSs. In the crystal structure, Zn^2+ cation is located at the symcenter and coordinated by six water molecules. In [Zn(H2O)6]^2+, an elongate octahedral complex cation, the average Zn-O bond length is 2.087(2) A. There exist a lot of H bonds in the structure, linking the cation [Zn(H2O)6]^2+, anion ClO4^- and PNOS to form a 3D network.展开更多
Two iron-arene complex photoinitiators with different substituents in arene ligands were synthesized, their activities in initiating photopolymerization of cyclohexene oxide (CHO) were compared with that of IRGACURE 2...Two iron-arene complex photoinitiators with different substituents in arene ligands were synthesized, their activities in initiating photopolymerization of cyclohexene oxide (CHO) were compared with that of IRGACURE 261, a commercialized photoinitiator from Ciba-Geigy. A higher activity was found when the arene ligand was substituted with a stronger electron donating group. For the system initiated by IRGACURE 261 the concentration of active centers in CHO polymerization was determined and it was found that the concentration is maximum at around 35℃. The post (dark) polymerization was significant, the polymerization yield decreased with the increase of irradiation temperature and increased with the increase of post polymerization temperature. The results are interpreted based on the mechanism proposed by Lohse, et al..展开更多
By encapsulating nanoscale particles of goethite(α-FeO(OH)),hydrous ceric oxide(CeO_(2)·H_(2)O,HCO)and silver nanoparticles(AgNPs)in the pores of polystyrene anion exchanger D201,a novel nanocomposite FeO(OH)-HC...By encapsulating nanoscale particles of goethite(α-FeO(OH)),hydrous ceric oxide(CeO_(2)·H_(2)O,HCO)and silver nanoparticles(AgNPs)in the pores of polystyrene anion exchanger D201,a novel nanocomposite FeO(OH)-HCO-Ag-D201 was prepared for the effective removal of arsenic from water.The isotherm study shows that FeO(OH)-HCO-Ag-D201 has excellent adsorption performance for As(III)and As(V),with an increased adsorption capacity of As(III)to 40.12 mg/g compared to that of 22.03 mg/g by the composite adsorbent without AgNPs(FeO(OH)-HCO-D201).The adsorption kinetics data showed that the sorption rate of FeO(OH)-HCO-Ag-D201 for As(III)is less than that for As(V),and the adsorption of As(III)and As(V)were consistent with the pseudo-second-order model and the pseudofirst-order model,respectively.Neutral or basic conditions are favored for the adsorption of As(III/V)by FeO(OH)-HCO-Ag-D201.Compared with nitrate/chloride/bicarbonate,sulfate/silicate/phosphate showed more remarkable inhibition of arsenic removal by FeO(OH)-HCO-Ag-D201,whereas natural organic matter showed no interference to the arsenic removal.The As(V)adsorption involved different interactions such as electrostatic attraction and surface complexation,while the adsorption of As(III)involved the part oxidization of As(III)to As(V)and the simultaneous adsorption of As(III)and As(V).In addition to the Ce(IV)in CeO_(2)·H_(2)O acted as an oxidant,the synergistic effect ofα-FeO(OH)and AgNPs also contributed to the oxidization of As(III)to As(V).Moreover,the reusable property suggested that this FeO(OH)-HCO-Ag-D201 nanocomposite has great potential for arsenic-contaminated water purification.展开更多
The reported X-ray structure and magnetochemical properties of [Mn6O2 (OCPh)10, (CH3CN)4], effectively derived from [NBu4][Mn4O2(O2CPh)9 (H2O)] with equivalent of tren in CH3CN is shown.
A new complex [Cd(H2biim)2(H2O)2]·(ino)2·4H2O (H2biim = 2,2'-biimidazole, ino = isonicotinate-N-oxide) has been prepared and characterized by single-crystal X-ray diffraction analysis, IR and fluore...A new complex [Cd(H2biim)2(H2O)2]·(ino)2·4H2O (H2biim = 2,2'-biimidazole, ino = isonicotinate-N-oxide) has been prepared and characterized by single-crystal X-ray diffraction analysis, IR and fluorescence spectra analysis. The crystal is of triclinic system, space group P1 with a = 7.5380(6), b = 8.0402(7), c = 13.5094(11) , α = 104.269(1), β = 93.604(1), γ = 98.349(1)°, V = 780.93(11) 3, Mr = 765.00, Dc = 1.627 g/cm3, F(000) = 390, μ = 0.776 mm-1 and Z = 1. The final R = 0.0322 and wR = 0.0825 for 7038 observed reflections with I 2σ(I) and R = 0.0341 and wR = 0.0832 for all data. The title complex exhibits an infinite chain-like structure through bridging isonicotinate-N-oxide. Strong interchain hydrogen bonds between isonicotinate-N-oxide and H2biim result in the robust 3-D supramolecular architecture. Moreover, the complex shows strong photoluminescence with emission maximum at λ = 401 nm upon λex = 330 nm.展开更多
基金supported by the National Natural Science Foundation of China(21173100 and 21320102001)~~
文摘The catalytic epoxidation of olefin was investigated on two copper complex-modified molybdenum oxides with a 3D supramolecular structure, [Cu(bipy)]4[Mo15O47].2H2O (1) and [Cu1(bix)][(Cu1bix) (δ-MoVl8O26)0.5] (2) (bipy = 4,4'-bipyridine, bix = 1,4-bis(imidazole-1-ylmethyl)benzene). Both compounds were catalytically active and stable for the epoxidation of cyclooctene, 1-octene, and styrene with tert-butyl hydroperoxide (t-BuOOH) as oxidant. The excellent catalytic performance was attributed to the presence of stable coordination bonds between the molybdenum oxide and copper complex, which resulted in the formation of easily accessible Mo species with high electropositivity. In addition, the copper complex also acted as an active site for the activation of t-BuOOH, thus im- proving these copper complex-modified polyoxometalates.
基金supported by Important National Science&Technoligy Specific Projects, China (2004BA520A02)
文摘Rice-duck (RD) and rice-fish (RF) ecological systems are major complex planting and breeding models of rice paddy fields in southern China. Studying the methane (CH4) and nitrous oxide (N2O) emissions and their economic value from these two ecosystems can provide theoretical and practical basis for further development and utilization of these classical agricultural techniques. CH4 and N2O emissions from RD and RF ecological systems were measured in situ by using static chambers technique. Using global warming potentials (GWPs), we assessed the greenhouse effect of CH4 and N2O and their economic value. Results showed that the peaks of CH4 emission fluxes from RD and RF appeared at full tillering stage and at heading stage, and the average emission fluxes were significantly (P〈 0.05) lower than that from CK. N2O fluxes remained low when the field is flooded and high after draining the water. Compared with CK, the total amount of N2O emissions was significantly (P〈0.05) higher and slightly lower than those from RD and RF, respectively. In 2006 and 2007, the total greenhouse effect of CH4 and N20 from RD and RF were 4 728.3 and 4 611 kg CO2 ha^-1, 4 545 and 4 754.3 kg CO2 ha^-1, respectively. The costs of greenhouse effect were 970.89 and 946.81 RMB yuan ha^-1, and 933.25 and 976.23 RMB yuan ha^-1, respectively, which were significant lower than those from CK (5 997.6 and 5 391.5 RMB yuan ha^-1). Except for the environment cost of CH4 and N2O, the economic benefits from RD and RF were 2 210.64 and 4 881.92 RMB yuan ha^-1; 3 798.37 and 5 310.64 RMB yuan ha^-1, respectively, higher than those from CK. Therefore, RD and RF complex ecological planting and breeding models can effectively decrease and control CH4 and N2O emissions, and they are two of the effective strategies to reduce greenhouse gases from rice paddy fields and contribute in alleviating global warming. Thus, their adoption is important to the environment together with their economy benefits.
基金supported by NSFC(21073235,21173270,21177160,21376261)863 Program(2013AA065302)PetroChina Innovation Foundation(2011D-5006-0403)
文摘Highly ordered mesoporous NiMoO4 material was successfully synthesized using mesoporous silica KIT-6 as hard template via vacuum nanocasting method. The structure was characterized by means of XRD, TEM, N2 adsorption-desorption, Raman and FT-IR. The mesoporous NiMoO4 with the coexistence of a-NiMoO4 and fl-NiMoO4 showed well-ordered mesoporous structure, a bimodal pore size distribution and crystalline framework. The catalytic performance of NiMoOa was investigated for oxidative dehydrogenation of propane. It is demonstrated that the mesoporous NiMoO4 catalyst with more surface active oxygen species showed better catalytic performance in oxidative dehydrogena- tion of propane in comparison with bulk NiMoO4.
基金the National Natural Science Foundation of China (50574046)National Natural Science Foundation of Major Research Projects (90610035)+1 种基金Natural Science Foundation of Yunnan Province (2004E0058Q)High School Doctoral Subject Special Science and Re- search Foundation of Ministry of Education (20040674005)
文摘A series of Ce1-xFexO2 (x=0, 0.2, 0.4, 0.6, 0.8, 1) complex oxide catalysts were prepared using the coprecipitation method. The catalysts were characterized by means of XRD and H2-TPR. The reactions between methane and lattice oxygen from the complex oxides were investigated. The characteristic results revealed that the combination of Ce and Fe oxide in the catalysts could lower the temperature necessary to reduce the cerium oxide. The catalytic activity for selective CH4 oxidation was strongly influenced by dropped Fe species. Adding the appropriate amount of Fe2O3 to CeO2 could promote the action between CH4 and CeO2. Dispersed Fe2O3 first returned to the original state and would then virtually form the Fe species on the catalyst, which could be considered as the active site for selective CH4 oxidation. The appearance of carbon formation was significant and the oxidation of carbon appeared to be the rate-determining step; the amounts of surface reducible oxygen species in CeO2 were also relevant to the activity. Among all the catalysts, Ce0.6Fe0.402 exhibited the best activity, which converted 94.52% of CH4 at 900 ℃.
基金Project supported by the National High-Tech Research and Development Program of China (2009AA05Z313)National Natural Science Foundation of China (50872052)Foundation of Jiangsu Province of China for College Postgraduate Students in Innovation Engineering (CX07B_083z)
文摘A series of CeO2/SiO2 and SixCe1–xO2 complex oxides supported on an activated Al2TiO5-TiO2-SiO2 complex phase (ATS) ceramics were prepared by step impregnation and co-impregnation methods, and characterized by N2-BET, XRD, SEM and NH3-TPD techniques. The effects of reaction temperature, CeO2/SiO2 loadings and Si/Ce molar ratio on the granular catalysts for NO selective catalytic reduction with ammonia (NH3-SCR) were studied. Results indicated that both CeO2/SiO2/ATS and CeO2/ATS catalysts showed the same ac...
基金the National Natural Science Foundation of China (50574046)National Natural Science Foundation of Major Research Projects (90610035)+1 种基金Natural Science Foundation of Yunnan Province (2004E0058Q)High School Doctoral Subject Special Science and Research Foundation of Ministry of Education (20040674005)
文摘The cerium iron complex oxides oxygen carrier was prepared by the co-precipitation method. The reactions between methane and lattice oxygen from the complex oxides were investigated in a fixed micro-reactor system. The reduced oxygen carder could be re-oxidized by air and its initial state could be restored. The characterizations of the oxygen carders were studied using XRD, O2-TPD, and H2-TPR. The results showed that the bulk lattice oxygen of CeO2-Fe2O3 was found to be suitable for the partial oxidation of methane to synthesis gas. There were two kinds of oxygen species on the oxygen carrier: the stronger oxygen species that was responsible for the complete oxidation of methane, and the weaker oxygen species (bulk lattice oxygen) that was responsible for the selective oxidation of methane to CO and H2 at a higher temperature. Then, the lost bulk lattice oxygen could be selectively supplemented by air re-oxidation at an appropriate reaction condition. CeFeO3 appeared on the oxygen carrier after 10 successive redox cycles, however, it was not bad for the selectivity of CO and H2.
文摘Sn-aniline complex was prepared by a simple procedure. Cyclic and acyclic ketones were oxidized into lactones or esters with very high selectivity and yield with 30% hydrogen peroxide in the presence of Sn-aniline complex.
文摘A series of perovskite-type complex oxides LaNi1-xRuxO3 were prepared and studied by means of XRD. The effects of some factors on th complex oxides were discussed. Each kind of those perovskite-type complex oxides was used to prepare cathode by composite-electroplating technique. The cathodes were electrochemically charactrized. The results show that these novel cathode exhibit high activities and excellent stabilities during long-term continuous electrolysis with some current interruptions.
基金Project(U1608254) supported by the Special Fund for the National Natural Science Foundation of ChinaProjects(ZJKY2017(B)KFJJ01,ZJKY2017(B)KFJJ02) supported by Zijin Mining Group Co.,Ltd.,China
文摘The effect of temperature on leaching behavior of copper minerals with different occurrence states in complex copper oxide ores was carried out by phase analysis means of XRD, optical microscopy and SEM-EDS. The results indicated that at ambient temperature, the easily leached copper oxide minerals were completely dissolved, while the bonded copper minerals were insoluble. At lukewarm temperature of 40℃, it was mainly the dissolution of copper in isomorphism state. With increasing temperature to 60℃, the copper leaching rate in the adsorbed state was significantly accelerated. In addition, when the temperature increased to 80℃, the isomorphic copper was completely leached, leaving 11.2% adsorbed copper un-leached. However, the copper in feldspar-quartz-copper-iron colloid state was not dissolved throughout the leaching process. Overall, the leaching rates of copper in different copper minerals decreased in the order: malachite, pseudo-malachite > chrysocolla > copper-bearing chlorite > copper-bearing muscovite > copper-bearing biotite > copper-bearing limonite > feldspar-quartz-copper-iron colloid.
文摘Copolymerization of propylene oxide (PO) and ethylene oxide (EO) using double metal cyanide (DMC) complex as the catalyst was carried out. The structure of random copolymers was confirmed by C-13-NMR and IR spectra. H-1-NMR analysis shows that the EO content in the copolymer is the same as that in the initial monomer feed. Moderate molecular weight copolymers with various EO content were obtained and their values of molecular weight distribution (MWD) fell in the range of 1.21-1.55. It was found that the molecular weight of copolymers is controlled by the mass ratio of EO+PO to initiator moles used, The reaction rate as well as polymer yield decrease with increasing EO content in the feed composition.
基金support provided by the National Natural Science Foundation of China (21978143 and 21878164)。
文摘Catalytic wet air oxidation(CWAO) can degrade some refractory pollutants at a low cost to improve the biodegradability of wastewater. However, in the presence of high temperature and high pressure and strong oxidizing free radicals, the stability of catalysts is often insufficient, which has become a bottleneck in the application of CWAO. In this paper, a copper-based catalyst with excellent hydrothermal stability was designed and prepared. TiO_(2) with excellent stability was used as the carrier to ensure the longterm anchoring of copper and reduce the leaching of the catalyst. The one pot sol–gel method was used to ensure the super dispersion and uniform distribution of copper nanoparticles on the carrier, so as to ensure that more active centers could be retained in a longer period. Experiments show that the catalyst prepared by this method has good stability and catalytic activity, and the catalytic effect is not significantly reduced after 10 cycles of use. The oxidation degradation experiment of m-cresol with the strongest biological toxicity and the most difficult to degrade in coal chemical wastewater was carried out with this catalyst. The results showed that under the conditions of 140℃, 2 MPa and 2 h, m-cresol with a concentration of up to 1000 mg·L^(-1) could be completely degraded, and the COD removal rate could reach 79.15%. The biological toxicity of wastewater was significantly reduced. The development of the catalyst system has greatly improved the feasibility of CWAO in the treatment of refractory wastewater such as coal chemical wastewater.
基金support from the Polish Ministry of Science and Higher Education (3T09A 081 28)
文摘The 1,3,5-triazine diphosphine oxide ligands with donor-acceptor properties formed strong complexes with europium(Ⅲ) ion in acetonitrile. Spectrophotometric titrations and mass spectra indicated that two ligands coordinated to one europium ion. The stability constants varied from 11.64 to 14.60 (log 13). Binary complexes exhibited rather weak luminescence in solution. 1,3,5-triazine diphosphine oxides engaged as co-ligands in Eu(Ⅲ) (2-thenoyltrifluoroacetonate)3 complex contributed to the overall photoluminescence and allowed for excitation with longer wavelengths than the parent complex.
基金financial support from National Natural Science Foundation of China (No. 21373006 and No. 51801030)the Science and Technology Program of Suzhou (SYG201732)+4 种基金the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD)the project of Scientific and Technologic Infrastructure of Suzhou (SZS201708)the Natural Science Foundation of the Jiangsu Higher Education Institutions of China (17KJB430029)One-hundred Young Talents (Class A) of Guangdong University of Technology (No. 220413198)Natural Science Foundation of Guangdong Providence (No. 2018A030310571)
文摘In this manuscript, we have demonstrated the delicate design and synthesis of bimetallic oxides nanoparticles derived from metal–oleate complex embedded in 3D graphene networks(MnO/CoMn_2O_4 GN), as an anode material for lithium ion batteries. The novel synthesis of the MnO/CoMn_2O_4 GN consists of thermal decomposition of metal–oleate complex containing cobalt and manganese metals and oleate ligand, forming bimetallic oxides nanoparticles, followed by a selfassembly route with reduced graphene oxides. The MnO/CoMn_2O_4 GN composite, with a unique architecture of bimetallic oxides nanoparticles encapsulated in 3D graphene networks, rationally integrates several benefits including shortening the di usion path of Li^+ ions, improving electrical conductivity and mitigating volume variation during cycling. Studies show that the electrochemical reaction processes of MnO/Co Mn_2O_4 GN electrodes are dominated by the pseudocapacitive behavior, leading to fast Li^+ charge/discharge reactions. As a result, the MnO/CoMn_2O_4 GN manifests high initial specific capacity, stable cycling performance, and excellent rate capability.
基金Project supported by the National Natural Science Foundation of China (90406021, 50903028)Science and Technology Bureau of Heilongjiang Province (QC08C10)
文摘The bidentate phosphine oxide ligand 1,8-bis(diphenylphosphino) naphthalene oxide (NAPO) and its EuⅢ complex 1 Eu(TTA)3(NAPO) (TTA=2-thenoyltrifluoroacetonate) were chosen to study the effect of bidentate phosphine oxide ligand on the photophysical properties of the corresponding complex. The intramolecular energy transfer processes of 1 were studied. The investigation showed that with bidentate structure NAPO could suppress solvent-induced quenching by enforcing the ligand-ligand interaction and the rigidi...
文摘Hydrotalcites known as anionic clays are found in nature. Hydrotalcites, hydrotalcite-like compounds, and calcined hydrotalcites (as mixed or complex oxides) as highly active, selective catalysts play an important role in many base/catalyzed reactions. Mg/Al hydrotalcite (MAH) as precursor was used to prepare Mg/Al metal complex oxides (MAO), used as epoxidation catalysts in the current research. In this paper, some primary physical and catalytic properties of MAH and MAO were investigated. The results indicated that the qualified MAH (Mg/Al mol ratio of 3) can be achieved when the suspension was crystallized under 80°C for 16h, and after being filtered, dried at 100 °C for 5h in a oven. MAO was prepared by calcining MAH for 4h in a muffle furnace, and calcination temperature was determined to be 500 °C by a differential scanning calorimeter (DSC). Crystal structure and parameters of MAH and MAO were characterized by X/ray diffraction (XRD), good crystal structure was observed and typical peaks of MAH were detected when 2θ was at 11.5 (003), 23.0 (006), 35.0 (009), and 61.0 (110), respectively. The morphology of calcined precursor, i.e. MAO, was investigated with scanning electron microscopy (SEM);the finer lamellar structure and smaller average size of 3μm was observed. Molding research was performed and confirmed by SEM, the results indicated that the surface bulge and cavity with size of several micrometers were increased, which simultaneously suggested the increasing of specific surface area. The catalytic activity of molding MAO was finally examined by using octanol as starting reagent and ethylene oxide as reactant, and narrower molecular distribution was observed comparing with the traditional catalyst-KOH.
基金Natural Science Foundation and Education Department Foundation of Guangxi Province
文摘The title zinc(Ⅱ) complex salt [Zn(H2O)6](ClO4)2-(PNOS)4, where PNOS is derived from picolinaldehyde N-oxide with semicarbazone, has been prepared and structurally characterized by X-ray single-crystal analysis. It crystallizes in triclinic, space group PI with a = 7.529(3), b = 10.206(4), c = 14.678(6)A, a = 86.293(6), β= 87.686(7), γ= 81.382(6)°, C28H44Cl2N16O22Zn, Mr = 1093.06, V = 1112.3(8) ,A^3 Z = 1, Dc = 1.632 g/cm^3, S = 1.089, μ(MoKa) = 0.773 mm^-1, F(000) = 564, the final R = 0.0438 and wR = 0.1076 for 3888 independent reflections with Rint = 0.0224. The crystal structure possesses a [Zn(H2O)6]^2+ cation, two ClO4^- anions and four PNOSs. In the crystal structure, Zn^2+ cation is located at the symcenter and coordinated by six water molecules. In [Zn(H2O)6]^2+, an elongate octahedral complex cation, the average Zn-O bond length is 2.087(2) A. There exist a lot of H bonds in the structure, linking the cation [Zn(H2O)6]^2+, anion ClO4^- and PNOS to form a 3D network.
基金Supported by the National Natural Science Foundation of China
文摘Two iron-arene complex photoinitiators with different substituents in arene ligands were synthesized, their activities in initiating photopolymerization of cyclohexene oxide (CHO) were compared with that of IRGACURE 261, a commercialized photoinitiator from Ciba-Geigy. A higher activity was found when the arene ligand was substituted with a stronger electron donating group. For the system initiated by IRGACURE 261 the concentration of active centers in CHO polymerization was determined and it was found that the concentration is maximum at around 35℃. The post (dark) polymerization was significant, the polymerization yield decreased with the increase of irradiation temperature and increased with the increase of post polymerization temperature. The results are interpreted based on the mechanism proposed by Lohse, et al..
基金supported by the National Key Research and Development Program of China(No.2022YFA1205601).
文摘By encapsulating nanoscale particles of goethite(α-FeO(OH)),hydrous ceric oxide(CeO_(2)·H_(2)O,HCO)and silver nanoparticles(AgNPs)in the pores of polystyrene anion exchanger D201,a novel nanocomposite FeO(OH)-HCO-Ag-D201 was prepared for the effective removal of arsenic from water.The isotherm study shows that FeO(OH)-HCO-Ag-D201 has excellent adsorption performance for As(III)and As(V),with an increased adsorption capacity of As(III)to 40.12 mg/g compared to that of 22.03 mg/g by the composite adsorbent without AgNPs(FeO(OH)-HCO-D201).The adsorption kinetics data showed that the sorption rate of FeO(OH)-HCO-Ag-D201 for As(III)is less than that for As(V),and the adsorption of As(III)and As(V)were consistent with the pseudo-second-order model and the pseudofirst-order model,respectively.Neutral or basic conditions are favored for the adsorption of As(III/V)by FeO(OH)-HCO-Ag-D201.Compared with nitrate/chloride/bicarbonate,sulfate/silicate/phosphate showed more remarkable inhibition of arsenic removal by FeO(OH)-HCO-Ag-D201,whereas natural organic matter showed no interference to the arsenic removal.The As(V)adsorption involved different interactions such as electrostatic attraction and surface complexation,while the adsorption of As(III)involved the part oxidization of As(III)to As(V)and the simultaneous adsorption of As(III)and As(V).In addition to the Ce(IV)in CeO_(2)·H_(2)O acted as an oxidant,the synergistic effect ofα-FeO(OH)and AgNPs also contributed to the oxidization of As(III)to As(V).Moreover,the reusable property suggested that this FeO(OH)-HCO-Ag-D201 nanocomposite has great potential for arsenic-contaminated water purification.
文摘The reported X-ray structure and magnetochemical properties of [Mn6O2 (OCPh)10, (CH3CN)4], effectively derived from [NBu4][Mn4O2(O2CPh)9 (H2O)] with equivalent of tren in CH3CN is shown.
基金supported by the National Natural Science Foundation of China (No. 20772042)
文摘A new complex [Cd(H2biim)2(H2O)2]·(ino)2·4H2O (H2biim = 2,2'-biimidazole, ino = isonicotinate-N-oxide) has been prepared and characterized by single-crystal X-ray diffraction analysis, IR and fluorescence spectra analysis. The crystal is of triclinic system, space group P1 with a = 7.5380(6), b = 8.0402(7), c = 13.5094(11) , α = 104.269(1), β = 93.604(1), γ = 98.349(1)°, V = 780.93(11) 3, Mr = 765.00, Dc = 1.627 g/cm3, F(000) = 390, μ = 0.776 mm-1 and Z = 1. The final R = 0.0322 and wR = 0.0825 for 7038 observed reflections with I 2σ(I) and R = 0.0341 and wR = 0.0832 for all data. The title complex exhibits an infinite chain-like structure through bridging isonicotinate-N-oxide. Strong interchain hydrogen bonds between isonicotinate-N-oxide and H2biim result in the robust 3-D supramolecular architecture. Moreover, the complex shows strong photoluminescence with emission maximum at λ = 401 nm upon λex = 330 nm.