In this paper,the research progress of Cu-based catalyst and the activity enhancement strategies in the hydrogenation of dimethyl oxalate(DMO)to ethylene glycol(EG)was reviewed.As a green and economical ethylene glyco...In this paper,the research progress of Cu-based catalyst and the activity enhancement strategies in the hydrogenation of dimethyl oxalate(DMO)to ethylene glycol(EG)was reviewed.As a green and economical ethylene glycol production path,the core of DMO hydrogenation of EG lies in the rational design and optimization of catalysts.This paper first introduces the background of the DMO hydrogenation system EG significance and the important effect of Cu-based catalyst in the reaction,particularly emphasizing the coordination with the Cu^(+)-Cu^(0) species catalytic effect.Then,many factors affecting the activity of Cu-based catalysts were analyzed in detail,including the equilibrium effect between Cu^(0) and Cu+species,the surface dispersion of Cu species,the interaction between metal and support,and the morphology effect of the catalyst.Regarding strategies for improving catalyst performance,this paper summarized effective measures such as optimizing support structure,adding promoters and optimizing preparation methods,and demonstrated the practical application effects of these strategies through representative catalyst examples.In addition,this paper also discusses the complex relationship between the influencing factors and catalyst performance.It points out the key directions for future research,with in-depth exploration of the correlation between catalyst structure and performance,the development of new catalysts,and the application of machine learning and big data technology in the catalyst research and development.In summary,this paper provides comprehensive theoretical guidance and practical reference for the performance optimization of Cu-based catalysts for DMO hydrogenation to EG.展开更多
Metal nanoparticle(NP_S)catalysts exhibit desirable activities in various catalytic reactions.However,the sintering of metal NPs at high-temperatures even in reducing atmospheres limits its practical application.In th...Metal nanoparticle(NP_S)catalysts exhibit desirable activities in various catalytic reactions.However,the sintering of metal NPs at high-temperatures even in reducing atmospheres limits its practical application.In this work,we successfully synthesized TPA-ZSM-5 with pit-type defects by treating the ZSM-5 with tetrahydroxy ammonium hydroxide(TPAOH),which was then used as a support to prepare Ag-based and Cu-based catalysts.Stability testing results show that the Ag/TPA-ZSM-5 catalyst treated at 800℃with H_(2) could maintain the high performance in NH_(3)-SCO and the Cu/TPA-ZSM-5 catalyst treated at 900℃ with N_(2) could maintained its excellent activity in NH_(3)-SCR,however,the activities of Ag/ZSM-5 and Cu/ZSM-5 were drastically decreased or even deactivated after high-temperature treatment.In addition,a series of characterization analyses revealed that the excellent thermal stability is attribute to the presence of pit-type defects in the TPA-ZSM-5 as physical barriers to slow down or even inhibit the Ag NPs and Cu NPs sintering process.The strategy of using the pit-type defects to inhibit the sintering of metal NPs and improve the thermal stability can greatly enhance the practical application of catalysts.展开更多
The CO_(2) reduction reaction(CO_(2)RR)is notable for itsmultiple advantages,such as mild reaction conditions,controllable product output,and ease of operation.The chemistry of CO_(2)RR to producemulticarbon products ...The CO_(2) reduction reaction(CO_(2)RR)is notable for itsmultiple advantages,such as mild reaction conditions,controllable product output,and ease of operation.The chemistry of CO_(2)RR to producemulticarbon products involvesmultiple electron-proton transfer steps,in which the adsorption of CO intermediates is usually the key rate-determining step of the reaction.Currently,Cu is the only metal catalyst known to efficiently reduce CO_(2) tomulticarbon products,mainly due to its appropriate adsorption energy for CO intermediates.However,single Cu catalysts often face challenges such as excessively high overpotentials and poor selectivity,which limit their potential application in CO_(2) reduction.In recent years,electrochemical CO_(2) reduction using copper-based tandem catalysts has become an effective strategy to enhance the overall performance of CO_(2)RR and a hot topic in the research field.Here we review recent research advances in the field of electrochemical CO_(2)RR where tandemmethods have been applied.Themajor points are the following:(1)the tandem process allows for more precise control of the electrochemical reduction pathway,thereby increasing the yield of the target product while reducing the generation of by-products;(2)Mass transportation of *CO intermediates and spatial management is important for the generation of multicarbon products;(3)a variety of tandem means for upgrading the product to a deeply reduced product are reviewed.展开更多
The need to secure environmentally sustainable sources of clean fuel has led to intensive research into the catalytic conversion of CO_(2)into valuable C_(2)+compounds.However,the intrinsically sluggish reduction kine...The need to secure environmentally sustainable sources of clean fuel has led to intensive research into the catalytic conversion of CO_(2)into valuable C_(2)+compounds.However,the intrinsically sluggish reduction kinetics and competing reaction pathways present challenges in achieving high product selectivity and efficiency.Herein,we focus on the transformation of CO_(2)into C_(2)+products,particularly emphasizing advances in non-copper-based catalytic systems,which have emerged as promising alternatives that present unique electronic structures and adsorption properties.Unlike conventional copper catalysts,these systems offer distinct advantages in selectivity and stability,particularly through the modulation of surface defect engineering.We systematically analyze the main reaction pathways leading to C_(2)+products,including ethylene formation and higher hydrocarbon(C_(2)-4)alcohols and oxygenates,while critically assessing the mechanistic insights that differentiate non-copper catalysts from their Cu-based counterparts.By summarizing recent developments,the key challenges,and optimization strategies,we provide a comprehensive overview of how non-copper catalysts can enable efficient and scalable CO_(2)reduction reactions,with an aim of assisting researchers in their design of novel catalysts that may reach industrial applications.展开更多
The nano ZrO2-supported copper-based catalysts for methane combustion were investigated by means of N2 adsorption, TEM, XRD, H2-TPR techniques and the test of methane oxidation. Two kinds of ZrO2 were used as support,...The nano ZrO2-supported copper-based catalysts for methane combustion were investigated by means of N2 adsorption, TEM, XRD, H2-TPR techniques and the test of methane oxidation. Two kinds of ZrO2 were used as support, one (ZrO2-1) was obtained from the commercial ZrO2 and the other (ZrO2-2) was issued from the thermal decomposition of zirconium nitrate. It was found that the CuO/ZrO2-2 catalyst was more active than CuO/ZrO2-1. N2 adsorption, H2-TPR and XRD measurements showed that larger surface area, better reduction property, presence of tetragonal ZrO2 and higher dispersion of active component for CuO/ZrO2-2 than that of CuO/ZrO2-1. These factors could be the dominating reasons for its higher activity for methane combustion.展开更多
Catalytic wet air oxidation(CWAO) can degrade some refractory pollutants at a low cost to improve the biodegradability of wastewater. However, in the presence of high temperature and high pressure and strong oxidizing...Catalytic wet air oxidation(CWAO) can degrade some refractory pollutants at a low cost to improve the biodegradability of wastewater. However, in the presence of high temperature and high pressure and strong oxidizing free radicals, the stability of catalysts is often insufficient, which has become a bottleneck in the application of CWAO. In this paper, a copper-based catalyst with excellent hydrothermal stability was designed and prepared. TiO_(2) with excellent stability was used as the carrier to ensure the longterm anchoring of copper and reduce the leaching of the catalyst. The one pot sol–gel method was used to ensure the super dispersion and uniform distribution of copper nanoparticles on the carrier, so as to ensure that more active centers could be retained in a longer period. Experiments show that the catalyst prepared by this method has good stability and catalytic activity, and the catalytic effect is not significantly reduced after 10 cycles of use. The oxidation degradation experiment of m-cresol with the strongest biological toxicity and the most difficult to degrade in coal chemical wastewater was carried out with this catalyst. The results showed that under the conditions of 140℃, 2 MPa and 2 h, m-cresol with a concentration of up to 1000 mg·L^(-1) could be completely degraded, and the COD removal rate could reach 79.15%. The biological toxicity of wastewater was significantly reduced. The development of the catalyst system has greatly improved the feasibility of CWAO in the treatment of refractory wastewater such as coal chemical wastewater.展开更多
Various Cu/ZnO/Al2O3 catalysts have been synthesized by different aluminum emulsions as aluminum sources and their pertormances tor methanol synthesis from syngas have been investigated. The influences of preparation ...Various Cu/ZnO/Al2O3 catalysts have been synthesized by different aluminum emulsions as aluminum sources and their pertormances tor methanol synthesis from syngas have been investigated. The influences of preparation methods of aluminum emulsions on physicochemical and catalytic properties of catalysts were studied by XRD, SEM, XPS,N2 adsorption-desorption techniques and methanol synthesis from syngas. The preparation methods of aluminum emulsions were found to influence the catalytic activity, CuO crystallite size, surface area and Cu0 surface area and reduction process. The results show that the catalyst CN using the aluminum source prepared by addition the ammonia into the aluminum nitrate (NP) exhibited the best catalytic performance for methanol synthesis from syngas.展开更多
Adsorption, surface reaction and process dynamics on the surface of a commercial copper-based catalyst for methanol synthesis from CO/CO2/H2 were systematically studied by means of temperature programmed desorption (T...Adsorption, surface reaction and process dynamics on the surface of a commercial copper-based catalyst for methanol synthesis from CO/CO2/H2 were systematically studied by means of temperature programmed desorption (TPD), temperature programmed surface reaction (TPSR), in-situ Fourier transform-inferred spec-troscopy(FTIR) and stimulus-response techniques. As a part of results, an elementary step sequence was suggested and a group of ordinary differential equations (ODEs) for describing transient conversations relevant to all species on the catalyst surface and in the gas phase in a micro-fixed-bed reactor was derived. The values of the parameters referred to dynamic kinetics were estimated by fitting the solution of the ODEs with the transient response data obtained by the stimulus-response technique with a FTIR analyzer as an on-line detector.展开更多
Copper-based metal-organic frameworks(Cu-MOFs)are a promising multiphase catalyst for catalyzing C-S coupling reactions by virtue of their diverse structures and functions.However,the unpleasant odor and instability o...Copper-based metal-organic frameworks(Cu-MOFs)are a promising multiphase catalyst for catalyzing C-S coupling reactions by virtue of their diverse structures and functions.However,the unpleasant odor and instability of the organosulfur,as well as the mass-transfer resistance that exists in multiphase catalysis,have often limited the catalytic application of Cu-MOFs in C-S coupling reactions.In this paper,a Cu-MOFs catalyst modified by cetyltrimethylammonium bromide(CTAB)was designed to enhance mass transfer by increasing the adsorption of organic substrates using the long alkanes of CTAB.Concurrently,elemental sulfur was used to replace organosulfur to achieve a highly efficient and atom-economical multicomponent C-S coupling reaction.展开更多
Nitrogen is essential for life and ecosystems.The nitrogen cycle is fundamental to all life on earth and has been implicated in his-torical mass extinction events,where disruptions to its stability have played a criti...Nitrogen is essential for life and ecosystems.The nitrogen cycle is fundamental to all life on earth and has been implicated in his-torical mass extinction events,where disruptions to its stability have played a critical role[1].Moreover,the nitrogen cycle's response to climate change could critically influence atmo-spheric CO_(2) levels and the trajectory of global warming[2].However,improper management of anthropogenic nitrogen-containing wastewater,including domestic sewage,agricultural runoff,and industrial effluents,has pushed the nitrogen cycle to the brink of imbalance[1].展开更多
To date,copper-based catalysts are one of the most prominent catalysts that can electrochemically reduce CO_(2)towards highvalue fuels or chemicals,such as ethylene,ethanol,and acetic acid.However,the chemically activ...To date,copper-based catalysts are one of the most prominent catalysts that can electrochemically reduce CO_(2)towards highvalue fuels or chemicals,such as ethylene,ethanol,and acetic acid.However,the chemically active feature of Cu-based catalysts hinders the understanding of the intrinsic catalytic active sites during the initial and the operative processes of electrochemical CO_(2)reduction(CO_(2)RR).The identification and engineering of active sites during the dynamic evolution of catalysts are thereby vital to further improve the activity,selectivity,and durability of Cu-based catalysts for high-performance CO_(2)RR.In this regard,four triggers for the dynamic evolution of catalysts were introduced in detail.Afterward,three typical active-site theories during the dynamic reconstruction of catalysts were discussed.In addition,the strategies in catalyst design were summarized according to the latest reports of Cu-based catalysts for CO_(2)RR,including the tuning of electronic structure,controlling of the external potential,and regulation of local catalytic environment.Finally,the conclusions and perspectives were provided to inspire more investigations and studies on the intrinsic active sites during the dynamic evolution of catalysts,which could promote the optimization of the catalyst system to further improve the performance of CO_(2)RR.展开更多
In this work, we report a simple and inexpensive approach to synthesize effective multicomponent Cu-Cu2O-CuO catalysts for the Rochow process from industrial waste contact masses (WCMs). WCMs from the organosilane i...In this work, we report a simple and inexpensive approach to synthesize effective multicomponent Cu-Cu2O-CuO catalysts for the Rochow process from industrial waste contact masses (WCMs). WCMs from the organosilane industry were treated with acid followed by reduction with metallic iron powder. The obtained copper powder was then subjected to controlled oxidation in air at different temperatures, followed by ball milling. The orthogonal array approach was applied to optimize this process, and the stirring speed and pH were found to significantly affect the leaching ratio and copper yield, respectively. When used for the Rochow process, the optimized ternary Cu-Cu2O-CuO catalyst greatly enhanced the dimethyldichlorosilane selectivity and Si conversion compared with Cu-Cu2O-CuO catalysts prepared without ball milling, bare Cu catalysts, and Cu-Cu2O-CuO catalysts with different compositions. This could be attributed to their small particle size and the strong synergistic effect among the multiple components in the catalyst with the optimized composition.展开更多
Electrocatalytic carbon dioxide reduction reaction(CO_(2)RR)holds the promise of both overcoming the greenhouse effect and synthesizing a wealth of chemicals.Electrocatalytic CO_(2) reduction toward carbon-containing ...Electrocatalytic carbon dioxide reduction reaction(CO_(2)RR)holds the promise of both overcoming the greenhouse effect and synthesizing a wealth of chemicals.Electrocatalytic CO_(2) reduction toward carbon-containing products,including C1 products(carbon monoxide,formic acid,etc),C2 products(ethylene,ethanol,etc.)and multi-carbon products(e.g.,n-propanol),provides beneficial fuel and chemicals for industrial production.The complexity of the multi-proton transfer processes and difficulties of C-C coupling in electrochemical CO_(2) reduction toward multi-carbon(C2+)products have attracted increasing concerns on the design of catalysts in comparison with those of C1 products.In this paper,we review the main advances in the syntheses of multi-carbon products through electrocatalytic carbon dioxide reduction in recent years,introduce the basic principles of electrocatalytic CO_(2)RR,and detailly elucidate two widely accepted mechanisms of C-C coupling reactions.Among abundant nanomaterials,copper-based catalysts are outstanding catalysts for the preparation of multi-carbon chemicals in electrochemical CO_(2)RR attributing to effective C-C coupling reactions.Regarding the different selectivity of multi-carbon chemicals but extensively applied copper-based catalysts,we classify and summarize various Cu-based catalysts through separating diverse multi-carbon products,where the modification of spatial and electronic structures is beneficial to increase the coverage of CO or lower the activation energy barrier for forming C-C bond to form the key intermediates and increase the production of multi-carbon products.Challenges and prospects involving the fundamental and development of copper-based catalysts in electrochemical CO_(2) reduction reaction are also proposed.展开更多
CONSPECTUS:As one of the essential pathways to carbon neutrality or carbon negativity,the electrochemical reduction of CO_(2) offers tremendous prospects for platform chemicals and fuel production.Copper(Cu)is current...CONSPECTUS:As one of the essential pathways to carbon neutrality or carbon negativity,the electrochemical reduction of CO_(2) offers tremendous prospects for platform chemicals and fuel production.Copper(Cu)is currently the only metal material that is able to reduce CO_(2) to multicarbon(C2+)products.Despite the fact that copper-based materials have been investigated for decades,we still confront numerous challenges on the path to the fundamental understanding and large-scale deployment of copper-based electrocatalysts for CO_(2) reduction.For fundamental investigations,it remains a variety of open questions about the CO_(2) reduction mechanisms.The convoluted C−C coupling pathways and product bifurcation processes confuse the design of efficient catalysts.The active sites of copper-based catalysts remain ambiguous due to surface reconstruction.As for theoretical calculations,the construction of electrolyte−electrode models and the investigation of solvation effects are premature for obtaining confident conclusions.In addition,simple and easily scalable techniques for catalyst synthesis still need to be continuously developed.For practical applications,the CO_(2) electrolyzer with copper-based materials must be operated with high current densities,high Faradaic efficiencies,high energetic efficiencies,high single-pass conversion rates(high product concentration),and long stability.Nevertheless,due to the intricate nature of electrochemical systems,a high-performance copper-based electrocatalyst alone is not sufficient to meet all of the above commercialization requirements.Therefore,reactor design involving mass transfer enhancement calls for more research input.Based on the above background and the urgency of the net-zero goal,we initiated our research on CO_(2) electrolysis using copper-based materials with an emphasis on active site identification and mass transfer enhancement.This Account describes our contribution to the field of C_(2+)products formation.We first discuss the synthesis of copper-based materials with a controlled atomic arrangement and valence states based on neural network-accelerated computational simulations.Using the synthesized catalyst,the selectivity of the target product is improved and the energy consumption of CO_(2) electrolysis is reduced.Then,we describe the efforts to investigate the reaction mechanisms,such as using first-principles calculations at the atomic level,in situ surface-enhanced vibrational spectroscopies at the micrometer level,and electrochemical kinetics studies at the apparent performance level.We also overview our efforts in the field of reaction system engineering,consisting of a vapor-fed CO_(2) threecompartment flow cell and a large-scale CO_(2) membrane electrode assembly,which can increase the reaction rates and single-pass yield.Furthermore,we put forward the main technical obstacles that currently need to be surmounted and provide insights into the commercial application of CO_(2) electrolysis technology.展开更多
The electrocatalytic nitrate reduction reaction(NitRR)represents a promising approach toward achieving economically and environmentally sustainable ammonia.However,it remains a challenge to regulate the size effect of...The electrocatalytic nitrate reduction reaction(NitRR)represents a promising approach toward achieving economically and environmentally sustainable ammonia.However,it remains a challenge to regulate the size effect of electrocatalysts to optimize the catalytic activity and ammonia selectivity.Herein,the Cu-based catalysts were tailored at the atomic level to exhibit a size gradient ranging from single-atom catalysts(SACs,0.15–0.35 nm)to single-cluster catalysts(SCCs,1.0–2.8 nm)and nanoparticles(NPs,20–30 nm),with the aim of studying the size effect for the NO_(3)^(-)-to-NH_(3) reduction reaction.Especially,the Cu SCCs exhibit enhanced metal–substrate and metal–metal interactions by taking advantageous features of Cu SACs and Cu NPs.Thus,Cu SCCs achieve exceptional electrocatalytic performance for the NitRR with a maximum Faradaic efficiency of ca.96%NH_(3)and the largest yield rate of ca.1.99 mg·h^(-1)·cm^(-2) at-0.5 V vs.reversible hydrogen electrode(RHE).The theoretical calculation further reveals the size effect and coordination environment on the high catalytic activity and selectivity for the NitRR.This work provides a promising various size-controlled design strategy for aerogel-based catalysts effectively applied in various electrocatalytic reactions.展开更多
The next-generation lithium(Li)metal batteries suffer severe low-temperature capacity degradation,appealing for expeditions on solutions.Herein,the feasibility of copper-based skeletons(i.e.,2D Cu foil,3D Cu mesh,and ...The next-generation lithium(Li)metal batteries suffer severe low-temperature capacity degradation,appealing for expeditions on solutions.Herein,the feasibility of copper-based skeletons(i.e.,2D Cu foil,3D Cu mesh,and CuZn mesh)frequently adopted in the stabilization of Li are evaluated at low temperatures.Li growth patterns and stripping behaviors on different skeletons and at different temperatures uncover the dendrite-free and dead-Li-less Li deposition/dissolution on CuZn mesh.Three-electrode impedance indicates the dynamic advantages of CuZn mesh,driving fast Li^(+)crossing through solidelectrolyte-interphase and charge transfer process.Notably,CuZn mesh enables the stable operation and fast charging(1.8 mA cm^(-2))of Li||LiFePO_(4)cells for over 120 cycles at-10℃ with a superior capacity retention of 88%.The success of CuZn mesh can be translated into lower temperature(-20℃)and 1.0-Ah-level pouch cells.This work provides fundamentals on improving low-temperature battery performances by skeletons with regulated spatial structure and lithiophilicity.展开更多
The contamination of water resources by phenolic compounds(PCs)presents a significant environmental hazard,necessitating the development of novel materials and methodologies for effective mitigation.In this study,a me...The contamination of water resources by phenolic compounds(PCs)presents a significant environmental hazard,necessitating the development of novel materials and methodologies for effective mitigation.In this study,a metallic copper-doped zeolitic imidazolate framework was pyrolyzed and designated as CuNC-20 for the activation of peroxymonosulfate(PMS)to degrade phenol(PE).Cu-NC-20 could effectively address the issue of metal agglomeration while simultaneously diminishing copper dissolution during the activation of PMS reactions.The Cu-NC-20 catalyst exhibited a rapid degradation rate for PE across a broad pH range(3-9)and demonstrated high tolerance towards coexisting ions.According to scavenger experiments and electron paramagnetic resonance analysis,singlet oxygen(^(1)O_(2))and high-valent copperoxo(Cu(Ⅲ))were the predominant reactive oxygen species,indicating that the system was nonradicaldominated during the degradation process.The quantitative structure-activity relationship(QSAR)between the oxidation rate constants of various substituted phenols and Hammett constants was established.It indicated that the Cu-NC-20/PMS system had the optimal oxidation rate constant withσ^(-)correlation and exhibited a typical electrophilic reaction pattern.This study provides a comprehensive understanding of the heterogeneous activation process for the selective removal of phenolic compounds.展开更多
Against the backdrop of escalating global climate change and energy crises,the resource utilization of carbon dioxide(CO_(2)),a major greenhouse gas,has become a crucial pathway for achieving carbon peaking and carbon...Against the backdrop of escalating global climate change and energy crises,the resource utilization of carbon dioxide(CO_(2)),a major greenhouse gas,has become a crucial pathway for achieving carbon peaking and carbon neutrality goals.The hydrogenation of CO_(2)to methanol not only enables carbon sequestration and recycling,but also provides a route to produce high value-added fuels and basic chemical feedstocks,holding significant environmental and economic potential.However,this conversion process is thermodynamically and kinetically limited,and traditional catalyst systems(e.g.,Cu/ZnO/Al_(2)O_(3))exhibit inadequate activity,selectivity,and stability under mild conditions.Therefore,the development of novel high-performance catalysts with precisely tunable structures and functionalities is imperative.Metal-organic frameworks(MOFs),as crystalline porous materials with high surface area,tunable pore structures,and diverse metal-ligand compositions,have the great potential in CO_(2)hydrogenation catalysis.Their structural design flexibility allows for the construction of well-dispersed active sites,tailored electronic environments,and enhanced metal-support interactions.This review systematically summarizes the recent advances in MOF-based and MOF-derived catalysts for CO_(2)hydrogenation to methanol,focusing on four design strategies:(1)spatial confinement and in situ construction,(2)defect engineering and ion-exchange,(3)bimetallic synergy and hybrid structure design,and(4)MOF-derived nanomaterial synthesis.These approaches significantly improve CO_(2)conversion and methanol selectivity by optimizing metal dispersion,interfacial structures,and reaction pathways.The reaction mechanism is further explored by focusing on the three main reaction pathways:the formate pathway(HCOO*),the RWGS(Reverse Water Gas Shift reaction)+CO*hydrogenation pathway,and the trans-COOH pathway.In situ spectroscopic studies and density functional theory(DFT)calculations elucidate the formation and transformation of key intermediates,as well as the roles of active sites,metal-support interfaces,oxygen vacancies,and promoters.Additionally,representative catalytic performance data for MOFbased systems are compiled and compared,demonstrating their advantages over traditional catalysts in terms of CO_(2)conversion,methanol selectivity,and space-time yield.Future perspectives for MOF-based CO_(2)hydrogenation catalysts will prioritize two main directions:structural design and mechanistic understanding.The precise construction of active sites through multi-metallic synergy,defect engineering,and interfacial electronic modulation should be made to enhance catalyst selectivity and stability.In addition,advanced in situ characterization techniques combined with theoretical modeling are essential to unravel the detailed reaction mechanisms and intermediate behaviors,thereby guiding rational catalyst design.Moreover,to enable industrial application,challenges related to thermal/hydrothermal stability,catalyst recyclability,and cost-effective large-scale synthesis must be addressed.The development of green,scalable preparation methods and the integration of MOF catalysts into practical reaction systems(e.g.,flow reactors)will be crucial for bridging the gap between laboratory research and commercial deployment.Ultimately,multi-scale structure-performance optimization and catalytic system integration will be vital for accelerating the industrialization of MOF-based CO_(2)-to-methanol technologies.展开更多
To elucidate the effect of calcite-regulated activated carbon(AC)structure on low-temperature denitrification performance of SCR catalysts,this work prepared a series of Mn-Ce/De-AC-xCaCO_(3)(x is the calcite content ...To elucidate the effect of calcite-regulated activated carbon(AC)structure on low-temperature denitrification performance of SCR catalysts,this work prepared a series of Mn-Ce/De-AC-xCaCO_(3)(x is the calcite content in coal)catalysts were prepared by the incipient wetness impregnation method,followed by acid washing to remove calcium-containing minerals.Comprehensive characterization and low-temperature denitrification tests revealed that calcite-induced structural modulation of coal-derived AC significantly enhances catalytic activity.Specifically,NO conversion increased from 88.3%of Mn-Ce/De-AC to 91.7%of Mn-Ce/De-AC-1CaCO_(3)(210℃).The improved SCR denitrification activity results from the enhancement of physicochemical properties including higher Mn^(4+)content and Ce^(4+)/Ce^(3+)ratio,an abundance of chemisorbed oxygen and acidic sites,which could strengthen the SCR reaction pathways(richer NH_(3)activated species and bidentate nitrate active species).Therefore,NO removal is enhanced.展开更多
Using photoelectrocatalytic CO_(2) reduction reaction(CO_(2)RR)to produce valuable fuels is a fascinating way to alleviate environmental issues and energy crises.Bismuth-based(Bi-based)catalysts have attracted widespr...Using photoelectrocatalytic CO_(2) reduction reaction(CO_(2)RR)to produce valuable fuels is a fascinating way to alleviate environmental issues and energy crises.Bismuth-based(Bi-based)catalysts have attracted widespread attention for CO_(2)RR due to their high catalytic activity,selectivity,excellent stability,and low cost.However,they still need to be further improved to meet the needs of industrial applications.This review article comprehensively summarizes the recent advances in regulation strategies of Bi-based catalysts and can be divided into six categories:(1)defect engineering,(2)atomic doping engineering,(3)organic framework engineering,(4)inorganic heterojunction engineering,(5)crystal face engineering,and(6)alloying and polarization engineering.Meanwhile,the corresponding catalytic mechanisms of each regulation strategy will also be discussed in detail,aiming to enable researchers to understand the structure-property relationship of the improved Bibased catalysts fundamentally.Finally,the challenges and future opportunities of the Bi-based catalysts in the photoelectrocatalytic CO_(2)RR application field will also be featured from the perspectives of the(1)combination or synergy of multiple regulatory strategies,(2)revealing formation mechanism and realizing controllable synthesis,and(3)in situ multiscale investigation of activation pathways and uncovering the catalytic mechanisms.On the one hand,through the comparative analysis and mechanism explanation of the six major regulatory strategies,a multidimensional knowledge framework of the structure-activity relationship of Bi-based catalysts can be constructed for researchers,which not only deepens the atomic-level understanding of catalytic active sites,charge transport paths,and the adsorption behavior of intermediate products,but also provides theoretical guiding principles for the controllable design of new catalysts;on the other hand,the promising collaborative regulation strategies,controllable synthetic paths,and the in situ multiscale characterization techniques presented in this work provides a paradigm reference for shortening the research and development cycle of high-performance catalysts,conducive to facilitating the transition of photoelectrocatalytic CO_(2)RR technology from the laboratory routes to industrial application.展开更多
基金supported by Guangxi Science and Technology Major Program(GuikeAA23062018)the Academic Newcomer Award Project of Guangxi University(2025GXUXSXR07)。
文摘In this paper,the research progress of Cu-based catalyst and the activity enhancement strategies in the hydrogenation of dimethyl oxalate(DMO)to ethylene glycol(EG)was reviewed.As a green and economical ethylene glycol production path,the core of DMO hydrogenation of EG lies in the rational design and optimization of catalysts.This paper first introduces the background of the DMO hydrogenation system EG significance and the important effect of Cu-based catalyst in the reaction,particularly emphasizing the coordination with the Cu^(+)-Cu^(0) species catalytic effect.Then,many factors affecting the activity of Cu-based catalysts were analyzed in detail,including the equilibrium effect between Cu^(0) and Cu+species,the surface dispersion of Cu species,the interaction between metal and support,and the morphology effect of the catalyst.Regarding strategies for improving catalyst performance,this paper summarized effective measures such as optimizing support structure,adding promoters and optimizing preparation methods,and demonstrated the practical application effects of these strategies through representative catalyst examples.In addition,this paper also discusses the complex relationship between the influencing factors and catalyst performance.It points out the key directions for future research,with in-depth exploration of the correlation between catalyst structure and performance,the development of new catalysts,and the application of machine learning and big data technology in the catalyst research and development.In summary,this paper provides comprehensive theoretical guidance and practical reference for the performance optimization of Cu-based catalysts for DMO hydrogenation to EG.
基金supported by the National Natural Science Foundation of China(No.52370113)Yunnan Fundamental Research Projects(No.202101BE070001-001)。
文摘Metal nanoparticle(NP_S)catalysts exhibit desirable activities in various catalytic reactions.However,the sintering of metal NPs at high-temperatures even in reducing atmospheres limits its practical application.In this work,we successfully synthesized TPA-ZSM-5 with pit-type defects by treating the ZSM-5 with tetrahydroxy ammonium hydroxide(TPAOH),which was then used as a support to prepare Ag-based and Cu-based catalysts.Stability testing results show that the Ag/TPA-ZSM-5 catalyst treated at 800℃with H_(2) could maintain the high performance in NH_(3)-SCO and the Cu/TPA-ZSM-5 catalyst treated at 900℃ with N_(2) could maintained its excellent activity in NH_(3)-SCR,however,the activities of Ag/ZSM-5 and Cu/ZSM-5 were drastically decreased or even deactivated after high-temperature treatment.In addition,a series of characterization analyses revealed that the excellent thermal stability is attribute to the presence of pit-type defects in the TPA-ZSM-5 as physical barriers to slow down or even inhibit the Ag NPs and Cu NPs sintering process.The strategy of using the pit-type defects to inhibit the sintering of metal NPs and improve the thermal stability can greatly enhance the practical application of catalysts.
基金supported by the National Natural Science Foundation of China(No.52270078)the Fundamental Research Funds for the Central Universities(No.xzy022023039).
文摘The CO_(2) reduction reaction(CO_(2)RR)is notable for itsmultiple advantages,such as mild reaction conditions,controllable product output,and ease of operation.The chemistry of CO_(2)RR to producemulticarbon products involvesmultiple electron-proton transfer steps,in which the adsorption of CO intermediates is usually the key rate-determining step of the reaction.Currently,Cu is the only metal catalyst known to efficiently reduce CO_(2) tomulticarbon products,mainly due to its appropriate adsorption energy for CO intermediates.However,single Cu catalysts often face challenges such as excessively high overpotentials and poor selectivity,which limit their potential application in CO_(2) reduction.In recent years,electrochemical CO_(2) reduction using copper-based tandem catalysts has become an effective strategy to enhance the overall performance of CO_(2)RR and a hot topic in the research field.Here we review recent research advances in the field of electrochemical CO_(2)RR where tandemmethods have been applied.Themajor points are the following:(1)the tandem process allows for more precise control of the electrochemical reduction pathway,thereby increasing the yield of the target product while reducing the generation of by-products;(2)Mass transportation of *CO intermediates and spatial management is important for the generation of multicarbon products;(3)a variety of tandem means for upgrading the product to a deeply reduced product are reviewed.
基金supported by the Joint Funds of the National Natural Science Foundation of China(U24B20201)National Natural Science Foundation of China(22372007 and 21972010).
文摘The need to secure environmentally sustainable sources of clean fuel has led to intensive research into the catalytic conversion of CO_(2)into valuable C_(2)+compounds.However,the intrinsically sluggish reduction kinetics and competing reaction pathways present challenges in achieving high product selectivity and efficiency.Herein,we focus on the transformation of CO_(2)into C_(2)+products,particularly emphasizing advances in non-copper-based catalytic systems,which have emerged as promising alternatives that present unique electronic structures and adsorption properties.Unlike conventional copper catalysts,these systems offer distinct advantages in selectivity and stability,particularly through the modulation of surface defect engineering.We systematically analyze the main reaction pathways leading to C_(2)+products,including ethylene formation and higher hydrocarbon(C_(2)-4)alcohols and oxygenates,while critically assessing the mechanistic insights that differentiate non-copper catalysts from their Cu-based counterparts.By summarizing recent developments,the key challenges,and optimization strategies,we provide a comprehensive overview of how non-copper catalysts can enable efficient and scalable CO_(2)reduction reactions,with an aim of assisting researchers in their design of novel catalysts that may reach industrial applications.
文摘The nano ZrO2-supported copper-based catalysts for methane combustion were investigated by means of N2 adsorption, TEM, XRD, H2-TPR techniques and the test of methane oxidation. Two kinds of ZrO2 were used as support, one (ZrO2-1) was obtained from the commercial ZrO2 and the other (ZrO2-2) was issued from the thermal decomposition of zirconium nitrate. It was found that the CuO/ZrO2-2 catalyst was more active than CuO/ZrO2-1. N2 adsorption, H2-TPR and XRD measurements showed that larger surface area, better reduction property, presence of tetragonal ZrO2 and higher dispersion of active component for CuO/ZrO2-2 than that of CuO/ZrO2-1. These factors could be the dominating reasons for its higher activity for methane combustion.
基金support provided by the National Natural Science Foundation of China (21978143 and 21878164)。
文摘Catalytic wet air oxidation(CWAO) can degrade some refractory pollutants at a low cost to improve the biodegradability of wastewater. However, in the presence of high temperature and high pressure and strong oxidizing free radicals, the stability of catalysts is often insufficient, which has become a bottleneck in the application of CWAO. In this paper, a copper-based catalyst with excellent hydrothermal stability was designed and prepared. TiO_(2) with excellent stability was used as the carrier to ensure the longterm anchoring of copper and reduce the leaching of the catalyst. The one pot sol–gel method was used to ensure the super dispersion and uniform distribution of copper nanoparticles on the carrier, so as to ensure that more active centers could be retained in a longer period. Experiments show that the catalyst prepared by this method has good stability and catalytic activity, and the catalytic effect is not significantly reduced after 10 cycles of use. The oxidation degradation experiment of m-cresol with the strongest biological toxicity and the most difficult to degrade in coal chemical wastewater was carried out with this catalyst. The results showed that under the conditions of 140℃, 2 MPa and 2 h, m-cresol with a concentration of up to 1000 mg·L^(-1) could be completely degraded, and the COD removal rate could reach 79.15%. The biological toxicity of wastewater was significantly reduced. The development of the catalyst system has greatly improved the feasibility of CWAO in the treatment of refractory wastewater such as coal chemical wastewater.
文摘Various Cu/ZnO/Al2O3 catalysts have been synthesized by different aluminum emulsions as aluminum sources and their pertormances tor methanol synthesis from syngas have been investigated. The influences of preparation methods of aluminum emulsions on physicochemical and catalytic properties of catalysts were studied by XRD, SEM, XPS,N2 adsorption-desorption techniques and methanol synthesis from syngas. The preparation methods of aluminum emulsions were found to influence the catalytic activity, CuO crystallite size, surface area and Cu0 surface area and reduction process. The results show that the catalyst CN using the aluminum source prepared by addition the ammonia into the aluminum nitrate (NP) exhibited the best catalytic performance for methanol synthesis from syngas.
基金Supported by the National Natural Science Foundation of China(N.29476223) and Ministry of Chemical Industry of China under a contract(No.95-23-01).
文摘Adsorption, surface reaction and process dynamics on the surface of a commercial copper-based catalyst for methanol synthesis from CO/CO2/H2 were systematically studied by means of temperature programmed desorption (TPD), temperature programmed surface reaction (TPSR), in-situ Fourier transform-inferred spec-troscopy(FTIR) and stimulus-response techniques. As a part of results, an elementary step sequence was suggested and a group of ordinary differential equations (ODEs) for describing transient conversations relevant to all species on the catalyst surface and in the gas phase in a micro-fixed-bed reactor was derived. The values of the parameters referred to dynamic kinetics were estimated by fitting the solution of the ODEs with the transient response data obtained by the stimulus-response technique with a FTIR analyzer as an on-line detector.
基金support from the National Natural Science Foundation of China(22078130)the Fundamental Research Funds for the Central Universities(1042050205225990/010)Starting Research Fund of Qingyuan Innovation Laboratory(00523001).
文摘Copper-based metal-organic frameworks(Cu-MOFs)are a promising multiphase catalyst for catalyzing C-S coupling reactions by virtue of their diverse structures and functions.However,the unpleasant odor and instability of the organosulfur,as well as the mass-transfer resistance that exists in multiphase catalysis,have often limited the catalytic application of Cu-MOFs in C-S coupling reactions.In this paper,a Cu-MOFs catalyst modified by cetyltrimethylammonium bromide(CTAB)was designed to enhance mass transfer by increasing the adsorption of organic substrates using the long alkanes of CTAB.Concurrently,elemental sulfur was used to replace organosulfur to achieve a highly efficient and atom-economical multicomponent C-S coupling reaction.
基金supported by the National Natural Science Foundation of China(Nos.52172291,52122312 and 52473294)the“Shuguang Program”supported by Shanghai Education Development Foundation and Shanghai Municipal Education Commission(No.22SG31).
文摘Nitrogen is essential for life and ecosystems.The nitrogen cycle is fundamental to all life on earth and has been implicated in his-torical mass extinction events,where disruptions to its stability have played a critical role[1].Moreover,the nitrogen cycle's response to climate change could critically influence atmo-spheric CO_(2) levels and the trajectory of global warming[2].However,improper management of anthropogenic nitrogen-containing wastewater,including domestic sewage,agricultural runoff,and industrial effluents,has pushed the nitrogen cycle to the brink of imbalance[1].
基金supported by the“Pioneer”and“Leading Goose”R&D Programs of Zhejiang(2022C03146)National Natural Science Foundation of China(22225606 and 22176029)Central Government Guided Local Science and Technology Development Fund(2021ZY1022)。
文摘To date,copper-based catalysts are one of the most prominent catalysts that can electrochemically reduce CO_(2)towards highvalue fuels or chemicals,such as ethylene,ethanol,and acetic acid.However,the chemically active feature of Cu-based catalysts hinders the understanding of the intrinsic catalytic active sites during the initial and the operative processes of electrochemical CO_(2)reduction(CO_(2)RR).The identification and engineering of active sites during the dynamic evolution of catalysts are thereby vital to further improve the activity,selectivity,and durability of Cu-based catalysts for high-performance CO_(2)RR.In this regard,four triggers for the dynamic evolution of catalysts were introduced in detail.Afterward,three typical active-site theories during the dynamic reconstruction of catalysts were discussed.In addition,the strategies in catalyst design were summarized according to the latest reports of Cu-based catalysts for CO_(2)RR,including the tuning of electronic structure,controlling of the external potential,and regulation of local catalytic environment.Finally,the conclusions and perspectives were provided to inspire more investigations and studies on the intrinsic active sites during the dynamic evolution of catalysts,which could promote the optimization of the catalyst system to further improve the performance of CO_(2)RR.
基金The work was supported by the National Natural Science Foundation of China (grant number 21506224). Z.Z. is grateful for support from the Institute of Chemical and Engineering Sciences.
文摘In this work, we report a simple and inexpensive approach to synthesize effective multicomponent Cu-Cu2O-CuO catalysts for the Rochow process from industrial waste contact masses (WCMs). WCMs from the organosilane industry were treated with acid followed by reduction with metallic iron powder. The obtained copper powder was then subjected to controlled oxidation in air at different temperatures, followed by ball milling. The orthogonal array approach was applied to optimize this process, and the stirring speed and pH were found to significantly affect the leaching ratio and copper yield, respectively. When used for the Rochow process, the optimized ternary Cu-Cu2O-CuO catalyst greatly enhanced the dimethyldichlorosilane selectivity and Si conversion compared with Cu-Cu2O-CuO catalysts prepared without ball milling, bare Cu catalysts, and Cu-Cu2O-CuO catalysts with different compositions. This could be attributed to their small particle size and the strong synergistic effect among the multiple components in the catalyst with the optimized composition.
基金supported by the National Key R&D Program of China(2021YFA1500700)the National Nature Science Foundation of China(22102057)Shanghai Sailing Program(21YF1409400).
文摘Electrocatalytic carbon dioxide reduction reaction(CO_(2)RR)holds the promise of both overcoming the greenhouse effect and synthesizing a wealth of chemicals.Electrocatalytic CO_(2) reduction toward carbon-containing products,including C1 products(carbon monoxide,formic acid,etc),C2 products(ethylene,ethanol,etc.)and multi-carbon products(e.g.,n-propanol),provides beneficial fuel and chemicals for industrial production.The complexity of the multi-proton transfer processes and difficulties of C-C coupling in electrochemical CO_(2) reduction toward multi-carbon(C2+)products have attracted increasing concerns on the design of catalysts in comparison with those of C1 products.In this paper,we review the main advances in the syntheses of multi-carbon products through electrocatalytic carbon dioxide reduction in recent years,introduce the basic principles of electrocatalytic CO_(2)RR,and detailly elucidate two widely accepted mechanisms of C-C coupling reactions.Among abundant nanomaterials,copper-based catalysts are outstanding catalysts for the preparation of multi-carbon chemicals in electrochemical CO_(2)RR attributing to effective C-C coupling reactions.Regarding the different selectivity of multi-carbon chemicals but extensively applied copper-based catalysts,we classify and summarize various Cu-based catalysts through separating diverse multi-carbon products,where the modification of spatial and electronic structures is beneficial to increase the coverage of CO or lower the activation energy barrier for forming C-C bond to form the key intermediates and increase the production of multi-carbon products.Challenges and prospects involving the fundamental and development of copper-based catalysts in electrochemical CO_(2) reduction reaction are also proposed.
基金We acknowledge the National Key R&D Program of China(2021YFA1501503)the National Natural Science Foundation of China(22121004,22038009,and 51861125104)+2 种基金the Natural Science Foundation o f Tianjin City(18JCJQJC47500),Haihe Laboratory of Sustainable Chemical Transformations(CYZC202107)the Program of Introducing Talents of Discipline to Universities(no.BP0618007)the Xplorer Prize for financial support.
文摘CONSPECTUS:As one of the essential pathways to carbon neutrality or carbon negativity,the electrochemical reduction of CO_(2) offers tremendous prospects for platform chemicals and fuel production.Copper(Cu)is currently the only metal material that is able to reduce CO_(2) to multicarbon(C2+)products.Despite the fact that copper-based materials have been investigated for decades,we still confront numerous challenges on the path to the fundamental understanding and large-scale deployment of copper-based electrocatalysts for CO_(2) reduction.For fundamental investigations,it remains a variety of open questions about the CO_(2) reduction mechanisms.The convoluted C−C coupling pathways and product bifurcation processes confuse the design of efficient catalysts.The active sites of copper-based catalysts remain ambiguous due to surface reconstruction.As for theoretical calculations,the construction of electrolyte−electrode models and the investigation of solvation effects are premature for obtaining confident conclusions.In addition,simple and easily scalable techniques for catalyst synthesis still need to be continuously developed.For practical applications,the CO_(2) electrolyzer with copper-based materials must be operated with high current densities,high Faradaic efficiencies,high energetic efficiencies,high single-pass conversion rates(high product concentration),and long stability.Nevertheless,due to the intricate nature of electrochemical systems,a high-performance copper-based electrocatalyst alone is not sufficient to meet all of the above commercialization requirements.Therefore,reactor design involving mass transfer enhancement calls for more research input.Based on the above background and the urgency of the net-zero goal,we initiated our research on CO_(2) electrolysis using copper-based materials with an emphasis on active site identification and mass transfer enhancement.This Account describes our contribution to the field of C_(2+)products formation.We first discuss the synthesis of copper-based materials with a controlled atomic arrangement and valence states based on neural network-accelerated computational simulations.Using the synthesized catalyst,the selectivity of the target product is improved and the energy consumption of CO_(2) electrolysis is reduced.Then,we describe the efforts to investigate the reaction mechanisms,such as using first-principles calculations at the atomic level,in situ surface-enhanced vibrational spectroscopies at the micrometer level,and electrochemical kinetics studies at the apparent performance level.We also overview our efforts in the field of reaction system engineering,consisting of a vapor-fed CO_(2) threecompartment flow cell and a large-scale CO_(2) membrane electrode assembly,which can increase the reaction rates and single-pass yield.Furthermore,we put forward the main technical obstacles that currently need to be surmounted and provide insights into the commercial application of CO_(2) electrolysis technology.
基金support from the National Nature Science Foundation of China(No.52202372)the Sichuan Science and Technology Program(Nos.2023NSFSC0436 and 2023NSFSC0089)+1 种基金the Fundamental Research Funds for the Central Universities(Nos.YJ2021151 and 20826041G4185)T.T.G.acknowledges the Chengdu University new faculty start-up funding(No.2081920074).
文摘The electrocatalytic nitrate reduction reaction(NitRR)represents a promising approach toward achieving economically and environmentally sustainable ammonia.However,it remains a challenge to regulate the size effect of electrocatalysts to optimize the catalytic activity and ammonia selectivity.Herein,the Cu-based catalysts were tailored at the atomic level to exhibit a size gradient ranging from single-atom catalysts(SACs,0.15–0.35 nm)to single-cluster catalysts(SCCs,1.0–2.8 nm)and nanoparticles(NPs,20–30 nm),with the aim of studying the size effect for the NO_(3)^(-)-to-NH_(3) reduction reaction.Especially,the Cu SCCs exhibit enhanced metal–substrate and metal–metal interactions by taking advantageous features of Cu SACs and Cu NPs.Thus,Cu SCCs achieve exceptional electrocatalytic performance for the NitRR with a maximum Faradaic efficiency of ca.96%NH_(3)and the largest yield rate of ca.1.99 mg·h^(-1)·cm^(-2) at-0.5 V vs.reversible hydrogen electrode(RHE).The theoretical calculation further reveals the size effect and coordination environment on the high catalytic activity and selectivity for the NitRR.This work provides a promising various size-controlled design strategy for aerogel-based catalysts effectively applied in various electrocatalytic reactions.
基金the funding support of the National Natural Science Foundation of China(52103342,22209032 and 22479134)Natural Science Foundation of Zhejiang Province(LY24B030008)+1 种基金China Jiliang University Research Fund Program for Young Scholars(221040)the funding support of the Zhejiang Provincial College Students’Scientific Research and Innovation Activity(Xinmiao Talent)Program(2023R409A045)。
文摘The next-generation lithium(Li)metal batteries suffer severe low-temperature capacity degradation,appealing for expeditions on solutions.Herein,the feasibility of copper-based skeletons(i.e.,2D Cu foil,3D Cu mesh,and CuZn mesh)frequently adopted in the stabilization of Li are evaluated at low temperatures.Li growth patterns and stripping behaviors on different skeletons and at different temperatures uncover the dendrite-free and dead-Li-less Li deposition/dissolution on CuZn mesh.Three-electrode impedance indicates the dynamic advantages of CuZn mesh,driving fast Li^(+)crossing through solidelectrolyte-interphase and charge transfer process.Notably,CuZn mesh enables the stable operation and fast charging(1.8 mA cm^(-2))of Li||LiFePO_(4)cells for over 120 cycles at-10℃ with a superior capacity retention of 88%.The success of CuZn mesh can be translated into lower temperature(-20℃)and 1.0-Ah-level pouch cells.This work provides fundamentals on improving low-temperature battery performances by skeletons with regulated spatial structure and lithiophilicity.
基金the financial support from Sichuan Program of Science and Technology(No.2021ZDZX0012)the National Natural Science Foundation of China(No.52200105)。
文摘The contamination of water resources by phenolic compounds(PCs)presents a significant environmental hazard,necessitating the development of novel materials and methodologies for effective mitigation.In this study,a metallic copper-doped zeolitic imidazolate framework was pyrolyzed and designated as CuNC-20 for the activation of peroxymonosulfate(PMS)to degrade phenol(PE).Cu-NC-20 could effectively address the issue of metal agglomeration while simultaneously diminishing copper dissolution during the activation of PMS reactions.The Cu-NC-20 catalyst exhibited a rapid degradation rate for PE across a broad pH range(3-9)and demonstrated high tolerance towards coexisting ions.According to scavenger experiments and electron paramagnetic resonance analysis,singlet oxygen(^(1)O_(2))and high-valent copperoxo(Cu(Ⅲ))were the predominant reactive oxygen species,indicating that the system was nonradicaldominated during the degradation process.The quantitative structure-activity relationship(QSAR)between the oxidation rate constants of various substituted phenols and Hammett constants was established.It indicated that the Cu-NC-20/PMS system had the optimal oxidation rate constant withσ^(-)correlation and exhibited a typical electrophilic reaction pattern.This study provides a comprehensive understanding of the heterogeneous activation process for the selective removal of phenolic compounds.
基金Supported by the National Key Research and Development Program of China(2023YFB4104500,2023YFB4104502)the National Natural Science Foundation of China(22138013)the Taishan Scholar Project(ts201712020).
文摘Against the backdrop of escalating global climate change and energy crises,the resource utilization of carbon dioxide(CO_(2)),a major greenhouse gas,has become a crucial pathway for achieving carbon peaking and carbon neutrality goals.The hydrogenation of CO_(2)to methanol not only enables carbon sequestration and recycling,but also provides a route to produce high value-added fuels and basic chemical feedstocks,holding significant environmental and economic potential.However,this conversion process is thermodynamically and kinetically limited,and traditional catalyst systems(e.g.,Cu/ZnO/Al_(2)O_(3))exhibit inadequate activity,selectivity,and stability under mild conditions.Therefore,the development of novel high-performance catalysts with precisely tunable structures and functionalities is imperative.Metal-organic frameworks(MOFs),as crystalline porous materials with high surface area,tunable pore structures,and diverse metal-ligand compositions,have the great potential in CO_(2)hydrogenation catalysis.Their structural design flexibility allows for the construction of well-dispersed active sites,tailored electronic environments,and enhanced metal-support interactions.This review systematically summarizes the recent advances in MOF-based and MOF-derived catalysts for CO_(2)hydrogenation to methanol,focusing on four design strategies:(1)spatial confinement and in situ construction,(2)defect engineering and ion-exchange,(3)bimetallic synergy and hybrid structure design,and(4)MOF-derived nanomaterial synthesis.These approaches significantly improve CO_(2)conversion and methanol selectivity by optimizing metal dispersion,interfacial structures,and reaction pathways.The reaction mechanism is further explored by focusing on the three main reaction pathways:the formate pathway(HCOO*),the RWGS(Reverse Water Gas Shift reaction)+CO*hydrogenation pathway,and the trans-COOH pathway.In situ spectroscopic studies and density functional theory(DFT)calculations elucidate the formation and transformation of key intermediates,as well as the roles of active sites,metal-support interfaces,oxygen vacancies,and promoters.Additionally,representative catalytic performance data for MOFbased systems are compiled and compared,demonstrating their advantages over traditional catalysts in terms of CO_(2)conversion,methanol selectivity,and space-time yield.Future perspectives for MOF-based CO_(2)hydrogenation catalysts will prioritize two main directions:structural design and mechanistic understanding.The precise construction of active sites through multi-metallic synergy,defect engineering,and interfacial electronic modulation should be made to enhance catalyst selectivity and stability.In addition,advanced in situ characterization techniques combined with theoretical modeling are essential to unravel the detailed reaction mechanisms and intermediate behaviors,thereby guiding rational catalyst design.Moreover,to enable industrial application,challenges related to thermal/hydrothermal stability,catalyst recyclability,and cost-effective large-scale synthesis must be addressed.The development of green,scalable preparation methods and the integration of MOF catalysts into practical reaction systems(e.g.,flow reactors)will be crucial for bridging the gap between laboratory research and commercial deployment.Ultimately,multi-scale structure-performance optimization and catalytic system integration will be vital for accelerating the industrialization of MOF-based CO_(2)-to-methanol technologies.
基金Supported by the Science and Technology Cooperation and Exchange special project of Cooperation of Shanxi Province(202404041101014)the Fundamental Research Program of Shanxi Province(202403021212333)+3 种基金the Joint Funds of the National Natural Science Foundation of China(U24A20555)the Lvliang Key R&D of University-Local Cooperation(2023XDHZ10)the Initiation Fund for Doctoral Research of Taiyuan University of Science and Technology(20242026)the Outstanding Doctor Funding Award of Shanxi Province(20242080).
文摘To elucidate the effect of calcite-regulated activated carbon(AC)structure on low-temperature denitrification performance of SCR catalysts,this work prepared a series of Mn-Ce/De-AC-xCaCO_(3)(x is the calcite content in coal)catalysts were prepared by the incipient wetness impregnation method,followed by acid washing to remove calcium-containing minerals.Comprehensive characterization and low-temperature denitrification tests revealed that calcite-induced structural modulation of coal-derived AC significantly enhances catalytic activity.Specifically,NO conversion increased from 88.3%of Mn-Ce/De-AC to 91.7%of Mn-Ce/De-AC-1CaCO_(3)(210℃).The improved SCR denitrification activity results from the enhancement of physicochemical properties including higher Mn^(4+)content and Ce^(4+)/Ce^(3+)ratio,an abundance of chemisorbed oxygen and acidic sites,which could strengthen the SCR reaction pathways(richer NH_(3)activated species and bidentate nitrate active species).Therefore,NO removal is enhanced.
基金supports from the National Natural Science Foundation of China(Grant Nos.12305372 and 22376217)the National Key Research&Development Program of China(Grant Nos.2022YFA1603802 and 2022YFB3504100)+1 种基金the projects of the key laboratory of advanced energy materials chemistry,ministry of education(Nankai University)key laboratory of Jiangxi Province for persistent pollutants prevention control and resource reuse(2023SSY02061)are gratefully acknowledged.
文摘Using photoelectrocatalytic CO_(2) reduction reaction(CO_(2)RR)to produce valuable fuels is a fascinating way to alleviate environmental issues and energy crises.Bismuth-based(Bi-based)catalysts have attracted widespread attention for CO_(2)RR due to their high catalytic activity,selectivity,excellent stability,and low cost.However,they still need to be further improved to meet the needs of industrial applications.This review article comprehensively summarizes the recent advances in regulation strategies of Bi-based catalysts and can be divided into six categories:(1)defect engineering,(2)atomic doping engineering,(3)organic framework engineering,(4)inorganic heterojunction engineering,(5)crystal face engineering,and(6)alloying and polarization engineering.Meanwhile,the corresponding catalytic mechanisms of each regulation strategy will also be discussed in detail,aiming to enable researchers to understand the structure-property relationship of the improved Bibased catalysts fundamentally.Finally,the challenges and future opportunities of the Bi-based catalysts in the photoelectrocatalytic CO_(2)RR application field will also be featured from the perspectives of the(1)combination or synergy of multiple regulatory strategies,(2)revealing formation mechanism and realizing controllable synthesis,and(3)in situ multiscale investigation of activation pathways and uncovering the catalytic mechanisms.On the one hand,through the comparative analysis and mechanism explanation of the six major regulatory strategies,a multidimensional knowledge framework of the structure-activity relationship of Bi-based catalysts can be constructed for researchers,which not only deepens the atomic-level understanding of catalytic active sites,charge transport paths,and the adsorption behavior of intermediate products,but also provides theoretical guiding principles for the controllable design of new catalysts;on the other hand,the promising collaborative regulation strategies,controllable synthetic paths,and the in situ multiscale characterization techniques presented in this work provides a paradigm reference for shortening the research and development cycle of high-performance catalysts,conducive to facilitating the transition of photoelectrocatalytic CO_(2)RR technology from the laboratory routes to industrial application.