Copper consumption increased very quickly in China in recent years,which could not be met by inland copper industry.In order to achieve a sustainable development of copper industry,an analysis of copper recycling in C...Copper consumption increased very quickly in China in recent years,which could not be met by inland copper industry.In order to achieve a sustainable development of copper industry,an analysis of copper recycling in China was necessary.For the life cycle of copper products a copper-flow diagram with time factor was worked out and the contemporary copper recycling in China was analyzed,from which the following data were obtained.The average life cycle of copper products was 30 years.From 1998 to 2002,the use ratio of copper scraps in copper production,the use ratio of copper scraps in copper manufacture,the materials self-support ratio in copper production,and the materials self-support ratio in copper manufacture were 26.50%,15.49%,48.05% and 59.41%,respectively.The materials self-support ratios in copper production and manufacture declined year by year in recent years on the whole,and the latter dropped more quickly.The average index of copper ore and copper scrap from 1998 to 2002 were 0.8475 t/t and 0.0736 t/t,respectively;and copper resource efficiency was 1.1855 t/t.Some efforts should be paid to reduce copper ores consumption and promote copper scraps regeneration.Copper scraps were mostly imported from foreign countries because of shortage in recent years in China.Here the reasons related to copper scraps deficiency were also demonstrated.But we can forecast:when copper production was in a slow rise or in a steady state in China,the deficiency of copper scraps may be mitigated;when copper production was in a steady state for a very long time,copper scraps may become relatively abundant.According to the status of copper industry in China,the raw materials of copper production and manufacture have to depend on oversea markets heavily in recent years,and at the same time,the copper scraps using proportion and efficiency in copper industry should be improved.展开更多
The effects of adding alloy element zinc on the static and dynamic mechanical properties of copper-zinc alloy were investigated. Tensile and low cycle fatigue behaviors of the C11000 copper and H63 copper-zinc alloy w...The effects of adding alloy element zinc on the static and dynamic mechanical properties of copper-zinc alloy were investigated. Tensile and low cycle fatigue behaviors of the C11000 copper and H63 copper-zinc alloy were obtained by using a miniature tester that combined the functions of in situ tensile and fatigue testing. A piezoelectric actuator was adopted as the actuator for the fatigue testing, and the feasibility of the fatigue actuator was verified by the transient harmonic response analysis based on static tensile preload and dynamic sinusoidal load. The experimental results show that the yield strength and tensile strength of the C11000 copper are improved after adding 37%(mass fraction) zinc, and H63 copper-zinc alloy presents more obvious cyclic hardening behavior and more consumed irreversible plastic work during each stress cycle compared with C11000 copper for the same strain controlled cycling. Additionally, based on the Manson-Coffin theory, the strain-life equations of the two materials were also obtained. C11000 copper and H63 copper-zinc alloy show transition life of 16832 and 1788 cycles, respectively.展开更多
基金Supported by Key Technologies R&D Programme(No.2003BA614A-02)
文摘Copper consumption increased very quickly in China in recent years,which could not be met by inland copper industry.In order to achieve a sustainable development of copper industry,an analysis of copper recycling in China was necessary.For the life cycle of copper products a copper-flow diagram with time factor was worked out and the contemporary copper recycling in China was analyzed,from which the following data were obtained.The average life cycle of copper products was 30 years.From 1998 to 2002,the use ratio of copper scraps in copper production,the use ratio of copper scraps in copper manufacture,the materials self-support ratio in copper production,and the materials self-support ratio in copper manufacture were 26.50%,15.49%,48.05% and 59.41%,respectively.The materials self-support ratios in copper production and manufacture declined year by year in recent years on the whole,and the latter dropped more quickly.The average index of copper ore and copper scrap from 1998 to 2002 were 0.8475 t/t and 0.0736 t/t,respectively;and copper resource efficiency was 1.1855 t/t.Some efforts should be paid to reduce copper ores consumption and promote copper scraps regeneration.Copper scraps were mostly imported from foreign countries because of shortage in recent years in China.Here the reasons related to copper scraps deficiency were also demonstrated.But we can forecast:when copper production was in a slow rise or in a steady state in China,the deficiency of copper scraps may be mitigated;when copper production was in a steady state for a very long time,copper scraps may become relatively abundant.According to the status of copper industry in China,the raw materials of copper production and manufacture have to depend on oversea markets heavily in recent years,and at the same time,the copper scraps using proportion and efficiency in copper industry should be improved.
基金Projects(51275198,51422503)supported by the National Natural Science Foundation of ChinaProject(2012YQ030075)supported by Special Funds for Development of National Major Scientific Instruments and Equipments,China+1 种基金Project(NECT-12-0238)supported by Program for New Century Excellent Talents in University,ChinaProject(20150520108JH)supported by Young Scientist Fund of Jilin Province of China
文摘The effects of adding alloy element zinc on the static and dynamic mechanical properties of copper-zinc alloy were investigated. Tensile and low cycle fatigue behaviors of the C11000 copper and H63 copper-zinc alloy were obtained by using a miniature tester that combined the functions of in situ tensile and fatigue testing. A piezoelectric actuator was adopted as the actuator for the fatigue testing, and the feasibility of the fatigue actuator was verified by the transient harmonic response analysis based on static tensile preload and dynamic sinusoidal load. The experimental results show that the yield strength and tensile strength of the C11000 copper are improved after adding 37%(mass fraction) zinc, and H63 copper-zinc alloy presents more obvious cyclic hardening behavior and more consumed irreversible plastic work during each stress cycle compared with C11000 copper for the same strain controlled cycling. Additionally, based on the Manson-Coffin theory, the strain-life equations of the two materials were also obtained. C11000 copper and H63 copper-zinc alloy show transition life of 16832 and 1788 cycles, respectively.