为了提高超短期风电功率的预测精度,提出了一种基于COOT算法优化的变分模态分解(VMD)、分层主成分分析(hierarchical principal components analysis,HPCA)与门控循环单元神经网络(GRU)的组合预测模型。首先,利用能量差值法确定变分模...为了提高超短期风电功率的预测精度,提出了一种基于COOT算法优化的变分模态分解(VMD)、分层主成分分析(hierarchical principal components analysis,HPCA)与门控循环单元神经网络(GRU)的组合预测模型。首先,利用能量差值法确定变分模态分解子模态数,从而将具有强非线性的原始功率序列分解为一组相对平稳的子模态。其次,利用灰色关联度分析计算高维气象特征与功率序列的关联度值并进行排序分层,利用主成分分析提取各分层特征变量的第一主成分,实现对高维气象特征的降维。最后,引入COOT算法对门控循环单元预测模型的超参数进行优化,加速模型收敛速度,提高模型预测精度。对贵州某风电场的实测数据进行仿真分析,结果表明:相较于传统GRU模型的预测结果,所提方法的均方根误差、平均绝对误差、平均绝对百分误差分别下降了67.41%、72.25%、45.69%,且预测精度高于其他4种组合预测模型,有效提高了超短期风电功率预测精度。展开更多
The recent developments in smart cities pose major security issues for the Internet of Things(IoT)devices.These security issues directly result from inappropriate security management protocols and their implementation...The recent developments in smart cities pose major security issues for the Internet of Things(IoT)devices.These security issues directly result from inappropriate security management protocols and their implementation by IoT gadget developers.Cyber-attackers take advantage of such gadgets’vulnerabilities through various attacks such as injection and Distributed Denial of Service(DDoS)attacks.In this background,Intrusion Detection(ID)is the only way to identify the attacks and mitigate their damage.The recent advancements in Machine Learning(ML)and Deep Learning(DL)models are useful in effectively classifying cyber-attacks.The current research paper introduces a new Coot Optimization Algorithm with a Deep Learning-based False Data Injection Attack Recognition(COADL-FDIAR)model for the IoT environment.The presented COADL-FDIAR technique aims to identify false data injection attacks in the IoT environment.To accomplish this,the COADL-FDIAR model initially preprocesses the input data and selects the features with the help of the Chi-square test.To detect and classify false data injection attacks,the Stacked Long Short-Term Memory(SLSTM)model is exploited in this study.Finally,the COA algorithm effectively adjusts the SLTSM model’s hyperparameters effectively and accomplishes a superior recognition efficiency.The proposed COADL-FDIAR model was experimentally validated using a standard dataset,and the outcomes were scrutinized under distinct aspects.The comparative analysis results assured the superior performance of the proposed COADL-FDIAR model over other recent approaches with a maximum accuracy of 98.84%.展开更多
针对白骨顶鸟优化算法(COOT)寻优精度低、容易陷入局部最优、收敛速度慢等问题,提出了基于柯西变异和差分进化的混沌白骨顶鸟算法(Logistic Chaos Coot bird algorithm based on Cauchy mutation and Differential evolution,CDLCOOT)...针对白骨顶鸟优化算法(COOT)寻优精度低、容易陷入局部最优、收敛速度慢等问题,提出了基于柯西变异和差分进化的混沌白骨顶鸟算法(Logistic Chaos Coot bird algorithm based on Cauchy mutation and Differential evolution,CDLCOOT)。首先,通过柯西变异使白骨顶鸟位置发生扰动,扩大搜索范围,提高算法的全局搜索能力;其次,对领导者白骨顶鸟采取差分进化策略,增加种群多样性,使适应度更好的领导者带领种群寻优,引导白骨顶鸟个体向最优解前进,帮助其更快地搜索;最后,在白骨顶鸟进行链式运动时加入logistic混沌因子,从而实现混沌的链式跟随运动,提高算法跳出局部最优的能力。在12个经典的测试函数和9个CEC2017测试函数上进行仿真实验,将CDLCOOT算法与正余弦算法(SCA)、灰狼优化算法(GWO)、蚁狮优化算法(ALO)、黑洞模拟算法(MVO)等其他先进算法及原始COOT算法、具有单一策略的原算法进行对比,验证改进算法的有效性。实验结果表明,CDLCOOT算法相比其他启发式算法和改进算法具有更好的全局寻优能力和更快的收敛速度。在经典测试函数中,对于4个单模态函数,CDLCOOT算法寻优平均值相比原始算法平均提高了76个数量级;在2个多模态函数上寻到理论最优值,在另外2个多模态函数上寻优平均值分别比原始算法提高了三四个数量级;在4个固定维度多模态函数上,算法都能寻到理论最优值,收敛速度更快。在CEC2017测试函数中,所提算法在单模态、多模态和混合模态上的收敛精度相比原算法都有所提升,且其收敛速度也比原算法和其他算法更快,算法稳定性更高。展开更多
文摘为了提高超短期风电功率的预测精度,提出了一种基于COOT算法优化的变分模态分解(VMD)、分层主成分分析(hierarchical principal components analysis,HPCA)与门控循环单元神经网络(GRU)的组合预测模型。首先,利用能量差值法确定变分模态分解子模态数,从而将具有强非线性的原始功率序列分解为一组相对平稳的子模态。其次,利用灰色关联度分析计算高维气象特征与功率序列的关联度值并进行排序分层,利用主成分分析提取各分层特征变量的第一主成分,实现对高维气象特征的降维。最后,引入COOT算法对门控循环单元预测模型的超参数进行优化,加速模型收敛速度,提高模型预测精度。对贵州某风电场的实测数据进行仿真分析,结果表明:相较于传统GRU模型的预测结果,所提方法的均方根误差、平均绝对误差、平均绝对百分误差分别下降了67.41%、72.25%、45.69%,且预测精度高于其他4种组合预测模型,有效提高了超短期风电功率预测精度。
基金This research was supported by the Universiti Sains Malaysia(USM)and the ministry of Higher Education Malaysia through Fundamental Research GrantScheme(FRGS-Grant No:FRGS/1/2020/TK0/USM/02/1).
文摘The recent developments in smart cities pose major security issues for the Internet of Things(IoT)devices.These security issues directly result from inappropriate security management protocols and their implementation by IoT gadget developers.Cyber-attackers take advantage of such gadgets’vulnerabilities through various attacks such as injection and Distributed Denial of Service(DDoS)attacks.In this background,Intrusion Detection(ID)is the only way to identify the attacks and mitigate their damage.The recent advancements in Machine Learning(ML)and Deep Learning(DL)models are useful in effectively classifying cyber-attacks.The current research paper introduces a new Coot Optimization Algorithm with a Deep Learning-based False Data Injection Attack Recognition(COADL-FDIAR)model for the IoT environment.The presented COADL-FDIAR technique aims to identify false data injection attacks in the IoT environment.To accomplish this,the COADL-FDIAR model initially preprocesses the input data and selects the features with the help of the Chi-square test.To detect and classify false data injection attacks,the Stacked Long Short-Term Memory(SLSTM)model is exploited in this study.Finally,the COA algorithm effectively adjusts the SLTSM model’s hyperparameters effectively and accomplishes a superior recognition efficiency.The proposed COADL-FDIAR model was experimentally validated using a standard dataset,and the outcomes were scrutinized under distinct aspects.The comparative analysis results assured the superior performance of the proposed COADL-FDIAR model over other recent approaches with a maximum accuracy of 98.84%.
文摘针对白骨顶鸟优化算法(COOT)寻优精度低、容易陷入局部最优、收敛速度慢等问题,提出了基于柯西变异和差分进化的混沌白骨顶鸟算法(Logistic Chaos Coot bird algorithm based on Cauchy mutation and Differential evolution,CDLCOOT)。首先,通过柯西变异使白骨顶鸟位置发生扰动,扩大搜索范围,提高算法的全局搜索能力;其次,对领导者白骨顶鸟采取差分进化策略,增加种群多样性,使适应度更好的领导者带领种群寻优,引导白骨顶鸟个体向最优解前进,帮助其更快地搜索;最后,在白骨顶鸟进行链式运动时加入logistic混沌因子,从而实现混沌的链式跟随运动,提高算法跳出局部最优的能力。在12个经典的测试函数和9个CEC2017测试函数上进行仿真实验,将CDLCOOT算法与正余弦算法(SCA)、灰狼优化算法(GWO)、蚁狮优化算法(ALO)、黑洞模拟算法(MVO)等其他先进算法及原始COOT算法、具有单一策略的原算法进行对比,验证改进算法的有效性。实验结果表明,CDLCOOT算法相比其他启发式算法和改进算法具有更好的全局寻优能力和更快的收敛速度。在经典测试函数中,对于4个单模态函数,CDLCOOT算法寻优平均值相比原始算法平均提高了76个数量级;在2个多模态函数上寻到理论最优值,在另外2个多模态函数上寻优平均值分别比原始算法提高了三四个数量级;在4个固定维度多模态函数上,算法都能寻到理论最优值,收敛速度更快。在CEC2017测试函数中,所提算法在单模态、多模态和混合模态上的收敛精度相比原算法都有所提升,且其收敛速度也比原算法和其他算法更快,算法稳定性更高。