期刊文献+
共找到51篇文章
< 1 2 3 >
每页显示 20 50 100
基于COOT算法的VMD-HPCA-GRU超短期风电功率预测 被引量:2
1
作者 何星月 杨靖 +2 位作者 朱兆强 杨斌 覃涛 《北京航空航天大学学报》 北大核心 2025年第5期1716-1725,共10页
为了提高超短期风电功率的预测精度,提出了一种基于COOT算法优化的变分模态分解(VMD)、分层主成分分析(hierarchical principal components analysis,HPCA)与门控循环单元神经网络(GRU)的组合预测模型。首先,利用能量差值法确定变分模... 为了提高超短期风电功率的预测精度,提出了一种基于COOT算法优化的变分模态分解(VMD)、分层主成分分析(hierarchical principal components analysis,HPCA)与门控循环单元神经网络(GRU)的组合预测模型。首先,利用能量差值法确定变分模态分解子模态数,从而将具有强非线性的原始功率序列分解为一组相对平稳的子模态。其次,利用灰色关联度分析计算高维气象特征与功率序列的关联度值并进行排序分层,利用主成分分析提取各分层特征变量的第一主成分,实现对高维气象特征的降维。最后,引入COOT算法对门控循环单元预测模型的超参数进行优化,加速模型收敛速度,提高模型预测精度。对贵州某风电场的实测数据进行仿真分析,结果表明:相较于传统GRU模型的预测结果,所提方法的均方根误差、平均绝对误差、平均绝对百分误差分别下降了67.41%、72.25%、45.69%,且预测精度高于其他4种组合预测模型,有效提高了超短期风电功率预测精度。 展开更多
关键词 风电功率预测 变分模态分解 分层主成分分析 coot算法 门控循环单元
原文传递
基于RTSWMFE,IS-GSE与COOT-SVM的行星齿轮箱故障诊断 被引量:1
2
作者 戚晓利 杨艳 +1 位作者 崔创创 程主梓 《振动.测试与诊断》 北大核心 2025年第1期132-139,205,共9页
针对行星齿轮箱特征提取困难的问题,提出一种基于精细时移加权多尺度模糊熵(refined time⁃shift weighted multiscale fuzzy entropy,简称RTSWMFE)、改进监督型几何和统计保持流形嵌入(improved supervised geometry and statistics⁃pre... 针对行星齿轮箱特征提取困难的问题,提出一种基于精细时移加权多尺度模糊熵(refined time⁃shift weighted multiscale fuzzy entropy,简称RTSWMFE)、改进监督型几何和统计保持流形嵌入(improved supervised geometry and statistics⁃preserving manifold embedding,简称IS⁃GSE)和白骨顶优化算法支持向量机(coot optimization algorithm support vector machine,简称COOT⁃SVM)的行星齿轮箱故障诊断方法。首先,利用RTSWMFE提取高维故障特征信息;其次,采用IS⁃GSE对高维特征进行降维,提取出敏感、低维的特征;最后,将低维特征输入COOT⁃SVM中进行识别分类。行星齿轮箱故障诊断实验结果表明:IS⁃GSE方法采用余弦相似度与欧式距离相结合的距离度量方式,并融入监督学习思想,降维效果较佳;COOT⁃SVM方法对经RTSWMFE和IS⁃GSE二次提取的故障特征识别精度达到100%。 展开更多
关键词 故障诊断 行星齿轮箱 精细时移加权多尺度模糊熵 改进监督型几何和统计保持流形嵌入 白骨顶优化算法优化支持向量机
在线阅读 下载PDF
基于改进COOT 的光伏MPPT 研究
3
作者 薛宇航 智泽英 《电力电子技术》 2025年第4期48-52,共5页
为解决光伏(PV)阵列局部遮阴时出现的最大功率点追踪(MPPT)时效率低、速度慢等问题,传统的追踪方法容易陷入局部最优从而不能找到最大功率点,而传统的白骨顶鸡算法(COOT)存在收敛速度慢和搜索振荡较大等问题,为此提出一种改进的COOT(ICO... 为解决光伏(PV)阵列局部遮阴时出现的最大功率点追踪(MPPT)时效率低、速度慢等问题,传统的追踪方法容易陷入局部最优从而不能找到最大功率点,而传统的白骨顶鸡算法(COOT)存在收敛速度慢和搜索振荡较大等问题,为此提出一种改进的COOT(ICOOT)。该算法在传统COOT的基础上结合随机初始化和拉丁超立方抽样,同时采用基于领导者个体差异适应度的跟随者位置更新的策略。通过测试4种典型的单峰和多峰函数,证明该算法具有极高的收敛速度和较强的跳出局部最优的能力。接着,将此算法集成到MPPT控制中,仿真结果表明:在静态遮阴条件下,所提方法搜索的最大功率更大、收敛时间更快;在动态遮阴条件下,重新搜索到最大功率的平均时间更快。 展开更多
关键词 光伏阵列 最大功率点追踪 白骨顶鸡算法 随机初始化
在线阅读 下载PDF
针对图像识别的改进COOT优化图像熵模型
4
作者 王芳 李喜艳 《计算机工程与设计》 北大核心 2025年第4期1219-1226,共8页
针对传统图像识别方法计算量大、效率低、分割精度低的不足,提出一种改进的白骨顶鸡优化火灾图像识别算法。引入增强型Logistic混沌初始化种群,提升个体多样性,以非线性权重平衡全局搜索与局部开采,设计一种混合扰动机制避免局部最优。... 针对传统图像识别方法计算量大、效率低、分割精度低的不足,提出一种改进的白骨顶鸡优化火灾图像识别算法。引入增强型Logistic混沌初始化种群,提升个体多样性,以非线性权重平衡全局搜索与局部开采,设计一种混合扰动机制避免局部最优。结合改进COOT算法和图像熵对林火图像分割阈值搜索寻优,以阈值最优解实现图像分割并评估图像识别质量。实验结果表明,改进算法在分割精度、分割效率和抗噪性上性能更优,能够有效识别林火图像并准确分离火源区域。 展开更多
关键词 白骨顶鸡算法 图像识别 对立学习 柯西变异 抗噪性 分割阈值
在线阅读 下载PDF
基于COOT优化算法和改进型重复PI控制的三相LCL型光伏并网系统 被引量:2
5
作者 杨春辉 屈莉莉 +1 位作者 廖慧 戴宏跃 《佛山科学技术学院学报(自然科学版)》 CAS 2024年第1期33-45,共13页
为提高光伏并网发电的发电效率,提出了基于COOT优化算法和改进型重复PI控制的三相LCL型光伏并网系统。COOT优化算法用于前级MPPT算法,可以准确快速追踪到光伏发电系统全局最大输出功率;改进型重复PI控制用于后级逆变,通过阻尼因子设计LC... 为提高光伏并网发电的发电效率,提出了基于COOT优化算法和改进型重复PI控制的三相LCL型光伏并网系统。COOT优化算法用于前级MPPT算法,可以准确快速追踪到光伏发电系统全局最大输出功率;改进型重复PI控制用于后级逆变,通过阻尼因子设计LCL有源阻尼控制,在数学建模过程中把采样计算延时以及PI控制考虑进去,最后加入重复控制;为了减少奇次谐波,采用级联式重复PI控制结构;同时针对电网频率波动时重复控制策略控制效果降低的问题,采用一种基于拉格朗日插值原理的频率自适应级联式重复PI控制。基于所提出的控制策略,利用Simulink仿真平台对系统进行了建模仿真,仿真结果表明了所提控制策略的正确性和可行性。 展开更多
关键词 光伏并网系统 coot优化算法 有源阻尼控制 级联式重复PI控制 拉格朗日插值原理
在线阅读 下载PDF
基于SS-COOT和路径空间缩减的不规则危险区路径规划 被引量:1
6
作者 郭航宇 白梅娟 +4 位作者 秦亚洲 李昊瞳 周敏敏 侯帅 魏永勇 《电脑与信息技术》 2024年第5期12-16,共5页
城市作战的重要性日益凸显,城市作战路径规划也受到了更多的关注。如何在城市复杂的环境和众多危险区中寻找安全迅速的路径是非常重要的。为保障作战安全,提出了一种基于选拔科特鸟和路径缩减的不规则危险区路径规划算法。首先,结合城... 城市作战的重要性日益凸显,城市作战路径规划也受到了更多的关注。如何在城市复杂的环境和众多危险区中寻找安全迅速的路径是非常重要的。为保障作战安全,提出了一种基于选拔科特鸟和路径缩减的不规则危险区路径规划算法。首先,结合城市危险区特征和受限情况以构建更符合真实战场的不规则危险区数学模型。其次,建立路径空间缩减模型对路径威胁度进行评估和量化,以剔除掉高威胁路径来降低作战风险。最后,基于选拔策略的科特鸟优化算法(COOT Bird Optimization Algorithm based on Selection Strategy,SS-COOT)结合优质个体以提高算法的寻优效率。经实验验证,该算法在结合不规则危险区的城市路径规划问题上具有搜索速度快、寻优效果好的特点。 展开更多
关键词 城市路径规划 不规则危险区 路径空间缩减模型 选拔策略 SS-coot优化算法
在线阅读 下载PDF
基于COOT算法的城轨车辆车体称重调簧算法优化
7
作者 张立杰 袁晓明 +4 位作者 马亚磊 尹方 李宝旺 谢平 王敬玉 《电力机车与城轨车辆》 2024年第4期14-20,共7页
现有城轨车辆车体称重调簧模型忽略了车体的非均匀弹性变形、弹簧刚度的非线性等问题。针对该问题,文章首先建立了基于最小二乘法拟合二系支撑位刚度的改进称重调簧模型,该模型相较于传统称重调簧模型更贴合车体的实际负载情况;利用改... 现有城轨车辆车体称重调簧模型忽略了车体的非均匀弹性变形、弹簧刚度的非线性等问题。针对该问题,文章首先建立了基于最小二乘法拟合二系支撑位刚度的改进称重调簧模型,该模型相较于传统称重调簧模型更贴合车体的实际负载情况;利用改进白骨顶鸡(COOT)算法对称重调簧算法进行多目标改造和搜索机制优化,相较于模拟退火(SA)算法、粒子群优化(PSO)算法、遗传算法(GA),改进COOT算法使稳定收敛载荷偏差分别降低了3.2 N、2.1 N和7.4 N,收敛速度分别提高了3.5%、6.8%和18.0%,具有更好的精度、效率和鲁棒性;基于C#和MATLAB搭建了整套称重调簧试验系统,并进行模拟试验及实车验证,证明了改进COOT算法及称重调簧系统的准确性和稳定性。 展开更多
关键词 城轨车辆 车体 二系支撑位 调簧 改进coot算法
原文传递
Hybrid scientific article recommendation system with COOT optimization
8
作者 R.Sivasankari J.Dhilipan 《Data Science and Management》 2024年第2期99-107,共9页
Today, recommendation systems are everywhere, making a variety of activities considerably more manageable. These systems help users by personalizing their suggestions to their interests and needs. They can propose var... Today, recommendation systems are everywhere, making a variety of activities considerably more manageable. These systems help users by personalizing their suggestions to their interests and needs. They can propose various goods, including music, courses, articles, agricultural products, fertilizers, books, movies, and foods. In the case of research articles, recommendation algorithms play an essential role in minimizing the time required for researchers to find relevant articles. Despite multiple challenges, these systems must solve serious issues such as the cold-start problem, article privacy, and changing user interests. This research addresses these issues through the use of two techniques: hybrid recommendation systems and COOT optimization. To generate article recommendations, a hybrid recommendation system integrates features from content-based and graph-based recommendation systems. COOT optimization is used to optimize the results, inspired by the movement of water birds. The proposed method combines a graph-based recommendation system with COOT optimization to increase accuracy and reduce result inaccuracies. When compared to the baseline approaches described, the model provided in this study improves precision by 2.3%, recall by 1.6%, and mean reciprocal rank (MRR) by 5.7%. 展开更多
关键词 Recommendation system coot optimization Citation network CLASSIFICATION Long short-term memory(LSTM)
在线阅读 下载PDF
基于模糊逻辑COOT优化K调和均值的数据聚类算法 被引量:1
9
作者 戴峦岳 梁宵月 +1 位作者 王帅 王震坡 《广西科学》 北大核心 2024年第5期900-911,共12页
针对K调和均值(K-Harmonic Means, KHM)聚类算法易陷入局部最优的不足,本文结合KHM聚类算法的快速局部开发和白骨顶鸡优化算法(Coot optimization algorithm, COOT)的全局勘探能力,提出一种模糊逻辑COOT优化KHM的数据聚类算法(Fuzzy COO... 针对K调和均值(K-Harmonic Means, KHM)聚类算法易陷入局部最优的不足,本文结合KHM聚类算法的快速局部开发和白骨顶鸡优化算法(Coot optimization algorithm, COOT)的全局勘探能力,提出一种模糊逻辑COOT优化KHM的数据聚类算法(Fuzzy COOT K-Harmonic Means, FCOOTKHM)。将KHM聚类算法生成的初始聚类解输入白骨顶鸡初始种群结构再进行迭代寻优。同时,为了进一步提升COOT的搜索精度,设计模糊逻辑对COOT的收敛因子和领导者种群占比进行自适应调整,均衡算法的搜索与开发能力。使用聚类调和平均值评估种群个体的适应度,结合智能算法启发式搜索对聚类结果迭代寻优。利用加州大学欧文分校(University of California Irvine, UCI)数据库中的7个数据集对FCOOTKHM的聚类性能进行验证分析。结果表明,FCOOTKHM在准确率、精确度、召回率、F度量、Kappa系数和收敛效率等指标上均表现更好,该算法能够实现更精确的数据聚类。 展开更多
关键词 模糊逻辑 模糊系统 白骨顶鸡优化算法 K调和均值 聚类 收敛性
在线阅读 下载PDF
Territory and territorial behavior of migrating Common Coot (Fulica atra) 被引量:4
10
作者 ZHANG Wei-wei LIU Wei MA Jian-zhang 《Journal of Forestry Research》 SCIE CAS CSCD 2011年第2期289-294,共6页
Territory and territorial behavior of the Common Coot(Fulica atra) were studied in two breeding sites,Anbanghe Nature Reserve and Daqing Longfeng wetland,in Heilongjiang Province,China from April to October in 2008 ... Territory and territorial behavior of the Common Coot(Fulica atra) were studied in two breeding sites,Anbanghe Nature Reserve and Daqing Longfeng wetland,in Heilongjiang Province,China from April to October in 2008 and 2009.In the breeding season,the breeding pairs occupied an area and protected it throughout the reproduction,and both interspecific and intraspecific conflicts were observed.Territory activities became severe since early May,the peak of territory behaviors appeared at late May,and then declined gradually.The territorial activities level was higher than that in the nest building period than in the laying and incubation periods.The most adopted behavioral model was expelling,which was the least energy cost.The degree of territorial behavior tended to be descended since the development of breeding phase.The territory size differed from 1 333 m2 to above 5 000 m2.Wintering population was observed in Poyang Lake of Jiangxi Province.The coots gathered in the open water;however,there was no territory behavior both in the interspecies and intraspecies in wintering sites.The hypotheses why there was territory behaviors for coots both in the interspecies and intraspecies were also discussed. 展开更多
关键词 The Common coot(Fulica atra) TERRITORIALITY territorial behavior territory size BREEDING migrating
在线阅读 下载PDF
基于COOT算法的局部阴影下光伏阵列MPPT控制研究 被引量:1
11
作者 张曦 高昕 《机电信息》 2023年第16期13-16,共4页
针对光伏阵列在局部阴影下会产生多个功率峰值,可能出现跟踪到错误的功率峰值的情况,将白冠鸡优化算法(COOT)应用于局部阴影MPPT控制,通过动态调整太阳能电池板输出电压和电流,使得太阳能电池板的输出功率最大,从而提高太阳能电池板的... 针对光伏阵列在局部阴影下会产生多个功率峰值,可能出现跟踪到错误的功率峰值的情况,将白冠鸡优化算法(COOT)应用于局部阴影MPPT控制,通过动态调整太阳能电池板输出电压和电流,使得太阳能电池板的输出功率最大,从而提高太阳能电池板的转换效率和输出功率。结果表明,不论是在静态还是动态阴影条件下,采用白冠鸡优化算法都能准确定位到最大功率峰值点。 展开更多
关键词 白冠鸡优化算法(coot) 局部阴影 MPPT 最大功率
在线阅读 下载PDF
Enhanced Harris Hawks Optimization Integrated with Coot Bird Optimization for Solving Continuous Numerical Optimization Problems
12
作者 Hao Cui Yanling Guo +4 位作者 Yaning Xiao Yangwei Wang Jian Li Yapeng Zhang Haoyu Zhang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第11期1635-1675,共41页
Harris Hawks Optimization(HHO)is a novel meta-heuristic algorithm that imitates the predation characteristics of Harris Hawk and combines Lévy flight to solve complex multidimensional problems.Nevertheless,the ba... Harris Hawks Optimization(HHO)is a novel meta-heuristic algorithm that imitates the predation characteristics of Harris Hawk and combines Lévy flight to solve complex multidimensional problems.Nevertheless,the basic HHO algorithm still has certain limitations,including the tendency to fall into the local optima and poor convergence accuracy.Coot Bird Optimization(CBO)is another new swarm-based optimization algorithm.CBO originates from the regular and irregular motion of a bird called Coot on the water’s surface.Although the framework of CBO is slightly complicated,it has outstanding exploration potential and excellent capability to avoid falling into local optimal solutions.This paper proposes a novel enhanced hybrid algorithm based on the basic HHO and CBO named Enhanced Harris Hawks Optimization Integrated with Coot Bird Optimization(EHHOCBO).EHHOCBO can provide higher-quality solutions for numerical optimization problems.It first embeds the leadership mechanism of CBO into the population initialization process of HHO.This way can take full advantage of the valuable solution information to provide a good foundation for the global search of the hybrid algorithm.Secondly,the Ensemble Mutation Strategy(EMS)is introduced to generate the mutant candidate positions for consideration,further improving the hybrid algorithm’s exploration trend and population diversity.To further reduce the likelihood of falling into the local optima and speed up the convergence,Refracted Opposition-Based Learning(ROBL)is adopted to update the current optimal solution in the swarm.Using 23 classical benchmark functions and the IEEE CEC2017 test suite,the performance of the proposed EHHOCBO is comprehensively evaluated and compared with eight other basic meta-heuristic algorithms and six improved variants.Experimental results show that EHHOCBO can achieve better solution accuracy,faster convergence speed,and a more robust ability to jump out of local optima than other advanced optimizers in most test cases.Finally,EHHOCBOis applied to address four engineering design problems.Our findings indicate that the proposed method also provides satisfactory performance regarding the convergence accuracy of the optimal global solution. 展开更多
关键词 Harris hawks optimization coot bird optimization hybrid ensemblemutation strategy refracted opposition-based learning
在线阅读 下载PDF
Coot Optimization with Deep Learning-Based False Data Injection Attack Recognition
13
作者 T.Satyanarayana Murthy P.Udayakumar +2 位作者 Fayadh Alenezi E.Laxmi Lydia Mohamad Khairi Ishak 《Computer Systems Science & Engineering》 SCIE EI 2023年第7期255-271,共17页
The recent developments in smart cities pose major security issues for the Internet of Things(IoT)devices.These security issues directly result from inappropriate security management protocols and their implementation... The recent developments in smart cities pose major security issues for the Internet of Things(IoT)devices.These security issues directly result from inappropriate security management protocols and their implementation by IoT gadget developers.Cyber-attackers take advantage of such gadgets’vulnerabilities through various attacks such as injection and Distributed Denial of Service(DDoS)attacks.In this background,Intrusion Detection(ID)is the only way to identify the attacks and mitigate their damage.The recent advancements in Machine Learning(ML)and Deep Learning(DL)models are useful in effectively classifying cyber-attacks.The current research paper introduces a new Coot Optimization Algorithm with a Deep Learning-based False Data Injection Attack Recognition(COADL-FDIAR)model for the IoT environment.The presented COADL-FDIAR technique aims to identify false data injection attacks in the IoT environment.To accomplish this,the COADL-FDIAR model initially preprocesses the input data and selects the features with the help of the Chi-square test.To detect and classify false data injection attacks,the Stacked Long Short-Term Memory(SLSTM)model is exploited in this study.Finally,the COA algorithm effectively adjusts the SLTSM model’s hyperparameters effectively and accomplishes a superior recognition efficiency.The proposed COADL-FDIAR model was experimentally validated using a standard dataset,and the outcomes were scrutinized under distinct aspects.The comparative analysis results assured the superior performance of the proposed COADL-FDIAR model over other recent approaches with a maximum accuracy of 98.84%. 展开更多
关键词 False data injection attack security internet of things deep learning coot optimization algorithm
在线阅读 下载PDF
基于COOT-SVM的短期光伏发电功率预测 被引量:10
14
作者 陈晓华 王志平 +5 位作者 吴杰康 许海文 陈盛语 张勋祥 龙泳丞 谢明钊 《四川电力技术》 2023年第6期28-33,40,共7页
为了提高短期光伏发电功率预测的精度,提出了一种基于白冠鸡优化算法(COOT)优化支持向量机(SVM)的短期光伏发电功率预测模型。首先,分别选取某光伏电站在2017年4月和7月的前21天数据进行仿真分析,计算光伏输出功率和每一个气象因素之间... 为了提高短期光伏发电功率预测的精度,提出了一种基于白冠鸡优化算法(COOT)优化支持向量机(SVM)的短期光伏发电功率预测模型。首先,分别选取某光伏电站在2017年4月和7月的前21天数据进行仿真分析,计算光伏输出功率和每一个气象因素之间的皮尔逊相关系数;然后,依据皮尔逊相关系数选择太阳总辐射强度、太阳散射辐射强度、太阳直射辐射强度、组件温度和环境温度5个气象因素作为预测模型的输入数据,光伏电站的发电功率作为输出数据。通过与BP和SVM预测模型进行仿真对比可知,对于4月和7月的数据来说,COOT-SVM预测模型的均方根误差、均方误差和平均绝对误差均比BP和SVM预测模型小。因此,所提COOT-SVM预测模型可有效提高短期光伏发电功率的预测精度,具有较高的工程应用价值。 展开更多
关键词 光伏发电 功率预测 白冠鸡优化算法 支持向量机 皮尔逊相关系数
在线阅读 下载PDF
履带起重机桁架臂最大静力响应预测
15
作者 李金平 张宇 +4 位作者 田一 顾海荣 叶敏 张大庆 徐信芯 《中南大学学报(自然科学版)》 北大核心 2025年第7期2731-2740,共10页
为了快速、准确预测不同工况下履带起重机桁架臂结构最大静力响应,提出了一种将BP神经网络和改进的COOT算法(ICOOT)相结合的ICOOT-BP神经网络预测模型。首先,采用Ansys参数化设计语言创建桁架臂在不同工况、杆件尺寸参数和载荷作用下最... 为了快速、准确预测不同工况下履带起重机桁架臂结构最大静力响应,提出了一种将BP神经网络和改进的COOT算法(ICOOT)相结合的ICOOT-BP神经网络预测模型。首先,采用Ansys参数化设计语言创建桁架臂在不同工况、杆件尺寸参数和载荷作用下最大静力响应的参数化模型,获取静力响应训练样本;其次,使用Tent混沌映射和自适应变异方法改进原始COOT算法,提高其优化能力,得到了改进的COOT算法(ICOOT);最后,确定了BP神经网络模型的拓扑结构,利用ICOOT算法优化BP神经网络中的权值和阈值,建立桁架臂静力分析时输入参数与输出响应之间的代理模型ICOOT-BP。研究结果表明:某型履带起重机桁架臂在多种工况下,ICOOT-BP模型能够快速预测桁架臂的最大静力响应,预测结果与有限元分析结果具有高度一致性,位移和应力相对误差绝对值均小于4%,且在预测精度与训练效率方面均显著高于所对比的其他预测模型。所提ICOOT-BP模型极大地提高了履带起重机桁架臂的最大静力响应分析效率,可为桁架臂力学分析与结构优化设计提供准确的结构分析代理模型。 展开更多
关键词 履带起重机 桁架臂 静力响应预测 BP神经网络 改进的coot算法
在线阅读 下载PDF
CBBM-WARM:A Workload-Aware Meta-Heuristic for Resource Management in Cloud Computing 被引量:1
16
作者 K Nivitha P Pabitha R Praveen 《China Communications》 2025年第6期255-275,共21页
The rapid advent in artificial intelligence and big data has revolutionized the dynamic requirement in the demands of the computing resource for executing specific tasks in the cloud environment.The process of achievi... The rapid advent in artificial intelligence and big data has revolutionized the dynamic requirement in the demands of the computing resource for executing specific tasks in the cloud environment.The process of achieving autonomic resource management is identified to be a herculean task due to its huge distributed and heterogeneous environment.Moreover,the cloud network needs to provide autonomic resource management and deliver potential services to the clients by complying with the requirements of Quality-of-Service(QoS)without impacting the Service Level Agreements(SLAs).However,the existing autonomic cloud resource managing frameworks are not capable in handling the resources of the cloud with its dynamic requirements.In this paper,Coot Bird Behavior Model-based Workload Aware Autonomic Resource Management Scheme(CBBM-WARMS)is proposed for handling the dynamic requirements of cloud resources through the estimation of workload that need to be policed by the cloud environment.This CBBM-WARMS initially adopted the algorithm of adaptive density peak clustering for workloads clustering of the cloud.Then,it utilized the fuzzy logic during the process of workload scheduling for achieving the determining the availability of cloud resources.It further used CBBM for potential Virtual Machine(VM)deployment that attributes towards the provision of optimal resources.It is proposed with the capability of achieving optimal QoS with minimized time,energy consumption,SLA cost and SLA violation.The experimental validation of the proposed CBBMWARMS confirms minimized SLA cost of 19.21%and reduced SLA violation rate of 18.74%,better than the compared autonomic cloud resource managing frameworks. 展开更多
关键词 autonomic resource management cloud computing coot bird behavior model SLA violation cost WORKLOAD
在线阅读 下载PDF
基于自适应领导者白冠鸡算法的镜场布局优化
17
作者 高博 刘盛 杨翔宇 《工程热物理学报》 北大核心 2025年第9期2831-2838,共8页
针对塔式太阳能光热电站中定日镜布置优化问题,提出一种基于自适应领导者白冠鸡算法的定日镜布局优化方案,以Spiral布局为基础,引入镜场光学效率、收集能量和每单位成本收集能量三个目标函数作为镜场优化布置的评价标准。通过在白冠鸡... 针对塔式太阳能光热电站中定日镜布置优化问题,提出一种基于自适应领导者白冠鸡算法的定日镜布局优化方案,以Spiral布局为基础,引入镜场光学效率、收集能量和每单位成本收集能量三个目标函数作为镜场优化布置的评价标准。通过在白冠鸡优化算法中引入Tent映射产生的混沌参数,添加动态扰动因子和自适应权重,提高算法在高维复杂工程优化问题方面的寻优能力。最后以拉萨的定日镜场为例,经过自适应领导者白冠鸡算法优化后的镜场光学效率提高到62.35%,典型日潜在最高收集能量分别提升了约4.2×10^(8)kJ、2.9×10^(8)kJ、3.5×10^(8)kJ和6.2×10^(8)kJ,为塔式太阳能电站提供一种高效的镜场布局方案。 展开更多
关键词 塔式太阳能光热电站 定日镜场 白冠鸡算法 光学效率 收集能量
原文传递
Effective participation of wind turbines in frequency control of a two-area power system using coot optimization 被引量:5
18
作者 Mahmoud Hussain El-Bahay Mohammed Elsayed Lotfy Mohamed A.El-Hameed 《Protection and Control of Modern Power Systems》 SCIE EI 2023年第1期230-244,共15页
In this paper,load frequency control is performed for a two-area power system incorporating a high penetration of renewable energy sources.A droop controller for a type 3 wind turbine is used to extract the stored kin... In this paper,load frequency control is performed for a two-area power system incorporating a high penetration of renewable energy sources.A droop controller for a type 3 wind turbine is used to extract the stored kinetic energy from the rotating masses during sudden load disturbances.An auxiliary storage controller is applied to achieve effec-tive frequency response.The coot optimization algorithm(COA)is applied to allocate the optimum parameters of the fractional-order proportional integral derivative(FOPID),droop and auxiliary storage controllers.The fitness function is represented by the summation of integral square deviations in tie line power,and Areas 1 and 2 frequency errors.The robustness of the COA is proven by comparing the results with benchmarked optimizers including:atomic orbital search,honey badger algorithm,water cycle algorithm and particle swarm optimization.Performance assessment is confirmed in the following four scenarios:(i)optimization while including PID controllers;(ii)optimization while including FOPID controllers;(iii)validation of COA results under various load disturbances;and(iv)validation of the proposed controllers under varying weather conditions. 展开更多
关键词 coot optimizer FOPID Load frequency control PHOTOVOLTAIC Variable speed wind turbine
在线阅读 下载PDF
考虑海水淡化负荷的孤岛微电网优化调度
19
作者 刘燕燕 李雨涵 +1 位作者 徐达 刘闯 《四川电力技术》 2025年第4期9-16,共8页
为了提高海上孤岛微电网的经济性,提出了一种考虑海水淡化负荷的孤岛微电网优化调度模型。以孤岛微电网运行成本最低为优化目标,并考虑了海水淡化负荷带来的经济效益,构建了海上孤岛微电网优化调度模型,并采用改进白冠鸡优化(coot optim... 为了提高海上孤岛微电网的经济性,提出了一种考虑海水淡化负荷的孤岛微电网优化调度模型。以孤岛微电网运行成本最低为优化目标,并考虑了海水淡化负荷带来的经济效益,构建了海上孤岛微电网优化调度模型,并采用改进白冠鸡优化(coot optimization algorithm,COOT)算法对所构模型进行了求解。算例仿真结果表明,改进COOT算法获得的孤岛微电网运行总成本求解精度高于传统寻优算法,考虑海水淡化负荷时的经济性也显著提升,能够有效降低孤岛微电网的运行成本。 展开更多
关键词 孤岛微电网 优化调度 海水淡化负荷 白冠鸡优化算法 运行成本
在线阅读 下载PDF
Ensemble Deep Learning Based Air Pollution Prediction for Sustainable Smart Cities
20
作者 Maha Farouk Sabir Mahmoud Ragab +2 位作者 Adil O.Khadidos Khaled H.Alyoubi Alaa O.Khadidos 《Computer Systems Science & Engineering》 2024年第3期627-643,共17页
Big data and information and communication technologies can be important to the effectiveness of smart cities.Based on the maximal attention on smart city sustainability,developing data-driven smart cities is newly ob... Big data and information and communication technologies can be important to the effectiveness of smart cities.Based on the maximal attention on smart city sustainability,developing data-driven smart cities is newly obtained attention as a vital technology for addressing sustainability problems.Real-time monitoring of pollution allows local authorities to analyze the present traffic condition of cities and make decisions.Relating to air pollution occurs a main environmental problem in smart city environments.The effect of the deep learning(DL)approach quickly increased and penetrated almost every domain,comprising air pollution forecast.Therefore,this article develops a new Coot Optimization Algorithm with an Ensemble Deep Learning based Air Pollution Prediction(COAEDL-APP)system for Sustainable Smart Cities.The projected COAEDL-APP algorithm accurately forecasts the presence of air quality in the sustainable smart city environment.To achieve this,the COAEDL-APP technique initially performs a linear scaling normalization(LSN)approach to pre-process the input data.For air quality prediction,an ensemble of three DL models has been involved,namely autoencoder(AE),long short-term memory(LSTM),and deep belief network(DBN).Furthermore,the COA-based hyperparameter tuning procedure can be designed to adjust the hyperparameter values of the DL models.The simulation outcome of the COAEDL-APP algorithm was tested on the air quality database,and the outcomes stated the improved performance of the COAEDL-APP algorithm over other existing systems with maximum accuracy of 98.34%. 展开更多
关键词 SUSTAINABILITY smart cities air pollution prediction ensemble learning coot optimization algorithm
在线阅读 下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部