A growing body of studies and systematic reviews show evidence of the beneficial effects of physical exercise on core symptoms of ADHD. Furthermore, studies indicate that physical exercise as an adjuvant can enhance t...A growing body of studies and systematic reviews show evidence of the beneficial effects of physical exercise on core symptoms of ADHD. Furthermore, studies indicate that physical exercise as an adjuvant can enhance the effects of medication in the treatment of ADHD. Aerobic and coordinative exercises improve executive functioning through their effect on neurocognitive domains that are implicated in ADHD. It is postulated that through their specific modus operandi, aerobic exercise, by raising cortical arousal levels, improves impaired alerting functions whereas coordinative exercises improve the regulation of inhibitory control through the involvement of a higher variety of frontal-dependent cognitive processes. The increasing use of routine neurocognitive testing with continuous performance tests (CPT), such as the QbTest, at clinical assessments for ADHD allows for an innovative approach to identify the assessment impairments in alerting function and inhibition control that are related to ADHD and accordingly choose aerobic or coordinative physical exercise in a more targeted fashion.展开更多
Zeolites with ordered porous structure of molecular size are widely employed as commercial adsorbents and catalysts.On the other hand,the zeolite matrix is regarded as an ideal scaffold for hosting coordinatively unsa...Zeolites with ordered porous structure of molecular size are widely employed as commercial adsorbents and catalysts.On the other hand,the zeolite matrix is regarded as an ideal scaffold for hosting coordinatively unsaturated sites.Remarkable achievements have been made dealing with the construction,characterization and catalytic applications of coordinatively unsaturated sites in zeolite matrix.Herein,a literature overview of recent progresses on this important topic is presented from the specific view of coordination chemistry.Different strategies to construction coordinatively unsaturated sites in zeolite matrix,in zeolite framework or extraframework positions,are first introduced and their characteristics are compared.Then,spectroscopic techniques to determine the existing states of cation sites and their transformations in zeolite matrix are discussed.In the last section,the catalytic applications of coordinatively unsaturated sites in zeolite matrix for various important chemical transformations are summarized.展开更多
Land use change has significant influence on the operation of the PopulationResources-Environment-De-velopment (PRED) System. Moderate land use is the key factor to ensure the coordinative and sustainable development ...Land use change has significant influence on the operation of the PopulationResources-Environment-De-velopment (PRED) System. Moderate land use is the key factor to ensure the coordinative and sustainable development between land use and PRED system. Based on the internal relationship between land use and PRED system, a PRED evaluation index system and a Press-Status-Response (PSR) model were established in this study. According to the expounding on the mechanism of the PSR model, we investigated the coordinative development between the changes of regional land use and PRED system taking Jiangsu Province as an example. The results showed that the orders of the Synthetic Index of Land Use (SILU) and the Variation of PRED Index (VPI) in Jiangsu are both the southern Jiangsu>the central Jiangsu>the northern Jiangsu. A cubic curve model was used to fit the relationship between the VPI and SILU. The inflection point of VPI was situated in 5.0 of SILU. When SILU was below 5.0, VPI increased with SILU, which will be helpful to the coordinative development between land use and PRED system. Based on those results, it is suggested that the land use degree of the southern Jiangsu, especially that of Nanjing City, should be moderately controlled at present, while land resources of the central Jiangsu and the northern Jiangsu should be further exploited.展开更多
Through neodymium-mediated coordinative chain transfer copolymerizaiton(CCTcoP),polyisoprenes bearing dual hydroxylated mini-blocky chain-ends were prepared via a three-step strategy.Kinetic studies revealed that,the ...Through neodymium-mediated coordinative chain transfer copolymerizaiton(CCTcoP),polyisoprenes bearing dual hydroxylated mini-blocky chain-ends were prepared via a three-step strategy.Kinetic studies revealed that,the polymerization demonstrated typical features of CCTcoP across the whole polymerization process,i.e.,quasi-living polymerization characteristic,tunable molecular weights,narrow molecular weight distributions,and atom economies.Comparing to previously reported CCTP homopolymerization systems,the presence of oxygen-containing IpOAl polar comonomer slowed down chain transfer rates obviously,rendering slightly higher molecular weights of the resultant PIps and smaller Np(number of polymer chains per Nd atom)values.Moreover,to mimic the structure of natural rubber,the hydroxyl end groups can be facilely modified into phosphonate,amide,and UPy,whose structures were further confirmed by NMR spectra.Incorporation these functionalities could greatly improve the hydrophilic properties of the polymers,as revealed from the significantly reduced static water contact angles.展开更多
Walking is a complex task which includes hundreds of muscles, bones and joints working together to deliver smooth movements. With the complexity, walking has been widely investigated in order to identify the pattern o...Walking is a complex task which includes hundreds of muscles, bones and joints working together to deliver smooth movements. With the complexity, walking has been widely investigated in order to identify the pattern of multi-segment movement and reveal the control mechanism. The degree of freedom and dimensional properties provide a view of the coordinative structure during walking, which has been extensively studied by using dimension reduction technique. In this paper, the studies related to the coordinative structure, dimensions detection and pattern reorganization during walking have been reviewed. Principal component analysis, as a popular technique, is widely used in the processing of human movement data. Both the principle and the outcomes of principal component analysis were introduced in this paper. This technique has been reported to successfully reduce the redundancy within the original data, identify the physical meaning represented by the extracted principal components and discriminate the different patterns. The coordinative structure during walking assessed by this technique could provide further information of the body control mechanism and correlate walking pattern with injury.展开更多
Oligonucleotide therapeutics have great potential to target the currently undruggable genes and to generate entirely new therapeutic paradigms in multiple types of disease,thus having attracted much attention in recen...Oligonucleotide therapeutics have great potential to target the currently undruggable genes and to generate entirely new therapeutic paradigms in multiple types of disease,thus having attracted much attention in recent years.However,their applications are greatly hindered by a lack of safe and efficient oligonucleotide-delivery vectors.Polyplex nanovesicles formed from oligonucleotides and the cationic block have shown exceptional features for the delivery of therapeutic oligonucleotides and other biopharmaceuticals.Nevertheless,these polyplex nanovesicles are deeply fraught with difficulty in tolerating physiological ionic strength.Inspired by the high binding ability between the dipicolylamine(DPA)/zinc(Ⅱ)complex and the phosphodiester moieties of oligonucleotides,herein,we designed a coordinative cationic block to solve the intrinsic stability dilemma.Moreover,we found the stability of the resulted polyplex nanovesicles could be easily tuned by the content of coordinated zinc ions.In vitro cellular studies implied that the prepared zinc(Ⅱ)-coordinative polyplex nanovesicles preferred to retain in the lysosomes upon internalization,making them ideal delivery candidates for the lysosome-targeting oligonucleotide therapeutics.展开更多
With tunable local electronic environment,high mass density of MN4sites,and ease of preparation,metal-organic conjugated coordinative polymer(CCP) with inherent electronic conductivity provides a promising alternative...With tunable local electronic environment,high mass density of MN4sites,and ease of preparation,metal-organic conjugated coordinative polymer(CCP) with inherent electronic conductivity provides a promising alternative to the well-known M-N-C electrocatalysts.Herein,the coordination reaction between Cu^(2+)and 1,2,4,5-tetraaminobenzene(TAB) was conducted on the surface of metallic Cu nanowires,forming a thin layer of CuN4-based CCP(Cu-TAB) on the Cu nanowire.More importantly,interfacial transfer of electrons from Cu core to the CuN4-based CCP nanoshell was observed within the resulting CuTAB@Cu,which was found to enrich the local electronic density of the CuN4sites.As such,the CuTAB@Cu demonstrates much improved affinity to the*COOH intermediate formed from the rate determining step;the energy barrier for C-C coupling,which is critical to convert CO_(2)into C2products,is also decreased.Accordingly,it delivers a current density of-9.1 mA cm^(-2)at a potential as high as 0.558 V(vs.RHE) in H-type cell and a Faraday efficiency of 46.4% for ethanol.This work emphasizes the profound role of interfacial interaction in tuning the local electronic structure and activating the CuN4-based CCPs for efficient electroreduction of CO_(2).展开更多
The low intrinsic activity of Fenton catalytic site and high demand for light-energy input inhibit the organic-pollution control efficiency of photo-Fenton process.Here,through structural design with density functiona...The low intrinsic activity of Fenton catalytic site and high demand for light-energy input inhibit the organic-pollution control efficiency of photo-Fenton process.Here,through structural design with density functional theory(DFT)calculations,Ce is predicted to enable the construction of coordinatively unsaturated metal centers(CUCs)in Prussian blue analogue(PBA),which can strongly adsorb H_(2)O_(2)and donate sufficient electrons for directly splitting the O-O bond to produceOH.Using a substitution-co-assembly strategy,binary Ce-Fe PBA is then prepared,which rapidly degrades sulfamethoxazole with the pseudo-first-order kinetic rate constant exceeding reported values by 1-2 orders of magnitude.Meanwhile,the photogenerated electrons reduce Fe(Ⅲ)and Ce(Ⅳ)to promote the metal valence cycle in CUCs and make sulfamethoxazole degradation efficiency only lose 6.04%in 5 runs.Overall,by introducing rare earth metals into transition metal-organic frameworks,this work guides the whole process for highly active CUCs from design and construction to mechanism exploration with DFT calculations,enabling ultrafast and stable photo-Fenton catalysis.展开更多
Some Schiff-base cobalt(Ⅱ)chelates like ethylenebis[(2-hydroxy-3- methoxy-5-methylphenyl)methylideneiminato]Cobalt(Ⅱ)were coordioatively anchored onto poly(4-vinylpyridine-co-styrene)in diglyme solution and the diox...Some Schiff-base cobalt(Ⅱ)chelates like ethylenebis[(2-hydroxy-3- methoxy-5-methylphenyl)methylideneiminato]Cobalt(Ⅱ)were coordioatively anchored onto poly(4-vinylpyridine-co-styrene)in diglyme solution and the dioxygen-affinity of the resulting polymeric complexes were measured in situ.展开更多
This study is aimed at providing a reflection on the meanings of the child’s body in developmental age in the spaces that coexist in his learning environment,which translate into the ability of the same to coordinate...This study is aimed at providing a reflection on the meanings of the child’s body in developmental age in the spaces that coexist in his learning environment,which translate into the ability of the same to coordinate his own motor action in codified spaces,which are spaces vital or the space outlined on the sheet of a notebook.Gross motor and fine coordination form the basis of a long and sophisticated learning process of skills such as writing,an activity that is preparatory for the duration of the entire learning process from a long-life-learning perspective.Writing is primarily a motor action,which is completed and coordinated thanks to the motor prediction of purposeful movements,but also implies the production of associations of graphemes that have a conventionally shared meaning.If these graph-motor skills are not acquired according to the age of development,this could give rise to a possible diagnosis of dysgraphia which results in the obvious difficulties of creating a writing that is legible and harmonious.This disorder could be traced back to the inability to fully and simultaneously dispose of the visual-perceptive,exploratory and spatial coordination faculties both of the whole body and of the individual structures of the eye,hand and upper limb that cooperate the visual-kinetic functions of the graphic act.展开更多
Benzo[d]thiazol-2-ylmethanol undergoes progressive oligomerization under solvothermal conditions in the presence of FeCl_(3)·6H_(2)O,yielding a heterocyclic aggregate,namely 1,2,3-tris(benzo[d]thiazol-2-yl)-2,9-d...Benzo[d]thiazol-2-ylmethanol undergoes progressive oligomerization under solvothermal conditions in the presence of FeCl_(3)·6H_(2)O,yielding a heterocyclic aggregate,namely 1,2,3-tris(benzo[d]thiazol-2-yl)-2,9-dihydrobenzo[b]cyclopenta[e][1,4]thiazine.Single-crystal X-ray diffraction analysis was conducted on four distinct compounds isolated during the reaction,and electrospray ionization mass spectrometry(ESI-MS)of both solid products and intermediate reaction solutions enabled the identification of 15 consecutive reaction steps,where Fe(Ⅲ)was directly involved in eight steps.These transformations comprise nine intermolecular C─C coupling events and six intramolecular ring expansion processes.The heteroatoms(N,O,and S)play distinct mechanistic roles according to their positions within the heterocyclic framework:(1)nitrogen and oxygen coordinate with Fe(Ⅲ),facilitating activation of the reaction site;(2)homolytic cleavage of the C─O bond promotes C─C coupling reactions;and(3)C─S migration induces intramolecular ring expansion.Notably,theoretical calculations indicate a decrease in Gibbs free energy along the intramolecular reaction pathways,substantiating the proposed mechanism and activation mode,which underscores the essential role of Fe(Ⅲ)in enabling the reaction progression.Furthermore,an investigation of the photophysical properties revealed that the resulting heterocyclic aggregates exhibit strong luminescence within the 535–610 nm wavelength range,approaching the near-infrared region.These findings highlight the significance of this reaction pathway in the controlled synthesis of functional oligomers and polymers from monomeric precursors,particularly through catalysis by cost-effective metal ions.展开更多
Coordinatively unsaturated metal sites(CUS)located at tetrahedral(T_(d))in spinel structure are highly effective for activating peroxymonosulfate(PMS)in Fenton-like catalysis.However,the conventional T_(d)-octahedral(...Coordinatively unsaturated metal sites(CUS)located at tetrahedral(T_(d))in spinel structure are highly effective for activating peroxymonosulfate(PMS)in Fenton-like catalysis.However,the conventional T_(d)-octahedral(Oh)connectivity in spinel structures restricts internal electron transfer,limiting the regeneration of low-valent metals and creating a trade-off between catalytic activity and long-term stability.Herein,we address this challenge by engineering a novel T_(d)-T_(d) connectivity in amorphous CoFeO_(x) nanosheets(a-CoFeO_(x) NSs).Soft X-ray absorption spectroscopy(sXAS)measurements reveal that in a-CoFeO_(x) nanosheets,the ligand field symmetry around Co atoms is dominated by a T_(d) coordination,in contrast to the O_(h) coordination in the crystalline state,which introduces T_(d)-T_(d) connection.Density functional theory(DFT)calculations confirm that the T_(d)-T_(d) connection in a-CoFeO_(x) structure significantly strengthens electron transfer to activate PMS,which exhibited a first-order kinetic constant(k_(obs))of 0.27 min^(-1) for sulfamethoxazole(SMX)removal with high stability.This study reveals that the phase-engineered CUS can further enhance catalytic activity and provides a simple and scalable strategy for optimizing spinel-type catalysts.展开更多
The depletion of fossil energy and the deterioration of the ecological environment have severely restricted the development of the power industry.Therefore,it is extremely urgent to transform energy production methods...The depletion of fossil energy and the deterioration of the ecological environment have severely restricted the development of the power industry.Therefore,it is extremely urgent to transform energy production methods and vigorously develop renewable energy sources.It is therefore important to ensure the stability and operation of a large multi-energy complementary system,and provide theoretical support for the world’s largest single complementary demonstration project with hydro-wind-PV power-battery storage in Qinghai Province.Considering all the multiple power supply constraints,an optimization scheduling model is established with the objective of minimizing the volatility of output power.As particle swarm optimization(PSO)has a problem of premature convergence and slow convergence in the latter half,combined with niche technology in evolution,a niche particle swarm optimization(NPSO)is proposed to determine the optimal solution of the model.Finally,the multiple stations’coordinated operation is analyzed taking the example of 10 million kilowatt complementary power stations with hydropower,wind power,PV power,and battery storage in the Yellow River Company Hainan prefecture.The case verifies the rationality and feasibility of the model.It shows that complementary operations can improve the utilization rate of renewable energy and reduce the impact of wind and PV power’s volatility on the power grid.展开更多
Tremendous advances has been witnessed in the past few years in the lanthanide complexes mediated coordinative chain transfer polymerization(CCTP) of conjugated dienes. CCTP features catalyst economy, well-controlling...Tremendous advances has been witnessed in the past few years in the lanthanide complexes mediated coordinative chain transfer polymerization(CCTP) of conjugated dienes. CCTP features catalyst economy, well-controlling over both microstructure and architecture of the resulting polymers, and accessibility for novel(co)polymers. This review highlights the recent progresses made in the field of CCTP of dienes. After a brief introduction, the body of this review is divided into three parts:(1) principle of CCTP;(2) coordinative chain transfer homopolymerization of dienes;(3) coordinative chain transfer copolymerization of dienes.At the end, we present some challenges remaining in this area and our personal opinion regarding where this field should continue to develop. CCTP represents a novel strategy to prepare polydiene synthetic rubbers with controlled high molecular weight and narrow molecular weight distribution, which has reached the practical industrial application level, demonstrating a great potential in industrialization.展开更多
Peptides have gained increasing interests as drug candidates in modern pharmaceutical industry,however,the development of peptide drugs acting on intracellular targets is limited due to their membrane impermeability.H...Peptides have gained increasing interests as drug candidates in modern pharmaceutical industry,however,the development of peptide drugs acting on intracellular targets is limited due to their membrane impermeability.Here,we reported the use of metal-terpyridine based coordinative dendrimer for cytosolic peptide delivery.Among the investigated transition metal ions,Mn^(2+)-coordinated polymer showed the highest delivery efficiency due to balanced peptide binding and release.It showed robust efficiency in the delivery of peptides with different charge property and hydrophobicity into various primary cells.The efficiency of Mn^(2+)-terpyridine based polymer is superior to cell penetrating peptides such as oligoarginines.The material also delivered an autophagy-inducing peptide derived from Beclin-1 into cells and efficiently induced autophagy in the cells.This study provides a promising alternative to cell penetrating peptides for cytosolic peptide delivery.展开更多
Zeolitic-imidazole frameworks(ZIFs)derivations have widely emerged as an efficient air cathode of zinc-air batteries(ZABs)due to excellent bifunctional oxygen electrocatalysis performance.However,they are not stable e...Zeolitic-imidazole frameworks(ZIFs)derivations have widely emerged as an efficient air cathode of zinc-air batteries(ZABs)due to excellent bifunctional oxygen electrocatalysis performance.However,they are not stable enough for long-term operation of rechargeable ZABs because of weak association with current collector,especially under bending conditions for flexible ZAB devices.Here,we show that by purposely designing coordinatively unsaturated ZIFs via a facile morphology regulation,which can be chemically linked on acid-treated carbon cloth,a stable Co-N-C air cathode is therefore derived where Co nanoparticles(NPs)are uniformly confined within the Co-N-C matrix on carbon cloth(Co/Co-N-C/CC).Specifically,when without being stabilized from carbon cloth,the pyrolysis of ZIFs with different unsaturated coordination levels has a negligible impact on the bifunctional oxygen-catalyzed performance.The optimal Co/Co-N-C/CC catalyst assembled ZAB possesses a large open circuit voltage of 1.415 V and a high peak power density of 163 mW·cm^(−2) as well as excellent cycling durability upon 630 discharge–charge cycles with 61%voltage efficiency remained,largely exceeding those of a benchmark Pt/C-IrO_(2) catalyst assembled ZAB.The synergy between Co NPs and active Co-N-C sites via electronic interaction induces the outstanding bifunctional oxygen-catalyzed activity and cathode performance.The present work highlights the importance of unsaturated coordination structures in ZIFs precursors for the performance of derived nanostructures in integrated electrodes.展开更多
This study investigates the coordination between regional economic growth and ecological sustainability within the context of high-quality town economy development.To address the challenges of balancing economic expan...This study investigates the coordination between regional economic growth and ecological sustainability within the context of high-quality town economy development.To address the challenges of balancing economic expansion with environmental protection,a comprehensive evaluation index system is constructed,encompassing two key dimensions:regional economy and ecological environment.Using panel data from 2013 to 2022,the coupling coordination degree model is employed to quantify the interactions and synergy between these dimensions.Additionally,spatial econometric methods are applied to calculate both global and local Moran’s Index,revealing spatial clustering patterns,regional disparities,and heterogeneity.The relative development model further identifies critical factors influencing regional coordination,with a focus on the lagging development of basic infrastructure and public services.The findings demonstrate a positive temporal trend toward improved regional coordination and reduced development gaps,with a spatial pattern characterized by higher coupling degrees in eastern and central regions compared to western areas.Based on these results,this study proposes actionable strategies to enhance coordinated development,emphasizing ecological conservation,the establishment of green production and consumption systems,ecological restoration,and strengthened municipal collaboration.This revised abstract emphasizes the study’s purpose,methods,and key findings more clearly while maintaining a professional and concise tone.Finally,based on the above analysis results,the corresponding coordinated development suggestions of regional economy and ecological environment are given from the aspects of ecological environment protection measures,green production and consumption system construction,ecological environment restoration and municipal coordination.展开更多
With the boom in maritime activities,the need for highly reliable maritime communication is becoming urgent,which is an important component of 5G/6G communication networks.However,the bandwidth reuse characteristic of...With the boom in maritime activities,the need for highly reliable maritime communication is becoming urgent,which is an important component of 5G/6G communication networks.However,the bandwidth reuse characteristic of 5G/6G networks will inevitably lead to severe interference,resulting in degradation in the communication performance of maritime users.In this paper,we propose a safe deep reinforcement learning based interference coordination scheme to jointly optimize the power control and bandwidth allocation in maritime communication systems,and exploit the quality-of-service requirements of users as the risk value references to evaluate the communication policies.In particular,this scheme designs a deep neural network to select the communication policies through the evaluation network and update the parameters using the target network,which improves the communication performance and speeds up the convergence rate.Moreover,the Nash equilibrium of the interference coordination game and the computational complexity of the proposed scheme are analyzed.Simulation and experimental results verify the performance gain of the proposed scheme compared with benchmarks.展开更多
As the development of new power systems accelerates and the impacts of high renewable energy integration and extreme weather intensify,grid-alternative energy storage is garnering increasing attention for its grid-int...As the development of new power systems accelerates and the impacts of high renewable energy integration and extreme weather intensify,grid-alternative energy storage is garnering increasing attention for its grid-interaction benefits and clear business models.Consequently,assessing the value of grid-alternative energy storage in the systemtransition has become critically important.Considering the performance characteristics of storage,we propose a value assessment frame-work for grid-alternative energy storage,quantifying its non-wires-alternative effects from both cost and benefit perspectives.Building on this,we developed a collaborative planning model for energy storage and transmission grids,aimed at maximizing the economic benefits of storage systems while balancing investment and operational costs.The model considers regional grid interconnections and their interactions with system operation.By participating in system operations,grid-alternative energy storage not only maximizes its own economic benefits but also generates social welfare transfer effects.Furthermore,based on multi-regional interconnected planning,grid-alternative energy storage can reduce system costs by approximately 35%,with the most significant changes observed in generation costs.Multi-regional coordinated planning significantly enhances the sys-tem’s flexibility in regulation.However,when the load factor of interconnection lines between regions remains constant,system operational flexibility tends to decrease,leading to a roughly 28.9%increase in storage investment.Additionally,under regional coordinated planning,the greater the disparity in wind power integration across interconnected regions,the more noticeable the reduction in system costs.展开更多
文摘A growing body of studies and systematic reviews show evidence of the beneficial effects of physical exercise on core symptoms of ADHD. Furthermore, studies indicate that physical exercise as an adjuvant can enhance the effects of medication in the treatment of ADHD. Aerobic and coordinative exercises improve executive functioning through their effect on neurocognitive domains that are implicated in ADHD. It is postulated that through their specific modus operandi, aerobic exercise, by raising cortical arousal levels, improves impaired alerting functions whereas coordinative exercises improve the regulation of inhibitory control through the involvement of a higher variety of frontal-dependent cognitive processes. The increasing use of routine neurocognitive testing with continuous performance tests (CPT), such as the QbTest, at clinical assessments for ADHD allows for an innovative approach to identify the assessment impairments in alerting function and inhibition control that are related to ADHD and accordingly choose aerobic or coordinative physical exercise in a more targeted fashion.
基金supported by the National Natural Science Fundation of China(21722303,21421001)the Municipal Natural Science Fund of Tianjin(18JCJQJC47400,18JCZDJC37400)111 Project(B12015,B18030)~~
文摘Zeolites with ordered porous structure of molecular size are widely employed as commercial adsorbents and catalysts.On the other hand,the zeolite matrix is regarded as an ideal scaffold for hosting coordinatively unsaturated sites.Remarkable achievements have been made dealing with the construction,characterization and catalytic applications of coordinatively unsaturated sites in zeolite matrix.Herein,a literature overview of recent progresses on this important topic is presented from the specific view of coordination chemistry.Different strategies to construction coordinatively unsaturated sites in zeolite matrix,in zeolite framework or extraframework positions,are first introduced and their characteristics are compared.Then,spectroscopic techniques to determine the existing states of cation sites and their transformations in zeolite matrix are discussed.In the last section,the catalytic applications of coordinatively unsaturated sites in zeolite matrix for various important chemical transformations are summarized.
基金Under the auspices of National Natural Science Foundation of China (No. 70373029)Ministry of Education Plans to Support the New Century Talents (No. NCET-05-0451)
文摘Land use change has significant influence on the operation of the PopulationResources-Environment-De-velopment (PRED) System. Moderate land use is the key factor to ensure the coordinative and sustainable development between land use and PRED system. Based on the internal relationship between land use and PRED system, a PRED evaluation index system and a Press-Status-Response (PSR) model were established in this study. According to the expounding on the mechanism of the PSR model, we investigated the coordinative development between the changes of regional land use and PRED system taking Jiangsu Province as an example. The results showed that the orders of the Synthetic Index of Land Use (SILU) and the Variation of PRED Index (VPI) in Jiangsu are both the southern Jiangsu>the central Jiangsu>the northern Jiangsu. A cubic curve model was used to fit the relationship between the VPI and SILU. The inflection point of VPI was situated in 5.0 of SILU. When SILU was below 5.0, VPI increased with SILU, which will be helpful to the coordinative development between land use and PRED system. Based on those results, it is suggested that the land use degree of the southern Jiangsu, especially that of Nanjing City, should be moderately controlled at present, while land resources of the central Jiangsu and the northern Jiangsu should be further exploited.
基金financially supported by the National Natural Science Foundation of China(No.U1862206)Jilin Province Department of Education(No.JJKH20200665KJ)+3 种基金Dr.W.Zhao thanks for the financial support from China Postdoctoral Science Foundation(No.2021M701818)Shandong Provincial Natural Science Foundation,China(No.ZR2022QE237)Qingdao Postdoctoral Applied Research Project,PetroChina Company Limited(No.2020B-2711)H.Liu sincerely acknowledges the financial support from the Taishan Scholars Program。
文摘Through neodymium-mediated coordinative chain transfer copolymerizaiton(CCTcoP),polyisoprenes bearing dual hydroxylated mini-blocky chain-ends were prepared via a three-step strategy.Kinetic studies revealed that,the polymerization demonstrated typical features of CCTcoP across the whole polymerization process,i.e.,quasi-living polymerization characteristic,tunable molecular weights,narrow molecular weight distributions,and atom economies.Comparing to previously reported CCTP homopolymerization systems,the presence of oxygen-containing IpOAl polar comonomer slowed down chain transfer rates obviously,rendering slightly higher molecular weights of the resultant PIps and smaller Np(number of polymer chains per Nd atom)values.Moreover,to mimic the structure of natural rubber,the hydroxyl end groups can be facilely modified into phosphonate,amide,and UPy,whose structures were further confirmed by NMR spectra.Incorporation these functionalities could greatly improve the hydrophilic properties of the polymers,as revealed from the significantly reduced static water contact angles.
文摘Walking is a complex task which includes hundreds of muscles, bones and joints working together to deliver smooth movements. With the complexity, walking has been widely investigated in order to identify the pattern of multi-segment movement and reveal the control mechanism. The degree of freedom and dimensional properties provide a view of the coordinative structure during walking, which has been extensively studied by using dimension reduction technique. In this paper, the studies related to the coordinative structure, dimensions detection and pattern reorganization during walking have been reviewed. Principal component analysis, as a popular technique, is widely used in the processing of human movement data. Both the principle and the outcomes of principal component analysis were introduced in this paper. This technique has been reported to successfully reduce the redundancy within the original data, identify the physical meaning represented by the extracted principal components and discriminate the different patterns. The coordinative structure during walking assessed by this technique could provide further information of the body control mechanism and correlate walking pattern with injury.
基金financially supported by the National Key Research and Development Program of China (No.2021YFA1201200)the National Natural Science Foundation of China (Nos. 51833008, 52173141 and 82102192)+1 种基金Zhejiang Provincial Key Research and Development Program (No.2020C01123)China Postdoctoral Science Foundation (No.2019M662059)
文摘Oligonucleotide therapeutics have great potential to target the currently undruggable genes and to generate entirely new therapeutic paradigms in multiple types of disease,thus having attracted much attention in recent years.However,their applications are greatly hindered by a lack of safe and efficient oligonucleotide-delivery vectors.Polyplex nanovesicles formed from oligonucleotides and the cationic block have shown exceptional features for the delivery of therapeutic oligonucleotides and other biopharmaceuticals.Nevertheless,these polyplex nanovesicles are deeply fraught with difficulty in tolerating physiological ionic strength.Inspired by the high binding ability between the dipicolylamine(DPA)/zinc(Ⅱ)complex and the phosphodiester moieties of oligonucleotides,herein,we designed a coordinative cationic block to solve the intrinsic stability dilemma.Moreover,we found the stability of the resulted polyplex nanovesicles could be easily tuned by the content of coordinated zinc ions.In vitro cellular studies implied that the prepared zinc(Ⅱ)-coordinative polyplex nanovesicles preferred to retain in the lysosomes upon internalization,making them ideal delivery candidates for the lysosome-targeting oligonucleotide therapeutics.
基金The National Key Research and Development Program of China(2021YFA1502000 and 2022YFA1505300)the National Natural Science Foundation of China (22288102, 22072124)+1 种基金support from Beijing Synchrotron Radiation Facility (1W1B, BSRF)China Scholarship Council for the financial support。
文摘With tunable local electronic environment,high mass density of MN4sites,and ease of preparation,metal-organic conjugated coordinative polymer(CCP) with inherent electronic conductivity provides a promising alternative to the well-known M-N-C electrocatalysts.Herein,the coordination reaction between Cu^(2+)and 1,2,4,5-tetraaminobenzene(TAB) was conducted on the surface of metallic Cu nanowires,forming a thin layer of CuN4-based CCP(Cu-TAB) on the Cu nanowire.More importantly,interfacial transfer of electrons from Cu core to the CuN4-based CCP nanoshell was observed within the resulting CuTAB@Cu,which was found to enrich the local electronic density of the CuN4sites.As such,the CuTAB@Cu demonstrates much improved affinity to the*COOH intermediate formed from the rate determining step;the energy barrier for C-C coupling,which is critical to convert CO_(2)into C2products,is also decreased.Accordingly,it delivers a current density of-9.1 mA cm^(-2)at a potential as high as 0.558 V(vs.RHE) in H-type cell and a Faraday efficiency of 46.4% for ethanol.This work emphasizes the profound role of interfacial interaction in tuning the local electronic structure and activating the CuN4-based CCPs for efficient electroreduction of CO_(2).
基金supported by the National Natural Science Foundation of China(No.22072064,51522805,51908273,and 22176086)the State Key Laboratory of Pollution Control and Resource Reuse(PCRR-ZZ-202106)Start-Up Funds for Jiangsu Distinguished Professor.
文摘The low intrinsic activity of Fenton catalytic site and high demand for light-energy input inhibit the organic-pollution control efficiency of photo-Fenton process.Here,through structural design with density functional theory(DFT)calculations,Ce is predicted to enable the construction of coordinatively unsaturated metal centers(CUCs)in Prussian blue analogue(PBA),which can strongly adsorb H_(2)O_(2)and donate sufficient electrons for directly splitting the O-O bond to produceOH.Using a substitution-co-assembly strategy,binary Ce-Fe PBA is then prepared,which rapidly degrades sulfamethoxazole with the pseudo-first-order kinetic rate constant exceeding reported values by 1-2 orders of magnitude.Meanwhile,the photogenerated electrons reduce Fe(Ⅲ)and Ce(Ⅳ)to promote the metal valence cycle in CUCs and make sulfamethoxazole degradation efficiency only lose 6.04%in 5 runs.Overall,by introducing rare earth metals into transition metal-organic frameworks,this work guides the whole process for highly active CUCs from design and construction to mechanism exploration with DFT calculations,enabling ultrafast and stable photo-Fenton catalysis.
文摘Some Schiff-base cobalt(Ⅱ)chelates like ethylenebis[(2-hydroxy-3- methoxy-5-methylphenyl)methylideneiminato]Cobalt(Ⅱ)were coordioatively anchored onto poly(4-vinylpyridine-co-styrene)in diglyme solution and the dioxygen-affinity of the resulting polymeric complexes were measured in situ.
文摘This study is aimed at providing a reflection on the meanings of the child’s body in developmental age in the spaces that coexist in his learning environment,which translate into the ability of the same to coordinate his own motor action in codified spaces,which are spaces vital or the space outlined on the sheet of a notebook.Gross motor and fine coordination form the basis of a long and sophisticated learning process of skills such as writing,an activity that is preparatory for the duration of the entire learning process from a long-life-learning perspective.Writing is primarily a motor action,which is completed and coordinated thanks to the motor prediction of purposeful movements,but also implies the production of associations of graphemes that have a conventionally shared meaning.If these graph-motor skills are not acquired according to the age of development,this could give rise to a possible diagnosis of dysgraphia which results in the obvious difficulties of creating a writing that is legible and harmonious.This disorder could be traced back to the inability to fully and simultaneously dispose of the visual-perceptive,exploratory and spatial coordination faculties both of the whole body and of the individual structures of the eye,hand and upper limb that cooperate the visual-kinetic functions of the graphic act.
文摘Benzo[d]thiazol-2-ylmethanol undergoes progressive oligomerization under solvothermal conditions in the presence of FeCl_(3)·6H_(2)O,yielding a heterocyclic aggregate,namely 1,2,3-tris(benzo[d]thiazol-2-yl)-2,9-dihydrobenzo[b]cyclopenta[e][1,4]thiazine.Single-crystal X-ray diffraction analysis was conducted on four distinct compounds isolated during the reaction,and electrospray ionization mass spectrometry(ESI-MS)of both solid products and intermediate reaction solutions enabled the identification of 15 consecutive reaction steps,where Fe(Ⅲ)was directly involved in eight steps.These transformations comprise nine intermolecular C─C coupling events and six intramolecular ring expansion processes.The heteroatoms(N,O,and S)play distinct mechanistic roles according to their positions within the heterocyclic framework:(1)nitrogen and oxygen coordinate with Fe(Ⅲ),facilitating activation of the reaction site;(2)homolytic cleavage of the C─O bond promotes C─C coupling reactions;and(3)C─S migration induces intramolecular ring expansion.Notably,theoretical calculations indicate a decrease in Gibbs free energy along the intramolecular reaction pathways,substantiating the proposed mechanism and activation mode,which underscores the essential role of Fe(Ⅲ)in enabling the reaction progression.Furthermore,an investigation of the photophysical properties revealed that the resulting heterocyclic aggregates exhibit strong luminescence within the 535–610 nm wavelength range,approaching the near-infrared region.These findings highlight the significance of this reaction pathway in the controlled synthesis of functional oligomers and polymers from monomeric precursors,particularly through catalysis by cost-effective metal ions.
基金supported by the National Natural Science Foundation of China(Nos.22371268,52025101,U23A20676,and 52400103)Fundamental Research Funds for the Central Universities(No.WK2060000016 and WK2060000069)+6 种基金Anhui Province for Outstanding Youth(No.2208085J09)Collaborative Innovation Program of Hefei Science Center,CAS(No.2022HSC-CIP020)Anhui Development and Reform Commission(No.AHZDCYCX-2SDT2023-07)Youth Innovation Promotion Association of the Chinese Academy of Science(No.2018494)USTC Tang Scholar,Suzhou Carbon Peaking and Carbon Neutrality Science and Technology Support Key Special Funding(No.ST202217)the China Postdoctoral Science Foundation(Nos.2023M743380 and 2024T170886)the Postdoctoral Fellowship Program of China Postdoctoral Science Foundation project(No.GZC20232544).
文摘Coordinatively unsaturated metal sites(CUS)located at tetrahedral(T_(d))in spinel structure are highly effective for activating peroxymonosulfate(PMS)in Fenton-like catalysis.However,the conventional T_(d)-octahedral(Oh)connectivity in spinel structures restricts internal electron transfer,limiting the regeneration of low-valent metals and creating a trade-off between catalytic activity and long-term stability.Herein,we address this challenge by engineering a novel T_(d)-T_(d) connectivity in amorphous CoFeO_(x) nanosheets(a-CoFeO_(x) NSs).Soft X-ray absorption spectroscopy(sXAS)measurements reveal that in a-CoFeO_(x) nanosheets,the ligand field symmetry around Co atoms is dominated by a T_(d) coordination,in contrast to the O_(h) coordination in the crystalline state,which introduces T_(d)-T_(d) connection.Density functional theory(DFT)calculations confirm that the T_(d)-T_(d) connection in a-CoFeO_(x) structure significantly strengthens electron transfer to activate PMS,which exhibited a first-order kinetic constant(k_(obs))of 0.27 min^(-1) for sulfamethoxazole(SMX)removal with high stability.This study reveals that the phase-engineered CUS can further enhance catalytic activity and provides a simple and scalable strategy for optimizing spinel-type catalysts.
文摘The depletion of fossil energy and the deterioration of the ecological environment have severely restricted the development of the power industry.Therefore,it is extremely urgent to transform energy production methods and vigorously develop renewable energy sources.It is therefore important to ensure the stability and operation of a large multi-energy complementary system,and provide theoretical support for the world’s largest single complementary demonstration project with hydro-wind-PV power-battery storage in Qinghai Province.Considering all the multiple power supply constraints,an optimization scheduling model is established with the objective of minimizing the volatility of output power.As particle swarm optimization(PSO)has a problem of premature convergence and slow convergence in the latter half,combined with niche technology in evolution,a niche particle swarm optimization(NPSO)is proposed to determine the optimal solution of the model.Finally,the multiple stations’coordinated operation is analyzed taking the example of 10 million kilowatt complementary power stations with hydropower,wind power,PV power,and battery storage in the Yellow River Company Hainan prefecture.The case verifies the rationality and feasibility of the model.It shows that complementary operations can improve the utilization rate of renewable energy and reduce the impact of wind and PV power’s volatility on the power grid.
基金supported by the National Key R&D Program of China(Grant Nos.2017YFB0307100,2017YFB0307103)the National Basic Research Program of China(Grant Nos.2015CB654700,2015CB654702)
文摘Tremendous advances has been witnessed in the past few years in the lanthanide complexes mediated coordinative chain transfer polymerization(CCTP) of conjugated dienes. CCTP features catalyst economy, well-controlling over both microstructure and architecture of the resulting polymers, and accessibility for novel(co)polymers. This review highlights the recent progresses made in the field of CCTP of dienes. After a brief introduction, the body of this review is divided into three parts:(1) principle of CCTP;(2) coordinative chain transfer homopolymerization of dienes;(3) coordinative chain transfer copolymerization of dienes.At the end, we present some challenges remaining in this area and our personal opinion regarding where this field should continue to develop. CCTP represents a novel strategy to prepare polydiene synthetic rubbers with controlled high molecular weight and narrow molecular weight distribution, which has reached the practical industrial application level, demonstrating a great potential in industrialization.
基金This work is supported by the National Key R&D Program of China,Synthetic Biology Research(No.2019YFA0904500)the National Natural Science Foundation of China(No.21725402)the Science and Technology Planning Project of Shenzhen Municipality(No.JCYJ20170818142921044).We thank the supports from the Flow Cytometry Core Facility and the Confocal Microscopy Facility at ECNU.
文摘Peptides have gained increasing interests as drug candidates in modern pharmaceutical industry,however,the development of peptide drugs acting on intracellular targets is limited due to their membrane impermeability.Here,we reported the use of metal-terpyridine based coordinative dendrimer for cytosolic peptide delivery.Among the investigated transition metal ions,Mn^(2+)-coordinated polymer showed the highest delivery efficiency due to balanced peptide binding and release.It showed robust efficiency in the delivery of peptides with different charge property and hydrophobicity into various primary cells.The efficiency of Mn^(2+)-terpyridine based polymer is superior to cell penetrating peptides such as oligoarginines.The material also delivered an autophagy-inducing peptide derived from Beclin-1 into cells and efficiently induced autophagy in the cells.This study provides a promising alternative to cell penetrating peptides for cytosolic peptide delivery.
基金supported by the Fundamental Research Funds for the Central Universities(No.40120631)Natural Science Foundation of Hubei Province(No.20211j0188).
文摘Zeolitic-imidazole frameworks(ZIFs)derivations have widely emerged as an efficient air cathode of zinc-air batteries(ZABs)due to excellent bifunctional oxygen electrocatalysis performance.However,they are not stable enough for long-term operation of rechargeable ZABs because of weak association with current collector,especially under bending conditions for flexible ZAB devices.Here,we show that by purposely designing coordinatively unsaturated ZIFs via a facile morphology regulation,which can be chemically linked on acid-treated carbon cloth,a stable Co-N-C air cathode is therefore derived where Co nanoparticles(NPs)are uniformly confined within the Co-N-C matrix on carbon cloth(Co/Co-N-C/CC).Specifically,when without being stabilized from carbon cloth,the pyrolysis of ZIFs with different unsaturated coordination levels has a negligible impact on the bifunctional oxygen-catalyzed performance.The optimal Co/Co-N-C/CC catalyst assembled ZAB possesses a large open circuit voltage of 1.415 V and a high peak power density of 163 mW·cm^(−2) as well as excellent cycling durability upon 630 discharge–charge cycles with 61%voltage efficiency remained,largely exceeding those of a benchmark Pt/C-IrO_(2) catalyst assembled ZAB.The synergy between Co NPs and active Co-N-C sites via electronic interaction induces the outstanding bifunctional oxygen-catalyzed activity and cathode performance.The present work highlights the importance of unsaturated coordination structures in ZIFs precursors for the performance of derived nanostructures in integrated electrodes.
基金support from Guangdong Science and Technology(20230505)Guangdong Provincial Philosophy and Social Science Planning Project(GD20SQ25)Guangdong Provincial Special Fund for Science and Technology Innovation Strategy in 2024(Cultivation of College Students’Science and Technology Innovation)(pdjh2024a391)during preparation of this manuscript.
文摘This study investigates the coordination between regional economic growth and ecological sustainability within the context of high-quality town economy development.To address the challenges of balancing economic expansion with environmental protection,a comprehensive evaluation index system is constructed,encompassing two key dimensions:regional economy and ecological environment.Using panel data from 2013 to 2022,the coupling coordination degree model is employed to quantify the interactions and synergy between these dimensions.Additionally,spatial econometric methods are applied to calculate both global and local Moran’s Index,revealing spatial clustering patterns,regional disparities,and heterogeneity.The relative development model further identifies critical factors influencing regional coordination,with a focus on the lagging development of basic infrastructure and public services.The findings demonstrate a positive temporal trend toward improved regional coordination and reduced development gaps,with a spatial pattern characterized by higher coupling degrees in eastern and central regions compared to western areas.Based on these results,this study proposes actionable strategies to enhance coordinated development,emphasizing ecological conservation,the establishment of green production and consumption systems,ecological restoration,and strengthened municipal collaboration.This revised abstract emphasizes the study’s purpose,methods,and key findings more clearly while maintaining a professional and concise tone.Finally,based on the above analysis results,the corresponding coordinated development suggestions of regional economy and ecological environment are given from the aspects of ecological environment protection measures,green production and consumption system construction,ecological environment restoration and municipal coordination.
文摘With the boom in maritime activities,the need for highly reliable maritime communication is becoming urgent,which is an important component of 5G/6G communication networks.However,the bandwidth reuse characteristic of 5G/6G networks will inevitably lead to severe interference,resulting in degradation in the communication performance of maritime users.In this paper,we propose a safe deep reinforcement learning based interference coordination scheme to jointly optimize the power control and bandwidth allocation in maritime communication systems,and exploit the quality-of-service requirements of users as the risk value references to evaluate the communication policies.In particular,this scheme designs a deep neural network to select the communication policies through the evaluation network and update the parameters using the target network,which improves the communication performance and speeds up the convergence rate.Moreover,the Nash equilibrium of the interference coordination game and the computational complexity of the proposed scheme are analyzed.Simulation and experimental results verify the performance gain of the proposed scheme compared with benchmarks.
基金funded by the Technology Project of State Grid Jibei Electric Power Supply Co.,Ltd.(Grant Number:52018F240001).
文摘As the development of new power systems accelerates and the impacts of high renewable energy integration and extreme weather intensify,grid-alternative energy storage is garnering increasing attention for its grid-interaction benefits and clear business models.Consequently,assessing the value of grid-alternative energy storage in the systemtransition has become critically important.Considering the performance characteristics of storage,we propose a value assessment frame-work for grid-alternative energy storage,quantifying its non-wires-alternative effects from both cost and benefit perspectives.Building on this,we developed a collaborative planning model for energy storage and transmission grids,aimed at maximizing the economic benefits of storage systems while balancing investment and operational costs.The model considers regional grid interconnections and their interactions with system operation.By participating in system operations,grid-alternative energy storage not only maximizes its own economic benefits but also generates social welfare transfer effects.Furthermore,based on multi-regional interconnected planning,grid-alternative energy storage can reduce system costs by approximately 35%,with the most significant changes observed in generation costs.Multi-regional coordinated planning significantly enhances the sys-tem’s flexibility in regulation.However,when the load factor of interconnection lines between regions remains constant,system operational flexibility tends to decrease,leading to a roughly 28.9%increase in storage investment.Additionally,under regional coordinated planning,the greater the disparity in wind power integration across interconnected regions,the more noticeable the reduction in system costs.