The operation efficiency of the manipulator is placed in the primary position in automatic production. This paper proposes a coordinated control strategy for joint servo and visual servo to enable timely transfer and ...The operation efficiency of the manipulator is placed in the primary position in automatic production. This paper proposes a coordinated control strategy for joint servo and visual servo to enable timely transfer and accurate gripping in the working area. Aiming at the issues of chattering and slow convergence of traditional sliding mode controller, a fast variable power reaching rate on the basis of the non-singular fast terminal sliding mode controller is proposed, which can effectively reduce the convergence time and chattering. For the purpose of addressing the problem that the traditional visual servo control method is sensitive to the environment, a visual servo controller based on integral sliding mode is proposed, to ensure the favorable positioning accuracy of the manipulator. Based on the two proposed controllers mentioned above, a coordinated control strategy is used to implement the control of the manipulator. Finally, the upper computer software is developed using the C# programming language to monitor the workstation. The feasibility of the above-mentioned method is verified through multiple simulations and experiments.展开更多
An improved automatic voltage coordination control strategy (AVCCS) based on ;automatic voltage control (AVC) and battery energy storage control (BESC) is proposed for photovoltaic grid-connected system (PVGS)...An improved automatic voltage coordination control strategy (AVCCS) based on ;automatic voltage control (AVC) and battery energy storage control (BESC) is proposed for photovoltaic grid-connected system (PVGS) to mitigate the voltage fluctuations caused by environmental disturbances. Only AVC is used when small environ- mental disturbances happen, while BESC is incorporated with AVC to restrain the voltage fluctuations when large disturbances happen. An adjustable parameter determining the allowed amplitudes of voltage fluctuations is introduced to realize the above switching process. A benchmark low voltage distribution system including ]?VGS is established by using the commercial software Dig SILENT. Simulation results show that the voltage under AVCCS satisfies the IEEE Standard 1547, and the installed battery capacity is also reduced. Meanwhile, the battery's service life is ex- tended by avoiding frequent charges/discharges in the control process.展开更多
This paper presents an investigation on the target-guided coordinated control(TACC)of unmanned surface vehicles(USVs).In the scenario of tracking non-cooperative targets,the status information of the target can only b...This paper presents an investigation on the target-guided coordinated control(TACC)of unmanned surface vehicles(USVs).In the scenario of tracking non-cooperative targets,the status information of the target can only be obtained by some USVs.In order to achieve semi-encirclement tracking of noncooperative targets under maritime security conditions,a fixed-time tracking control method based on dynamic surface control(DSC)is proposed in this paper.Firstly,a novel TACC architecture with decoupled kinematic control law and decoupled kinetic control law was designed to reduce the complexity of control system design.Secondly,the proposed DSC-based target-guided kinematic control law including tracking points pre-allocation strategy and sigmoid artificial potential functions(SigAPFs)can avoid collisions during tracking process and optimize kinematic control output.Finally,a fixed-time TACC system was proposed to achieve fast convergence of kinematic and kinetics errors.The effectiveness of the proposed TACC approach in improving target tracking safety and reducing control output chattering was verified by simulation comparison results.展开更多
A new kind of group coordination control problemgroup hybrid coordination control is investigated in this paper.The group hybrid coordination control means that in a whole multi-agent system(MAS)that consists of two s...A new kind of group coordination control problemgroup hybrid coordination control is investigated in this paper.The group hybrid coordination control means that in a whole multi-agent system(MAS)that consists of two subgroups with communications between them,agents in the two subgroups achieve consensus and containment,respectively.For MASs with both time-delays and additive noises,two group control protocols are proposed to solve this problem for the containment-oriented case and consensus-oriented case,respectively.By developing a new analysis idea,some sufficient conditions and necessary conditions related to the communication intensity betw een the two subgroups are obtained for the following two types of group hybrid coordination behavior:1)Agents in one subgroup and in another subgroup achieve weak consensus and containment,respectively;2)Agents in one subgroup and in another subgroup achieve strong consensus and containment,respectively.It is revealed that the decay of the communication impact betw een the two subgroups is necessary for the consensus-oriented case.Finally,the validity of the group control results is verified by several simulation examples.展开更多
This paper presents a novel design procedure for optimizing the power distribution strategy in distributed generation system. A coordinating controller, responsible to distribute the total load power request among mul...This paper presents a novel design procedure for optimizing the power distribution strategy in distributed generation system. A coordinating controller, responsible to distribute the total load power request among multiple DG units, is suggested based on the conception of hierarchical control structure in the dynamic system. The optimal control problem was formulated as a nonlinear optimization problem subject to set of constraints. The resulting problem was solved using the Kuhn-Tucker method. Computer simulation results demonstrate that the proposed method can provide better efficiency in terms of reducing total costs compared to existing methods. In addition, the proposed optimal load distribution strategy can be easily implemented in real-time thanks to the simplicity of closed-form solutions.展开更多
This paper concerns the exponential attitude-orbit coordinated control problems for gravitational-wave detection formation spacecraft systems.Notably,the large-scale communication delays resulting from oversized inter...This paper concerns the exponential attitude-orbit coordinated control problems for gravitational-wave detection formation spacecraft systems.Notably,the large-scale communication delays resulting from oversized inter-satellite distance of space-based laser interferometers are first modeled.Subject to the delayed communication behaviors,a new delay-dependent attitude-orbit coordinated controller is designed.Moreover,by reconstructing the less conservative Lyapunov-Krasovskii functional and free-weight matrices,sufficient criteria are derived to ensure the exponential stability of the closed-loop relative translation and attitude error system.Finally,a simulation example is employed to illustrate the numerical validity of the proposed controller for in-orbit detection missions.展开更多
In this paper,a distributed Event-Triggered(ET)collision avoidance coordinated control for Quadrotor Unmanned Aerial Vehicles(QUAVs)is proposed based on Virtual Tubes(VTs)with flexible boundaries in the presence of un...In this paper,a distributed Event-Triggered(ET)collision avoidance coordinated control for Quadrotor Unmanned Aerial Vehicles(QUAVs)is proposed based on Virtual Tubes(VTs)with flexible boundaries in the presence of unknown external disturbances.Firstly,VTs are constructed for each QUAV,and the QUAV is restricted into the corresponding VT by the artificial potential field,which is distributed around the boundary of the VT.Thus,the collisions between QUAVs are avoided.Besides,the boundaries of the VTs are flexible by the modification signals,which are generated by the self-regulating auxiliary systems,to make the repulsive force smaller and give more buffer space for QUAVs without collision.Then,a novel ET mechanism is designed by introducing the concept of prediction to the traditional fixed threshold ET mechanism.Furthermore,a disturbance observer is proposed to deal with the adverse effects of the unknown external disturbance.On this basis,a distributed ET collision avoidance coordinated controller is proposed.Then,the proposed controller is quantized by the hysteresis uniform quantizer and then sent to the actuator only at the ET instants.The boundedness of the closed-loop signals is verified by the Lyapunov method.Finally,simulation and experimental results are performed to demonstrate the superiority of the proposed control method.展开更多
The paper proposes a new swarm intelligence-based distributed Model Predictive Control(MPC)approach for coordination control of multiple Unmanned Aerial Vehicles(UAVs).First,a distributed MPC framework is designed and...The paper proposes a new swarm intelligence-based distributed Model Predictive Control(MPC)approach for coordination control of multiple Unmanned Aerial Vehicles(UAVs).First,a distributed MPC framework is designed and each member only shares the information with neighbors.The Chaotic Grey Wolf Optimization(CGWO)method is developed on the basis of chaotic initialization and chaotic search to solve the local Finite Horizon Optimal Control Problem(FHOCP).Then,the distributed cost function is designed and integrated into each FHOCP to achieve multi-UAV formation control and trajectory tracking with no-fly zone constraint.Further,an event-triggered strategy is proposed to reduce the computational burden for the distributed MPC approach,which considers the predicted state errors and the convergence of cost function.Simulation results show that the CGWO-based distributed MPC approach is more computationally efficient to achieve multi-UAV coordination control than traditional method.展开更多
Decreasing costs and favorable policies have resulted in increased penetration of solar photovoltaic(PV)power generation in distribution networks.As the PV systems penetration is likely to increase in the future,utili...Decreasing costs and favorable policies have resulted in increased penetration of solar photovoltaic(PV)power generation in distribution networks.As the PV systems penetration is likely to increase in the future,utilizing the reactive power capability of PV inverters to mitigate voltage deviations is being promoted.In recent years,droop control of inverter-based distributed energy resources has emerged as an essential tool for use in this study.The participation of PV systems in voltage regulation and its coordination with existing controllers,such as on-load tap changers,is paramount for controlling the voltage within specified limits.In this work,control strategies are presented that can be coordinated with the existing controls in a distributed manner.The effectiveness of the proposed method was demonstrated through simulation results on a distribution system.展开更多
With the rapid development of network technology and control technology,a networked multi-agent control system is a key direction of modern industrial control systems,such as industrial Internet systems.This paper stu...With the rapid development of network technology and control technology,a networked multi-agent control system is a key direction of modern industrial control systems,such as industrial Internet systems.This paper studies the tracking control problem of networked multi-agent systems with communication constraints,where each agent has no information on the dynamics of other agents except their outputs.A networked predictive proportional integral derivative(PPID)tracking scheme is proposed to achieve the desired tracking performance,compensate actively for communication delays,and simplify implementation in a distributed manner.This scheme combines the past,present and predictive information of neighbour agents to form a tracking error signal for each agent,and applies the proportional,integral,and derivative of the agent tracking error signal to control each individual agent.The criteria of the stability and output tracking consensus of multi-agent systems with the networked PPID tracking scheme are derived through detailed analysis on the closed-loop systems.The effectiveness of the networked PPID tracking scheme is illustrated via an example.展开更多
This paper investigates a distributed coordination control scheme using an adaptive terminal sliding mode for formation flying spacecraft with coupled attitude and translational dynamics. In order to overcome the sing...This paper investigates a distributed coordination control scheme using an adaptive terminal sliding mode for formation flying spacecraft with coupled attitude and translational dynamics. In order to overcome the singularity of the traditional fast terminal sliding manifold, a novel fast terminal sliding manifold is given. And then, based on the adaptive control method, a continuous robust coordinated controller is designed to compensate external disturbances and to alleviate the chattering phenomenon. The theoretical analysis shows that the coordinated controller can guarantee the finite-time stability of the overall closed-loop system through local information exchange, and numerical simulations also demonstrate its effectiveness.展开更多
Optimal control of greenhouse climate is one of the key techniques in digital agriculture.Greenhouse climate,a nonlinear and uncertain system,consists of several major environmental factors such as temperature,humidit...Optimal control of greenhouse climate is one of the key techniques in digital agriculture.Greenhouse climate,a nonlinear and uncertain system,consists of several major environmental factors such as temperature,humidity,light intensity,and CO 2 concentration.Due to the complex coupled correlations,it is a challenge to achieve coordination control of greenhouse environmental factors.This paper proposes a model-free coordination control approach for greenhouse environmental factors based on Q-learning.Coordination control policy is found through systematic interaction with the dynamic environment to achieve optimal control for greenhouse climate with the control cost constraints.In order to decrease systematic trial-and-error risk and reduce the computational complexity in Q-learning algorithm,case-based reasoning (CBR) is seamlessly incorporated into the Q-learning process.The experimental results demonstrate that this approach is practical,highly effective and efficient.展开更多
In order to improve the frequency response and anti-interference characteristics of the smart electromechanical actuator(EMA)system,and aiming at the force fighting problem when multiple actuators work synchronously,a...In order to improve the frequency response and anti-interference characteristics of the smart electromechanical actuator(EMA)system,and aiming at the force fighting problem when multiple actuators work synchronously,a multi input multi output(MIMO)position difference cross coupling control coordinated strategy based on double‑closed-loop load feedforward control is proposed and designed.In this strategy,the singular value method of return difference matrix is used to design the parameter range that meets the requirements of system stability margin,and the sensitivity function and the H_(∞)norm theory are used to design and determine the optimal solution in the obtained parameter stability region,so that the multi actuator system has excellent synchronization,stability and anti-interference.At the same time,the mathematical model of the integrated smart EMA system is established.According to the requirements of point-to-point control,the controller of double-loop control and load feedforward compensation is determined and designed to improve the frequency response and anti-interference ability of single actuator.Finally,the 270 V high-voltage smart EMA system experimental platform is built,and the frequency response,load feedforward compensation and coordinated control experiments are carried out to verify the correctness of the position difference cross coupling control strategy and the rationality of the parameter design,so that the system can reach the servo control indexes of bandwidth 6 Hz,the maximum output force 20000 N and the synchronization error≤0.1 mm,which effectively solves the problem of force fighting.展开更多
In this paper,we investigate a leader-following tracking problem for multi-agent systems with boundedinputs.We propose a distributed bounded protocol for each follower to track a leader whose states may not be complet...In this paper,we investigate a leader-following tracking problem for multi-agent systems with boundedinputs.We propose a distributed bounded protocol for each follower to track a leader whose states may not be completelymeasured.We theoretically prove that each agent can follow the leader with estimable track errors.Finally,somenumerical simulations are presented to illustrate our theoretical results.展开更多
The coordinated control of PM_(2.5)and ozone has become the strategic goal of national air pollution control.Considering the gradual decline in PM_(2.5)concentration and the aggravation of ozone pollution,a better und...The coordinated control of PM_(2.5)and ozone has become the strategic goal of national air pollution control.Considering the gradual decline in PM_(2.5)concentration and the aggravation of ozone pollution,a better understanding of the coordinated control of PM_(2.5)and ozone is urgently needed.Here,we collected and sorted air pollutant data for 337 cities from 2015 to 2020 to explore the characteristics of PM_(2.5)and ozone pollution based on China’s five major air pollution regions.The results show that it is necessary to continue to strengthen the emission reduction in PM_(2.5)and ozone precursors,and control NO_(x) and VOCs while promoting a dramatic emission reduction in PM_(2.5).The primary method of curbing ozone pollution is to strengthen the emission control of VOCs,with a long-term strategy of achieving substantial emission reductions in NO_(x),because VOCs and NO_(x) are also precursors to PM_(2.5);hence,their reductions also contribute to the reduction in PM_(2.5).Therefore,the implementation of a multipollutant emission reduction control strategy aimed at the prevention and control of PM_(2.5)and ozone pollution is the only means to realize the coordinated control of PM_(2.5)and ozone.展开更多
In order to compromise the conflicts between control accuracy and system efficiency of conventional electro-hydraulic servo systems,a novel pump-valve coordinated electro-hydraulic servo system was designed and a corr...In order to compromise the conflicts between control accuracy and system efficiency of conventional electro-hydraulic servo systems,a novel pump-valve coordinated electro-hydraulic servo system was designed and a corresponding control strategy was proposed.The system was constituted of a pumpcontrolled part and a valve-controlled part,the pump controlled part is used to adjust the flow rate of oil source and the valve controlled part is used to complete the position tracking control of the hydraulic cylinder.Based on the system characteristics,a load flow grey prediction method was adopted in the pump controlled part to reduce the system overflow losses,and an adaptive robust control method was adopted in the valve controlled part to eliminate the effect of system nonlinearity and parametric uncertainties due to variable hydraulic parameters and system loads on the control precision.The experimental results validated that the adopted control strategy increased the system efficiency obviously with guaranteed high control accuracy.展开更多
As an important branch in the field of servo control, multi-motor coordination motion control applications are increasingly widespread.For open CNC system requirement, taking DSP as master core, combing with specific ...As an important branch in the field of servo control, multi-motor coordination motion control applications are increasingly widespread.For open CNC system requirement, taking DSP as master core, combing with specific integrated stepper motor driver chip LMDI8201T, this designed a serial communication-based new collaborative multi-motor control system, which has characters of highly integrated, good stability, real-time, convenient man-machine interface.The test results show that the system fully meet performance requirements and achieved the motion control functions.展开更多
An advanced nonlinear robust control scheme is proposed for multi-machine power systems equipped with thyristor-controlled series compensation (TCSC). First, a decentralized nonlinear robust control approach based on ...An advanced nonlinear robust control scheme is proposed for multi-machine power systems equipped with thyristor-controlled series compensation (TCSC). First, a decentralized nonlinear robust control approach based on the feedback linearization and H∞ theory is introduced to eliminate the nonlinearities and interconnections of the studied system, and to attenuate the exogenous disturbances that enter die system. Then, a system model is built up, which has considered all the generators’ and TCSC’s dynamics, and the effects of uncertainties such as disturbances. Next, a decentralized nonlinear robust coordinated control law is developed based on this model. Simulation results on a six-machine power system show that the transient stability of the power system is obviously improved and die power transfer capacity of long distance transmission lines is enhanced regardless of fault locations and system operation points. In addition, the control law has engineering practicality since all the variables in the expression of he control strategy can be measured locally.展开更多
Multi-point array flexible tooling based on multilateration is widely used in the processing and manufacturing of complex curved surface parts. However, during the positioning of workpieces, the force exerted on each ...Multi-point array flexible tooling based on multilateration is widely used in the processing and manufacturing of complex curved surface parts. However, during the positioning of workpieces, the force exerted on each flexible support point is not uniform, and there exists force coupling between the support units. In response to the force coupling problem in the multi-point array positioning support process, a coordinated control method for the support force of multi-point array positioning combining correlation coefficient and regression analysis was proposed in this paper. The Spearman correlation coefficient was adopted in this method to study the force coupling correlation between positioning points, and a mathematical model of force coupling was established between positioning units through regression analysis, which can quickly and accurately perform coordinated control of the multilateration support system, and effectively improve the force interference of the multi-point array positioning support scene.展开更多
基金supported by the National Natural Science Foundation of China(No.62273189)the Natural Science Foundation of Shandong Province(No.ZR2021MF005).
文摘The operation efficiency of the manipulator is placed in the primary position in automatic production. This paper proposes a coordinated control strategy for joint servo and visual servo to enable timely transfer and accurate gripping in the working area. Aiming at the issues of chattering and slow convergence of traditional sliding mode controller, a fast variable power reaching rate on the basis of the non-singular fast terminal sliding mode controller is proposed, which can effectively reduce the convergence time and chattering. For the purpose of addressing the problem that the traditional visual servo control method is sensitive to the environment, a visual servo controller based on integral sliding mode is proposed, to ensure the favorable positioning accuracy of the manipulator. Based on the two proposed controllers mentioned above, a coordinated control strategy is used to implement the control of the manipulator. Finally, the upper computer software is developed using the C# programming language to monitor the workstation. The feasibility of the above-mentioned method is verified through multiple simulations and experiments.
基金Supported by National Basic Research Program of China ("973" Program,No. 2009CB219701 and No. 2010CB234608)Tianjin Municipal Science and Technology Development Program (No. 09JCZDJC25000)Specialized Research Fund for Doctor Discipline of Ministry of Education of China (No. 20090032110064)
文摘An improved automatic voltage coordination control strategy (AVCCS) based on ;automatic voltage control (AVC) and battery energy storage control (BESC) is proposed for photovoltaic grid-connected system (PVGS) to mitigate the voltage fluctuations caused by environmental disturbances. Only AVC is used when small environ- mental disturbances happen, while BESC is incorporated with AVC to restrain the voltage fluctuations when large disturbances happen. An adjustable parameter determining the allowed amplitudes of voltage fluctuations is introduced to realize the above switching process. A benchmark low voltage distribution system including ]?VGS is established by using the commercial software Dig SILENT. Simulation results show that the voltage under AVCCS satisfies the IEEE Standard 1547, and the installed battery capacity is also reduced. Meanwhile, the battery's service life is ex- tended by avoiding frequent charges/discharges in the control process.
文摘This paper presents an investigation on the target-guided coordinated control(TACC)of unmanned surface vehicles(USVs).In the scenario of tracking non-cooperative targets,the status information of the target can only be obtained by some USVs.In order to achieve semi-encirclement tracking of noncooperative targets under maritime security conditions,a fixed-time tracking control method based on dynamic surface control(DSC)is proposed in this paper.Firstly,a novel TACC architecture with decoupled kinematic control law and decoupled kinetic control law was designed to reduce the complexity of control system design.Secondly,the proposed DSC-based target-guided kinematic control law including tracking points pre-allocation strategy and sigmoid artificial potential functions(SigAPFs)can avoid collisions during tracking process and optimize kinematic control output.Finally,a fixed-time TACC system was proposed to achieve fast convergence of kinematic and kinetics errors.The effectiveness of the proposed TACC approach in improving target tracking safety and reducing control output chattering was verified by simulation comparison results.
基金supported by the National Natural Science Foundation of China(62073305)the Fundamental Research Funds for the Central Universities,China University of Geosciences(Wuhan)(CUG170610)。
文摘A new kind of group coordination control problemgroup hybrid coordination control is investigated in this paper.The group hybrid coordination control means that in a whole multi-agent system(MAS)that consists of two subgroups with communications between them,agents in the two subgroups achieve consensus and containment,respectively.For MASs with both time-delays and additive noises,two group control protocols are proposed to solve this problem for the containment-oriented case and consensus-oriented case,respectively.By developing a new analysis idea,some sufficient conditions and necessary conditions related to the communication intensity betw een the two subgroups are obtained for the following two types of group hybrid coordination behavior:1)Agents in one subgroup and in another subgroup achieve weak consensus and containment,respectively;2)Agents in one subgroup and in another subgroup achieve strong consensus and containment,respectively.It is revealed that the decay of the communication impact betw een the two subgroups is necessary for the consensus-oriented case.Finally,the validity of the group control results is verified by several simulation examples.
基金Sponsored by the Indiana 21stCentury Research and Technology Fund
文摘This paper presents a novel design procedure for optimizing the power distribution strategy in distributed generation system. A coordinating controller, responsible to distribute the total load power request among multiple DG units, is suggested based on the conception of hierarchical control structure in the dynamic system. The optimal control problem was formulated as a nonlinear optimization problem subject to set of constraints. The resulting problem was solved using the Kuhn-Tucker method. Computer simulation results demonstrate that the proposed method can provide better efficiency in terms of reducing total costs compared to existing methods. In addition, the proposed optimal load distribution strategy can be easily implemented in real-time thanks to the simplicity of closed-form solutions.
基金supported by the Na⁃tional Key R&D Program of China(No.2022YFC2204800)the Graduate Student Independent Exploration and Innovation Program of Central South University(No.2024ZZTS 0767).
文摘This paper concerns the exponential attitude-orbit coordinated control problems for gravitational-wave detection formation spacecraft systems.Notably,the large-scale communication delays resulting from oversized inter-satellite distance of space-based laser interferometers are first modeled.Subject to the delayed communication behaviors,a new delay-dependent attitude-orbit coordinated controller is designed.Moreover,by reconstructing the less conservative Lyapunov-Krasovskii functional and free-weight matrices,sufficient criteria are derived to ensure the exponential stability of the closed-loop relative translation and attitude error system.Finally,a simulation example is employed to illustrate the numerical validity of the proposed controller for in-orbit detection missions.
基金supported in part by the National Key R&D Program of China(No.2023YFB4704400)in part by the National Natural Science Foundation of China(Nos.U23B2036,U2013201).
文摘In this paper,a distributed Event-Triggered(ET)collision avoidance coordinated control for Quadrotor Unmanned Aerial Vehicles(QUAVs)is proposed based on Virtual Tubes(VTs)with flexible boundaries in the presence of unknown external disturbances.Firstly,VTs are constructed for each QUAV,and the QUAV is restricted into the corresponding VT by the artificial potential field,which is distributed around the boundary of the VT.Thus,the collisions between QUAVs are avoided.Besides,the boundaries of the VTs are flexible by the modification signals,which are generated by the self-regulating auxiliary systems,to make the repulsive force smaller and give more buffer space for QUAVs without collision.Then,a novel ET mechanism is designed by introducing the concept of prediction to the traditional fixed threshold ET mechanism.Furthermore,a disturbance observer is proposed to deal with the adverse effects of the unknown external disturbance.On this basis,a distributed ET collision avoidance coordinated controller is proposed.Then,the proposed controller is quantized by the hysteresis uniform quantizer and then sent to the actuator only at the ET instants.The boundedness of the closed-loop signals is verified by the Lyapunov method.Finally,simulation and experimental results are performed to demonstrate the superiority of the proposed control method.
基金co-supported by the National Natural Science Foundation of China(Nos.61803009,61903084)Fundamental Research Funds for the Central Universities of China(No.YWF-20-BJ-J-542)Aeronautical Science Foundation of China(No.20175851032)。
文摘The paper proposes a new swarm intelligence-based distributed Model Predictive Control(MPC)approach for coordination control of multiple Unmanned Aerial Vehicles(UAVs).First,a distributed MPC framework is designed and each member only shares the information with neighbors.The Chaotic Grey Wolf Optimization(CGWO)method is developed on the basis of chaotic initialization and chaotic search to solve the local Finite Horizon Optimal Control Problem(FHOCP).Then,the distributed cost function is designed and integrated into each FHOCP to achieve multi-UAV formation control and trajectory tracking with no-fly zone constraint.Further,an event-triggered strategy is proposed to reduce the computational burden for the distributed MPC approach,which considers the predicted state errors and the convergence of cost function.Simulation results show that the CGWO-based distributed MPC approach is more computationally efficient to achieve multi-UAV coordination control than traditional method.
基金by a project under the scheme entitled“Developing Policies&Adaptation Strategies to Climate Change in the Baltic Sea Region”(ASTRA),Project No.ASTRA6-4(2014-2020.4.01.16-0032).
文摘Decreasing costs and favorable policies have resulted in increased penetration of solar photovoltaic(PV)power generation in distribution networks.As the PV systems penetration is likely to increase in the future,utilizing the reactive power capability of PV inverters to mitigate voltage deviations is being promoted.In recent years,droop control of inverter-based distributed energy resources has emerged as an essential tool for use in this study.The participation of PV systems in voltage regulation and its coordination with existing controllers,such as on-load tap changers,is paramount for controlling the voltage within specified limits.In this work,control strategies are presented that can be coordinated with the existing controls in a distributed manner.The effectiveness of the proposed method was demonstrated through simulation results on a distribution system.
文摘With the rapid development of network technology and control technology,a networked multi-agent control system is a key direction of modern industrial control systems,such as industrial Internet systems.This paper studies the tracking control problem of networked multi-agent systems with communication constraints,where each agent has no information on the dynamics of other agents except their outputs.A networked predictive proportional integral derivative(PPID)tracking scheme is proposed to achieve the desired tracking performance,compensate actively for communication delays,and simplify implementation in a distributed manner.This scheme combines the past,present and predictive information of neighbour agents to form a tracking error signal for each agent,and applies the proportional,integral,and derivative of the agent tracking error signal to control each individual agent.The criteria of the stability and output tracking consensus of multi-agent systems with the networked PPID tracking scheme are derived through detailed analysis on the closed-loop systems.The effectiveness of the networked PPID tracking scheme is illustrated via an example.
基金supported by the National Natural Science Foundation of China(61174037)the National High Technology Research and Development Program of China(863 Program)(2012AA120602CAST20120602)
文摘This paper investigates a distributed coordination control scheme using an adaptive terminal sliding mode for formation flying spacecraft with coupled attitude and translational dynamics. In order to overcome the singularity of the traditional fast terminal sliding manifold, a novel fast terminal sliding manifold is given. And then, based on the adaptive control method, a continuous robust coordinated controller is designed to compensate external disturbances and to alleviate the chattering phenomenon. The theoretical analysis shows that the coordinated controller can guarantee the finite-time stability of the overall closed-loop system through local information exchange, and numerical simulations also demonstrate its effectiveness.
基金supported by National Natural Science Foundationof China(No.60775014)
文摘Optimal control of greenhouse climate is one of the key techniques in digital agriculture.Greenhouse climate,a nonlinear and uncertain system,consists of several major environmental factors such as temperature,humidity,light intensity,and CO 2 concentration.Due to the complex coupled correlations,it is a challenge to achieve coordination control of greenhouse environmental factors.This paper proposes a model-free coordination control approach for greenhouse environmental factors based on Q-learning.Coordination control policy is found through systematic interaction with the dynamic environment to achieve optimal control for greenhouse climate with the control cost constraints.In order to decrease systematic trial-and-error risk and reduce the computational complexity in Q-learning algorithm,case-based reasoning (CBR) is seamlessly incorporated into the Q-learning process.The experimental results demonstrate that this approach is practical,highly effective and efficient.
基金supported by the National Natural Science Foundation of China(No.52077100)the Aviation Science Foundation(No.201958052001)
文摘In order to improve the frequency response and anti-interference characteristics of the smart electromechanical actuator(EMA)system,and aiming at the force fighting problem when multiple actuators work synchronously,a multi input multi output(MIMO)position difference cross coupling control coordinated strategy based on double‑closed-loop load feedforward control is proposed and designed.In this strategy,the singular value method of return difference matrix is used to design the parameter range that meets the requirements of system stability margin,and the sensitivity function and the H_(∞)norm theory are used to design and determine the optimal solution in the obtained parameter stability region,so that the multi actuator system has excellent synchronization,stability and anti-interference.At the same time,the mathematical model of the integrated smart EMA system is established.According to the requirements of point-to-point control,the controller of double-loop control and load feedforward compensation is determined and designed to improve the frequency response and anti-interference ability of single actuator.Finally,the 270 V high-voltage smart EMA system experimental platform is built,and the frequency response,load feedforward compensation and coordinated control experiments are carried out to verify the correctness of the position difference cross coupling control strategy and the rationality of the parameter design,so that the system can reach the servo control indexes of bandwidth 6 Hz,the maximum output force 20000 N and the synchronization error≤0.1 mm,which effectively solves the problem of force fighting.
基金Supported by the National Science Foundation of China under Grant Nos.10702023,10832006,and 60704041the Research Fund for the Doctoral Program of Higher Education under Grant No.20070487090
文摘In this paper,we investigate a leader-following tracking problem for multi-agent systems with boundedinputs.We propose a distributed bounded protocol for each follower to track a leader whose states may not be completelymeasured.We theoretically prove that each agent can follow the leader with estimable track errors.Finally,somenumerical simulations are presented to illustrate our theoretical results.
基金supported by the National Natural Science Foundation of China(No.91844301)by the Beijing Municipal Natural Science Fund(No.JQ21030)。
文摘The coordinated control of PM_(2.5)and ozone has become the strategic goal of national air pollution control.Considering the gradual decline in PM_(2.5)concentration and the aggravation of ozone pollution,a better understanding of the coordinated control of PM_(2.5)and ozone is urgently needed.Here,we collected and sorted air pollutant data for 337 cities from 2015 to 2020 to explore the characteristics of PM_(2.5)and ozone pollution based on China’s five major air pollution regions.The results show that it is necessary to continue to strengthen the emission reduction in PM_(2.5)and ozone precursors,and control NO_(x) and VOCs while promoting a dramatic emission reduction in PM_(2.5).The primary method of curbing ozone pollution is to strengthen the emission control of VOCs,with a long-term strategy of achieving substantial emission reductions in NO_(x),because VOCs and NO_(x) are also precursors to PM_(2.5);hence,their reductions also contribute to the reduction in PM_(2.5).Therefore,the implementation of a multipollutant emission reduction control strategy aimed at the prevention and control of PM_(2.5)and ozone pollution is the only means to realize the coordinated control of PM_(2.5)and ozone.
基金Supported by Program for New Century Excellent Talents In University(NCET-12-0049)Beijing Natural Science Foundation(4132034)
文摘In order to compromise the conflicts between control accuracy and system efficiency of conventional electro-hydraulic servo systems,a novel pump-valve coordinated electro-hydraulic servo system was designed and a corresponding control strategy was proposed.The system was constituted of a pumpcontrolled part and a valve-controlled part,the pump controlled part is used to adjust the flow rate of oil source and the valve controlled part is used to complete the position tracking control of the hydraulic cylinder.Based on the system characteristics,a load flow grey prediction method was adopted in the pump controlled part to reduce the system overflow losses,and an adaptive robust control method was adopted in the valve controlled part to eliminate the effect of system nonlinearity and parametric uncertainties due to variable hydraulic parameters and system loads on the control precision.The experimental results validated that the adopted control strategy increased the system efficiency obviously with guaranteed high control accuracy.
文摘As an important branch in the field of servo control, multi-motor coordination motion control applications are increasingly widespread.For open CNC system requirement, taking DSP as master core, combing with specific integrated stepper motor driver chip LMDI8201T, this designed a serial communication-based new collaborative multi-motor control system, which has characters of highly integrated, good stability, real-time, convenient man-machine interface.The test results show that the system fully meet performance requirements and achieved the motion control functions.
基金This work was supported by Chinese National Natural Science Foundation(No.50377018)Chinese National Key Basic Research Fund(No.G1998020309)by New Energy and Industrial Technology Development Organization of Japan.
文摘An advanced nonlinear robust control scheme is proposed for multi-machine power systems equipped with thyristor-controlled series compensation (TCSC). First, a decentralized nonlinear robust control approach based on the feedback linearization and H∞ theory is introduced to eliminate the nonlinearities and interconnections of the studied system, and to attenuate the exogenous disturbances that enter die system. Then, a system model is built up, which has considered all the generators’ and TCSC’s dynamics, and the effects of uncertainties such as disturbances. Next, a decentralized nonlinear robust coordinated control law is developed based on this model. Simulation results on a six-machine power system show that the transient stability of the power system is obviously improved and die power transfer capacity of long distance transmission lines is enhanced regardless of fault locations and system operation points. In addition, the control law has engineering practicality since all the variables in the expression of he control strategy can be measured locally.
基金Sponsored by the Program of Shanghai Academic/Technology Research Leader (Grant No. 21XD1431200)。
文摘Multi-point array flexible tooling based on multilateration is widely used in the processing and manufacturing of complex curved surface parts. However, during the positioning of workpieces, the force exerted on each flexible support point is not uniform, and there exists force coupling between the support units. In response to the force coupling problem in the multi-point array positioning support process, a coordinated control method for the support force of multi-point array positioning combining correlation coefficient and regression analysis was proposed in this paper. The Spearman correlation coefficient was adopted in this method to study the force coupling correlation between positioning points, and a mathematical model of force coupling was established between positioning units through regression analysis, which can quickly and accurately perform coordinated control of the multilateration support system, and effectively improve the force interference of the multi-point array positioning support scene.