The initial stresses widely exist in elastic materials.While achieving a continuum stress-free configuration through compatible unloading is desirable,mechanical unloading alone frequently proves insufficient,posing c...The initial stresses widely exist in elastic materials.While achieving a continuum stress-free configuration through compatible unloading is desirable,mechanical unloading alone frequently proves insufficient,posing challenges in avoiding virtual stress-free configurations.In this paper,we introduce a novel concept of equivalent temperature variation to counteract the incompatible initial strain.Our focus is on initially stressed cylindrical and spherical elastomers,where we first derive the Saint-Venant,Beltrami-Michell,and Volterra integral conditions in orthogonal curvilinear coordinates using the exterior differential form theory.It is shown that for any given axially or spherically distributed initial stress,an equivalent temperature variation always exists.Furthermore,we propose two innovative initial stress forms based on the steady-state heat conduction.By introducing an equivalent temperature variation,the initial stress can be released through a compatible thermo-mechanical unloading process,offering valuable insights into the constitutive theory of initially stressed elastic materials.展开更多
Aim To study the Lie symmetries and the consered quantities of the holonomic systems with remainder coordinates. Methods Using the invariance of the ordinary differential equations under the infinitesimal transformati...Aim To study the Lie symmetries and the consered quantities of the holonomic systems with remainder coordinates. Methods Using the invariance of the ordinary differential equations under the infinitesimal transformations to establish the determining equations and the restriction equations of the Lie symmetries of the systems. Results and Conclusion the structure equation and the form of conserved quantities were obtained. An example was given to illustrate the application of the result.展开更多
The concise and informative representation of hyperspectral imagery is achieved via the introduced diffusion geometric coordinates derived from nonlinear dimension reduction maps - diffusion maps. The huge-volume high...The concise and informative representation of hyperspectral imagery is achieved via the introduced diffusion geometric coordinates derived from nonlinear dimension reduction maps - diffusion maps. The huge-volume high- dimensional spectral measurements are organized by the affinity graph where each node in this graph only connects to its local neighbors and each edge in this graph represents local similarity information. By normalizing the affinity graph appropriately, the diffusion operator of the underlying hyperspectral imagery is well-defined, which means that the Markov random walk can be simulated on the hyperspectral imagery. Therefore, the diffusion geometric coordinates, derived from the eigenfunctions and the associated eigenvalues of the diffusion operator, can capture the intrinsic geometric information of the hyperspectral imagery well, which gives more enhanced representation results than traditional linear methods, such as principal component analysis based methods. For large-scale full scene hyperspectral imagery, by exploiting the backbone approach, the computation complexity and the memory requirements are acceptable. Experiments also show that selecting suitable symmetrization normalization techniques while forming the diffusion operator is important to hyperspectral imagery representation.展开更多
Single-atom catalysts(SACs)have garnered significant attention in lithium-sulfur(Li-S)batteries for their potential to mitigate the severe polysulfide shuttle effect and sluggish redox kinetics.However,the development...Single-atom catalysts(SACs)have garnered significant attention in lithium-sulfur(Li-S)batteries for their potential to mitigate the severe polysulfide shuttle effect and sluggish redox kinetics.However,the development of highly efficient SACs and a comprehensive understanding of their structure-activity relationships remain enormously challenging.Herein,a novel kind of Fe-based SAC featuring an asymmetric FeN_(5)-TeN_(4) coordination structure was precisely designed by introducing Te atom adjacent to the Fe active center to enhance the catalytic activity.Theoretical calculations reveal that the neighboring Te atom modulates the local coordination environment of the central Fe site,elevating the d-band center closer to the Fermi level and strengthening the d-p orbital hybridization between the catalyst and sulfur species,thereby immobilizing polysulfides and improving the bidirectional catalysis of Li-S redox.Consequently,the Fe-Te atom pair catalyst endows Li-S batteries with exceptional rate performance,achieving a high specific capacity of 735 mAh g^(−1) at 5 C,and remarkable cycling stability with a low decay rate of 0.038%per cycle over 1000 cycles at 1 C.This work provides fundamental insights into the electronic structure modulation of SACs and establishes a clear correlation between precisely engineered atomic configurations and their enhanced catalytic performance in Li-S electrochemistry.展开更多
The neuromuscular junction and its proregenerative niche:The mammalian peripheral nervous system,unlike the central nervous system,has preserved throughout evolution the ability to regenerate and fully restore functio...The neuromuscular junction and its proregenerative niche:The mammalian peripheral nervous system,unlike the central nervous system,has preserved throughout evolution the ability to regenerate and fully restore function.Key factors for effective nerve regeneration include a supportive neuronal environment and a coordinated tissue response(Brosius Lutz and Barres,2014).展开更多
This paper presents a mathematical algorithm that determines the fluid flow velocity vector (direction, intensity and orientation), based on measured voltages on multi-channel hot-wire anemometer. As the voltage on ...This paper presents a mathematical algorithm that determines the fluid flow velocity vector (direction, intensity and orientation), based on measured voltages on multi-channel hot-wire anemometer. As the voltage on Constant Temperature hot-wire Anemometer (CTA) is non-linear function of velocity and angle of the fluid, inverse function is also non-linear and has several mathematically correct solutions. In the Laboratory of Non-linear Mechanics at the Faculty of Mechanical Engineering in Ljubljana, the authors have decided to try developing multi-charmel hot-wire anemometer with constant temperature at which it is possible to select physically correct solutions from several mathematically correct solutions. The mathematical algorithm works correctly if the range of instrument operation is limited for the value of spherical angles |φ|≤ 60°and |ψ|'1 ≤ 58°.展开更多
基金Project supported by the National Natural Science Foundation of China(Nos.12241205 and 12032019)the National Key Research and Development Program of China(No.2022YFA1203200)the Strategic Priority Research Program of Chinese Academy of Sciences(Nos.XDB0620101 and XDB0620103)。
文摘The initial stresses widely exist in elastic materials.While achieving a continuum stress-free configuration through compatible unloading is desirable,mechanical unloading alone frequently proves insufficient,posing challenges in avoiding virtual stress-free configurations.In this paper,we introduce a novel concept of equivalent temperature variation to counteract the incompatible initial strain.Our focus is on initially stressed cylindrical and spherical elastomers,where we first derive the Saint-Venant,Beltrami-Michell,and Volterra integral conditions in orthogonal curvilinear coordinates using the exterior differential form theory.It is shown that for any given axially or spherically distributed initial stress,an equivalent temperature variation always exists.Furthermore,we propose two innovative initial stress forms based on the steady-state heat conduction.By introducing an equivalent temperature variation,the initial stress can be released through a compatible thermo-mechanical unloading process,offering valuable insights into the constitutive theory of initially stressed elastic materials.
文摘Aim To study the Lie symmetries and the consered quantities of the holonomic systems with remainder coordinates. Methods Using the invariance of the ordinary differential equations under the infinitesimal transformations to establish the determining equations and the restriction equations of the Lie symmetries of the systems. Results and Conclusion the structure equation and the form of conserved quantities were obtained. An example was given to illustrate the application of the result.
基金The National Key Technologies R & D Program during the 11th Five-Year Plan Period (No.2006BAB15B01)
文摘The concise and informative representation of hyperspectral imagery is achieved via the introduced diffusion geometric coordinates derived from nonlinear dimension reduction maps - diffusion maps. The huge-volume high- dimensional spectral measurements are organized by the affinity graph where each node in this graph only connects to its local neighbors and each edge in this graph represents local similarity information. By normalizing the affinity graph appropriately, the diffusion operator of the underlying hyperspectral imagery is well-defined, which means that the Markov random walk can be simulated on the hyperspectral imagery. Therefore, the diffusion geometric coordinates, derived from the eigenfunctions and the associated eigenvalues of the diffusion operator, can capture the intrinsic geometric information of the hyperspectral imagery well, which gives more enhanced representation results than traditional linear methods, such as principal component analysis based methods. For large-scale full scene hyperspectral imagery, by exploiting the backbone approach, the computation complexity and the memory requirements are acceptable. Experiments also show that selecting suitable symmetrization normalization techniques while forming the diffusion operator is important to hyperspectral imagery representation.
基金supported by the National Natural Science Foundation(52302284,22002086,22204096)Shanghai Sailing Program(23YF1412200)the Fundamental Research Funds for the Central Universities(22120240314).
文摘Single-atom catalysts(SACs)have garnered significant attention in lithium-sulfur(Li-S)batteries for their potential to mitigate the severe polysulfide shuttle effect and sluggish redox kinetics.However,the development of highly efficient SACs and a comprehensive understanding of their structure-activity relationships remain enormously challenging.Herein,a novel kind of Fe-based SAC featuring an asymmetric FeN_(5)-TeN_(4) coordination structure was precisely designed by introducing Te atom adjacent to the Fe active center to enhance the catalytic activity.Theoretical calculations reveal that the neighboring Te atom modulates the local coordination environment of the central Fe site,elevating the d-band center closer to the Fermi level and strengthening the d-p orbital hybridization between the catalyst and sulfur species,thereby immobilizing polysulfides and improving the bidirectional catalysis of Li-S redox.Consequently,the Fe-Te atom pair catalyst endows Li-S batteries with exceptional rate performance,achieving a high specific capacity of 735 mAh g^(−1) at 5 C,and remarkable cycling stability with a low decay rate of 0.038%per cycle over 1000 cycles at 1 C.This work provides fundamental insights into the electronic structure modulation of SACs and establishes a clear correlation between precisely engineered atomic configurations and their enhanced catalytic performance in Li-S electrochemistry.
基金supported by the University of Padua(to MR)by the project“RIPANE”of the Italian Ministry of Defense(to CM)by Cariparo Foundation(to CM)。
文摘The neuromuscular junction and its proregenerative niche:The mammalian peripheral nervous system,unlike the central nervous system,has preserved throughout evolution the ability to regenerate and fully restore function.Key factors for effective nerve regeneration include a supportive neuronal environment and a coordinated tissue response(Brosius Lutz and Barres,2014).
文摘This paper presents a mathematical algorithm that determines the fluid flow velocity vector (direction, intensity and orientation), based on measured voltages on multi-channel hot-wire anemometer. As the voltage on Constant Temperature hot-wire Anemometer (CTA) is non-linear function of velocity and angle of the fluid, inverse function is also non-linear and has several mathematically correct solutions. In the Laboratory of Non-linear Mechanics at the Faculty of Mechanical Engineering in Ljubljana, the authors have decided to try developing multi-charmel hot-wire anemometer with constant temperature at which it is possible to select physically correct solutions from several mathematically correct solutions. The mathematical algorithm works correctly if the range of instrument operation is limited for the value of spherical angles |φ|≤ 60°and |ψ|'1 ≤ 58°.