Oxygen reduction reaction(ORR)in neutral electrolyte is urgently needed in various areas,such as metalair batteries.However,the N-coordinated transition-metal single-atom electrocatalysts confront sluggish catalytic k...Oxygen reduction reaction(ORR)in neutral electrolyte is urgently needed in various areas,such as metalair batteries.However,the N-coordinated transition-metal single-atom electrocatalysts confront sluggish catalytic kinetics due to the inappropriate electronic structure and the as-resulted unreasonable adsorption strength towards oxygen-containing intermediates.In this work,we develop a strategy to tune the Fe d-orbital spin state by introducing inert Si atom into the first coordination sphere of Fe-N_(4)moieties.The experimental and theoretical results suggest that Si atom generates the coordination field distortion of Fe and induces the Fe d-orbital spin state transforming from low to medium spin state.The optimized spin-electron filled state(t2g^(4)eg^(1))of Fe sites weakens the adsorption strength to intermediates and reduces the energy barrier of^(∗)OH desorption.Consequently,Fe-Si/NC catalyst exhibits superior ORR performance compared with that of Fe-NC and commercial Pt/C,showing a more positive half-wave potential of 0.753 V(vs.RHE)in 0.1 mol/L phosphate buffered saline.In addition,Fe-Si/NC-based neutral zinc-air batteries show a maximum power density of 108.9 mW cm^(−2)and long-term stability for 200 h.This work represents the possibility of constructing distorted coordination configurations of single-atom catalysts to modulate electronic structure and enhance ORR activity in neutral electrolyte.展开更多
In order to overcome the drawbacks of conventional artificial potential fields (APF) based methods for the motion planning problems of mobile robots in dynamic uncertain environments, an artificial coordinating fields...In order to overcome the drawbacks of conventional artificial potential fields (APF) based methods for the motion planning problems of mobile robots in dynamic uncertain environments, an artificial coordinating fields (ACF) based method has been proposed recently. This paper deals with the reachability problem of the ACF, that is, how to design and choose the parameters of the ACF and how the environment should be such that the robot can reach its goal without being trapped in local minima. Some sufficient conditions for these purposes are developed theoretically. Theoretical analyses show that, the ACF can effectively remove local minima in dynamic uncertain environments with V-shape or U-shape obstacles, and guide the mobile robot to reach its goal with some necessary environment constraints and based on the methods provided in this paper to properly choose the parameters of the ACF. Comparisons between the ACF and APF, and simulations are provided to illustrate the advantages of the ACF.展开更多
Dirac's method which itself is for constrained Boson fields and particle systems is followed and developed to treat Dirac fields in light-front coordinates.
This paper presents numerical simulations of viscous flow past a submarine model in steady turn by solving the Reynolds-Averaged Navier-Stokes Equations(RANSE) for incompressible, steady flows. The rotating coordina...This paper presents numerical simulations of viscous flow past a submarine model in steady turn by solving the Reynolds-Averaged Navier-Stokes Equations(RANSE) for incompressible, steady flows. The rotating coordinate system was adopted to deal with the rotation problem. The Coriolis force and centrifugal force due to the computation in a bodyfixed rotating frame of reference were treated explicitly and added to momentum equations as source terms. Furthermore, velocities of entrances were coded to give the correct magnitude and direction needed. Two turbulence closure models(TCMs), the RNG k-ε model with wall functions and curvature correction and the Shear Stress Transport(SST) k-ω model without the use of wall functions, but with curvature correction and low-Re correction were introduced, respectively. Take DARPA SUBOFF model as the test case, a series of drift angle varying between 0° and 16° at a Reynolds number of 6.53×10^6 undergoing rotating arm test simulations were conducted. The computed forces and moment as a function of drift angle during the steady turn are mostly in close agreement with available experimental data. Though the difference between the pressure coefficients around the hull form was observed, they always show the same trend. It was demonstrated that using sufficiently fine grids and advanced turbulence models will lead to accurate prediction of the flow field as well as the forces and moments on the hull.展开更多
The upconversion luminescence in Er 3+ doped tellurite glasses (MKT: TeO_2-MgO-K_2O) were performed. Two green emission bands at 521 and 550 nm, corresponding to the 2H_ 11/2→4I_ 15/2 and 4S_ 3/2→4I_ 15/2 transition...The upconversion luminescence in Er 3+ doped tellurite glasses (MKT: TeO_2-MgO-K_2O) were performed. Two green emission bands at 521 and 550 nm, corresponding to the 2H_ 11/2→4I_ 15/2 and 4S_ 3/2→4I_ 15/2 transitions, respectively, were observed. Coordinate field index, which was proposed by deducing from Pauling′s rules on the basis of Zachariasen′s random network theory, can be used to rationalize the remarkable variation in the intensity of upconversion luminescence.展开更多
The laminar heat transfer in the thermal entrance region in round tubes, which has a variable surface heat flux boundary condition, is analytically studied. The results show that the heat transfer coefficient is close...The laminar heat transfer in the thermal entrance region in round tubes, which has a variable surface heat flux boundary condition, is analytically studied. The results show that the heat transfer coefficient is closely related to the wall temperature gradient along the tube axis. The greater the gradient, the higher the heat transfer rate. Furthermore, the coordination of the velocity and the temperature gradient fields is also analysed under different surface heat fluxes. The validity of the field coordination principle is verified by checking the correlation of heat transfer coefficient and the coordination degree. The results also demonstrate that optimizing the thermal boundary condition is a way to enhance heat transfer.展开更多
In this paper, the equilibrium geometries of two isomers of the newly found compound ——nitrosomethanol——have been optimized by ab initio SCF MO method with 3-21G basic set by gradient technique. And the second der...In this paper, the equilibrium geometries of two isomers of the newly found compound ——nitrosomethanol——have been optimized by ab initio SCF MO method with 3-21G basic set by gradient technique. And the second derivatives of potential energy (i. e. the force constant matrix elements) have been calculated analytically. Hence the entire force fields of the two isomers of nitro- somethanol have been obtained theoretically. The theoretical vibrational frequencies and the corres- ponding normal modes were obtained and compared with the experimental values. and the structures of two isomeric forms of nitrosomethanol are established.展开更多
基金financially supported by the National Natural Science Foundation of China(Nos.52422314,U23A20687,and 52231008)the International Science&Technology Cooperation Program of Hainan Province(No.GHYF2023007).
文摘Oxygen reduction reaction(ORR)in neutral electrolyte is urgently needed in various areas,such as metalair batteries.However,the N-coordinated transition-metal single-atom electrocatalysts confront sluggish catalytic kinetics due to the inappropriate electronic structure and the as-resulted unreasonable adsorption strength towards oxygen-containing intermediates.In this work,we develop a strategy to tune the Fe d-orbital spin state by introducing inert Si atom into the first coordination sphere of Fe-N_(4)moieties.The experimental and theoretical results suggest that Si atom generates the coordination field distortion of Fe and induces the Fe d-orbital spin state transforming from low to medium spin state.The optimized spin-electron filled state(t2g^(4)eg^(1))of Fe sites weakens the adsorption strength to intermediates and reduces the energy barrier of^(∗)OH desorption.Consequently,Fe-Si/NC catalyst exhibits superior ORR performance compared with that of Fe-NC and commercial Pt/C,showing a more positive half-wave potential of 0.753 V(vs.RHE)in 0.1 mol/L phosphate buffered saline.In addition,Fe-Si/NC-based neutral zinc-air batteries show a maximum power density of 108.9 mW cm^(−2)and long-term stability for 200 h.This work represents the possibility of constructing distorted coordination configurations of single-atom catalysts to modulate electronic structure and enhance ORR activity in neutral electrolyte.
基金This paper was partly supported by the National Natural Science Foundation (No.60131160741,60334010) of China.
文摘In order to overcome the drawbacks of conventional artificial potential fields (APF) based methods for the motion planning problems of mobile robots in dynamic uncertain environments, an artificial coordinating fields (ACF) based method has been proposed recently. This paper deals with the reachability problem of the ACF, that is, how to design and choose the parameters of the ACF and how the environment should be such that the robot can reach its goal without being trapped in local minima. Some sufficient conditions for these purposes are developed theoretically. Theoretical analyses show that, the ACF can effectively remove local minima in dynamic uncertain environments with V-shape or U-shape obstacles, and guide the mobile robot to reach its goal with some necessary environment constraints and based on the methods provided in this paper to properly choose the parameters of the ACF. Comparisons between the ACF and APF, and simulations are provided to illustrate the advantages of the ACF.
文摘Dirac's method which itself is for constrained Boson fields and particle systems is followed and developed to treat Dirac fields in light-front coordinates.
基金financially supported by the National Natural Science Foundation of China(Grant No.51179199)
文摘This paper presents numerical simulations of viscous flow past a submarine model in steady turn by solving the Reynolds-Averaged Navier-Stokes Equations(RANSE) for incompressible, steady flows. The rotating coordinate system was adopted to deal with the rotation problem. The Coriolis force and centrifugal force due to the computation in a bodyfixed rotating frame of reference were treated explicitly and added to momentum equations as source terms. Furthermore, velocities of entrances were coded to give the correct magnitude and direction needed. Two turbulence closure models(TCMs), the RNG k-ε model with wall functions and curvature correction and the Shear Stress Transport(SST) k-ω model without the use of wall functions, but with curvature correction and low-Re correction were introduced, respectively. Take DARPA SUBOFF model as the test case, a series of drift angle varying between 0° and 16° at a Reynolds number of 6.53×10^6 undergoing rotating arm test simulations were conducted. The computed forces and moment as a function of drift angle during the steady turn are mostly in close agreement with available experimental data. Though the difference between the pressure coefficients around the hull form was observed, they always show the same trend. It was demonstrated that using sufficiently fine grids and advanced turbulence models will lead to accurate prediction of the flow field as well as the forces and moments on the hull.
文摘The upconversion luminescence in Er 3+ doped tellurite glasses (MKT: TeO_2-MgO-K_2O) were performed. Two green emission bands at 521 and 550 nm, corresponding to the 2H_ 11/2→4I_ 15/2 and 4S_ 3/2→4I_ 15/2 transitions, respectively, were observed. Coordinate field index, which was proposed by deducing from Pauling′s rules on the basis of Zachariasen′s random network theory, can be used to rationalize the remarkable variation in the intensity of upconversion luminescence.
文摘The laminar heat transfer in the thermal entrance region in round tubes, which has a variable surface heat flux boundary condition, is analytically studied. The results show that the heat transfer coefficient is closely related to the wall temperature gradient along the tube axis. The greater the gradient, the higher the heat transfer rate. Furthermore, the coordination of the velocity and the temperature gradient fields is also analysed under different surface heat fluxes. The validity of the field coordination principle is verified by checking the correlation of heat transfer coefficient and the coordination degree. The results also demonstrate that optimizing the thermal boundary condition is a way to enhance heat transfer.
文摘In this paper, the equilibrium geometries of two isomers of the newly found compound ——nitrosomethanol——have been optimized by ab initio SCF MO method with 3-21G basic set by gradient technique. And the second derivatives of potential energy (i. e. the force constant matrix elements) have been calculated analytically. Hence the entire force fields of the two isomers of nitro- somethanol have been obtained theoretically. The theoretical vibrational frequencies and the corres- ponding normal modes were obtained and compared with the experimental values. and the structures of two isomeric forms of nitrosomethanol are established.