As the development of new power systems accelerates and the impacts of high renewable energy integration and extreme weather intensify,grid-alternative energy storage is garnering increasing attention for its grid-int...As the development of new power systems accelerates and the impacts of high renewable energy integration and extreme weather intensify,grid-alternative energy storage is garnering increasing attention for its grid-interaction benefits and clear business models.Consequently,assessing the value of grid-alternative energy storage in the systemtransition has become critically important.Considering the performance characteristics of storage,we propose a value assessment frame-work for grid-alternative energy storage,quantifying its non-wires-alternative effects from both cost and benefit perspectives.Building on this,we developed a collaborative planning model for energy storage and transmission grids,aimed at maximizing the economic benefits of storage systems while balancing investment and operational costs.The model considers regional grid interconnections and their interactions with system operation.By participating in system operations,grid-alternative energy storage not only maximizes its own economic benefits but also generates social welfare transfer effects.Furthermore,based on multi-regional interconnected planning,grid-alternative energy storage can reduce system costs by approximately 35%,with the most significant changes observed in generation costs.Multi-regional coordinated planning significantly enhances the sys-tem’s flexibility in regulation.However,when the load factor of interconnection lines between regions remains constant,system operational flexibility tends to decrease,leading to a roughly 28.9%increase in storage investment.Additionally,under regional coordinated planning,the greater the disparity in wind power integration across interconnected regions,the more noticeable the reduction in system costs.展开更多
This paper presents an investigation on the target-guided coordinated control(TACC)of unmanned surface vehicles(USVs).In the scenario of tracking non-cooperative targets,the status information of the target can only b...This paper presents an investigation on the target-guided coordinated control(TACC)of unmanned surface vehicles(USVs).In the scenario of tracking non-cooperative targets,the status information of the target can only be obtained by some USVs.In order to achieve semi-encirclement tracking of noncooperative targets under maritime security conditions,a fixed-time tracking control method based on dynamic surface control(DSC)is proposed in this paper.Firstly,a novel TACC architecture with decoupled kinematic control law and decoupled kinetic control law was designed to reduce the complexity of control system design.Secondly,the proposed DSC-based target-guided kinematic control law including tracking points pre-allocation strategy and sigmoid artificial potential functions(SigAPFs)can avoid collisions during tracking process and optimize kinematic control output.Finally,a fixed-time TACC system was proposed to achieve fast convergence of kinematic and kinetics errors.The effectiveness of the proposed TACC approach in improving target tracking safety and reducing control output chattering was verified by simulation comparison results.展开更多
Redox-active organic compounds have received much attention as high-capacity electrodes for rechargeable batteries.However,the high solubility in organic electrolytes during charge and discharge processes hinders the ...Redox-active organic compounds have received much attention as high-capacity electrodes for rechargeable batteries.However,the high solubility in organic electrolytes during charge and discharge processes hinders the practical exploitation of organic compounds.This study presents a cobalt-based metal–organic coordination compound with bifunctional coordinated water(Co-MOC-H_(2)O)for sodium-ion storage.The coordinated water enhances interactions between sodium ions and nitrogen atoms in organic ligands through chelation,activating the inert sodium-ion storage sites(C=N).Moreover,the stable hydrogen bonded framework formed by the coordinated water molecules prevents the active organic compounds from dissolving into the electrolyte,thereby enhancing cycling stability.With the bifunctional coordinated water molecules,the Co-MOC-H_(2)O electrode delivers a high capacity of 403 mAh g^(-1)at 0.2 A g^(-1)over 600 cycles and exhibits a capacity retention of 77.9%at 2 A g^(-1)after 1100 cycles.This work highlights the crucial role of the coordinated water molecules in constructing high capacity and long-life sodium-ion storage materials.展开更多
The coordinated regional development strategy,recognized as one of China’s seven development strategies,plays a crucial role in reducing regional development disparities,optimizing resource allocation,and facilitatin...The coordinated regional development strategy,recognized as one of China’s seven development strategies,plays a crucial role in reducing regional development disparities,optimizing resource allocation,and facilitating high-quality development.This study analyzes a total of 418 relevant publications from China spanning the years 1998 to 2022.Utilizing CiteSpace software,a visualization analysis of keyword cooccurrence,mutation,and other bibliometric characteristics was conducted.The findings indicate that the number of publications during the specified period exhibited a fluctuating upward trend,with a notable increase observed after 2018.Furthermore,the research demonstrated a weak interdisciplinary crossover and a low intensity of collaboration among authors.The primary thematic areas of focus were identified as follows:connotation,mechanisms,countermeasure and suggestion,and evaluation.展开更多
In oil and gas exploration,small-scale karst cavities and faults are important targets.The former often serve as reservoir space for carbonate reservoirs,while the latter often provide migration pathways for oil and g...In oil and gas exploration,small-scale karst cavities and faults are important targets.The former often serve as reservoir space for carbonate reservoirs,while the latter often provide migration pathways for oil and gas.Due to these differences,the classification and identification of karst cavities and faults are of great significance for reservoir development.Traditional seismic attributes and diffraction imaging techniques can effectively identify discontinuities in seismic images,but these techniques do not distinguish whether these discontinuities are karst cavities,faults,or other structures.It poses a challenge for seismic interpretation to accurately locate and classify karst cavities or faults within the seismic attribute maps and diffraction imaging profiles.In seismic data,the scattering waves are associated with small-scale scatters like karst cavities,while diffracted waves are seismic responses from discontinuous structures such as faults,reflector edges and fractures.In order to achieve classification and identification of small-scale karst cavities and faults in seismic images,we propose a diffraction classification imaging method which classifies diffracted and scattered waves in the azimuth-dip angle image matrix using a modified DenseNet.We introduce a coordinate attention module into DenseNet,enabling more precise extraction of dynamic and azimuthal features of diffracted and scattered waves in the azimuth-dip angle image matrix.Leveraging these extracted features,the modified DenseNet can produce reliable probabilities for diffracted/scattered waves,achieving high-accuracy automatic classification of cavities and faults based on diffraction imaging.The proposed method achieves 96%classification accuracy on the synthetic dataset.The field data experiment demonstrates that the proposed method can accurately classify small-scale faults and scatterers,further enhancing the resolution of diffraction imaging in complex geologic structures,and contributing to the localization of karstic fracture-cavern reservoirs.展开更多
The initial stresses widely exist in elastic materials.While achieving a continuum stress-free configuration through compatible unloading is desirable,mechanical unloading alone frequently proves insufficient,posing c...The initial stresses widely exist in elastic materials.While achieving a continuum stress-free configuration through compatible unloading is desirable,mechanical unloading alone frequently proves insufficient,posing challenges in avoiding virtual stress-free configurations.In this paper,we introduce a novel concept of equivalent temperature variation to counteract the incompatible initial strain.Our focus is on initially stressed cylindrical and spherical elastomers,where we first derive the Saint-Venant,Beltrami-Michell,and Volterra integral conditions in orthogonal curvilinear coordinates using the exterior differential form theory.It is shown that for any given axially or spherically distributed initial stress,an equivalent temperature variation always exists.Furthermore,we propose two innovative initial stress forms based on the steady-state heat conduction.By introducing an equivalent temperature variation,the initial stress can be released through a compatible thermo-mechanical unloading process,offering valuable insights into the constitutive theory of initially stressed elastic materials.展开更多
The disorganized lithium dendrites and unstable solid electrolyte interphase(SEI)severely impede the practical application of lithium metal batteries(LMBs).Herein,the N-Zn-F coordinated triazine-based covalent organic...The disorganized lithium dendrites and unstable solid electrolyte interphase(SEI)severely impede the practical application of lithium metal batteries(LMBs).Herein,the N-Zn-F coordinated triazine-based covalent organic framework(TTA-COF-ZnF_(2))is fabricated for the first time as an artificial SEI layer on the surface of lithium metal anodes(LMAs)to handle these issues.Zn-N coordination in onedimensional(1D)ordered COF can increase lithiophilic sites,reduce the Li-nucleation barrier,and regulate the Li+local coordination environment by optimizing surface charge density around the Zn metal.The electron-rich state induced by strong electron-withdrawing F-groups constructs electronegative nanochannels,which trigger efficient Li+desolvation.These beneficial attributes boost Li^(+)transfer,and homogenize Li^(+)flux,leading to uniform Li deposition.Besides,the lithiophilic triazine ring polar groups in TTA-COF-ZnF_(2)further facilitate the Li^(+)migration.The latent working mechanism of adjusting Li deposition behaviors and stabilizing LMAs for TTA-COF-ZnF_(2)is illustrated by detailed in-situ/ex-situ characterizations and density functional theory(DFT)calculations.As expected,TTA-COF-ZnF_(2)-modified Li|Cu half cells deliver a higher Coulombic efficiency(CE)of 98.4% over 250 cycles and lower nucleation overpotential(11 mV)at 1 mA cm^(-2),while TTA-COF-ZnF_(2)@Li symmetric cells display a long lifespan over3785 h at 2 mA cm^(-2).The TTA-COF-ZnF_(2)@Li|S full cells exert ultra high capacity retention of 81%(837 mA h g^(-1))after 600 cycles at 1C.Besides,the TTA-COF-ZnF_(2)@Li|LFP full cells with a high loading of 7.1 mg cm^(-2)exert ultrahigh capacity retention of 89%(108 mAh g^(-1))after 700 cycles at 5C.This synergistic strategy in N-Zn-F coordinated triazine-based COF provides a new insight to regulate the uniform platins/stripping behaviors for developing ultra-stable and dendrite-free LMBs.展开更多
Agricultural insurance plays a key role in promoting the coordinated development of green agriculture and farmers’income growth,which is crucial for China’s high-quality agricultural development.Using the coupling c...Agricultural insurance plays a key role in promoting the coordinated development of green agriculture and farmers’income growth,which is crucial for China’s high-quality agricultural development.Using the coupling coordination degree model,this study empirically demonstrates that the development of agricultural insurance significantly promotes the coordinated development of green agriculture and farmers’income growth once a certain threshold is exceeded.This effect is more pronounced in the major grain-producing regions and the central provinces.Expanding the scale of agricultural production and increasing investment in agricultural technology are the key mechanisms through which agricultural insurance supports the dual goals of green agriculture and income growth in China.In conclusion,this study proposes several policy recommendations,which include increasing investment in agricultural insurance infrastructure,strengthening the policy guidance for agricultural insurance,and designing differentiated agricultural insurance policies.展开更多
This paper concerns the exponential attitude-orbit coordinated control problems for gravitational-wave detection formation spacecraft systems.Notably,the large-scale communication delays resulting from oversized inter...This paper concerns the exponential attitude-orbit coordinated control problems for gravitational-wave detection formation spacecraft systems.Notably,the large-scale communication delays resulting from oversized inter-satellite distance of space-based laser interferometers are first modeled.Subject to the delayed communication behaviors,a new delay-dependent attitude-orbit coordinated controller is designed.Moreover,by reconstructing the less conservative Lyapunov-Krasovskii functional and free-weight matrices,sufficient criteria are derived to ensure the exponential stability of the closed-loop relative translation and attitude error system.Finally,a simulation example is employed to illustrate the numerical validity of the proposed controller for in-orbit detection missions.展开更多
The exploration of the coupling and coordination between urban innovation capability(IC)and industrial transformation(IF)serves as a novel perspective for interpreting the increasingly severe phenomenon of population ...The exploration of the coupling and coordination between urban innovation capability(IC)and industrial transformation(IF)serves as a novel perspective for interpreting the increasingly severe phenomenon of population shrinkage during the industrialization process.This study investigated the evolutionary characteristics of IC and IF in shrinking and growing cities in Northeast China from 2010 to 2020.It uses entropy weighted model,coupling coordination degree,the Dagum Gini coefficient,and geographic detectors to analyze the coordinated development of IC and IF in the context of population shrinkage.The study analyzed the spatiotemporal patterns and driving mechanisms for their coordinated development.The results show that:1)both urban IC and IF exhibited an overall positive trend during the study period.Shrinking cities depend more on IF to address the challenges of population shrinkage,while growing cities mainly rely on innovation-driven development.2)The coupling gap between IC and IF in shrinking and growing cities has widened over time,with the coordination level of shrinking cities steadily decreasing.Cities with serious disorder are concentrated in northern Heilongjiang Province,while most cities in Jilin Province experience moderate disorder.Liaoning Province,however,shows generally good coupling coordination.3)Human capital is the key factor driving coupling coordination in both types of cities.Shrinking cities rely on economic and financial development,with the‘repair-type’logic that emphasizes short-term economic growth and resource compensation.In contrast,the coupling of growing cities relies on basic support capabilities,with the‘optimization-type’logic focused on enhancing endogenous resilience and systemic coordination.Exploring the coordination between urban innovation capabilities and industrial transformation can provide a new perspective for research on population shrinkage,which holds certain theoretical and practical significance for implementing the new round of revitalization strategy in Northeast China.展开更多
We employed random distributions and gradient descent methods for the Generator Coordinate Method(GCM)to identify effective basis wave functions,taking halo nuclei ^(6)He and ^(6)Li as examples.By comparing the ground...We employed random distributions and gradient descent methods for the Generator Coordinate Method(GCM)to identify effective basis wave functions,taking halo nuclei ^(6)He and ^(6)Li as examples.By comparing the ground state(0^(+))energy of ^(6)He and the excited state(0^(+))energy of 6 Li calculated with various random distributions and manually selected generation coordinates,we found that the heavy tail characteristic of the logistic distribution better describes the features of the halo nuclei.Subsequently,the Adam algorithm from machine learning was applied to optimize the basis wave functions,indicating that a limited number of basis wave functions can approximate the converged values.These results offer some empirical insights for selecting basis wave functions and contribute to the broader application of machine learning methods in predicting effective basis wave functions.展开更多
Designing highly active electrocatalysts for the hydrogen evolution reaction(HER)and oxygen evolution and reduction reactions(OER and ORR)is pivotal to renewable energy technology.Herein,based on density functional th...Designing highly active electrocatalysts for the hydrogen evolution reaction(HER)and oxygen evolution and reduction reactions(OER and ORR)is pivotal to renewable energy technology.Herein,based on density functional theory(DFT)calculations,we systematically investigate the catalytic activity of iron-nitrogen-carbon based covalent organic frameworks(COF)monolayers with axially coordinated ligands(denotes as Fe N_(4)-X@COF,X refers to axial ligand,X=-SCN,-I,-H,-SH,-NO_(2),-Br,-ClO,-Cl,-HCO_(3),-NO,-ClO_(2),-OH,-CN and-F).The calculated results demonstrate that all the catalysts possess good thermodynamic and electrochemical stabilities.The different ligands axially ligated to the Fe active center could induce changes in the charge of the Fe center,which further regulates the interaction strength between intermediates and catalysts that governs the catalytic activity.Importantly,FeN_(4)-SH@COF and Fe N_(4)-OH@COF are efficient bifunctional catalysts for HER and OER,FeN_(4)-OH@COF and FeN_(4)-I@COF are promising bifunctional catalysts for OER and ORR.These findings not only reveal promising bifunctional HER/OER and OER/ORR catalysts but also provide theoretical guidance for designing optimum ironnitrogen-carbon based catalysts.展开更多
A group optimal penetration strategy in complex attack and defense confrontation situation is proposed in this paper to solve the coordinated penetration decision-making problem of endo-atmospheric gliding simultaneou...A group optimal penetration strategy in complex attack and defense confrontation situation is proposed in this paper to solve the coordinated penetration decision-making problem of endo-atmospheric gliding simultaneous multi-missile penetration of interceptors.First,the problem of large search space of multi-missile coordinated penetration maneuvers is fully considered,and the flight corridor of multi-missile coordinated penetration is designed to constrain search space of multi-agent coordinated strategy,comprehensively considering path constraints and anticollision constraints of gliding multi-missile flight.Then,a multi-missile hierarchical coordinated decision-making mechanism based on confrontation situation is proposed,and the swarm penetration strategy is optimized with the goal of maximizing swarm penetration effectiveness.The upper layer plans the swarm penetration formation according to confrontation situation,and generates the swarm coordinated penetration trajectory based on Multi-Agent Deep Deterministic Policy Gradient(MADDPG)method.The lower layer interpolates and smooths penetration trajectory,and generates the penetration guidance command based on Soft Actor-Critic and Extended Proportional Guidance(SAC-EPG)method.Simulation results verify that the proposed multi-missile cooperative penetration method based on hierarchical reinforcement learning converges faster than the penetration method based on MADDPG,and can quickly learn multi-missile cooperative penetration skills.In addition,multi-missile coordination can give full play to the group's detection and maneuverability,and occupy favorable penetration time and space through coordinated ballistic maneuvers.Thus the success rate of group penetration can be improved.展开更多
Four-electron oxygen evolving reaction is limited by proton adsorption and desorption,making its reaction kinetics sluggish,which poses a major challenge for catalyst design.Here,we present an unsaturated coordination...Four-electron oxygen evolving reaction is limited by proton adsorption and desorption,making its reaction kinetics sluggish,which poses a major challenge for catalyst design.Here,we present an unsaturated coordination interface by constructing a fast electron transfer channel between Cu_(2)V_(2)O_(7)(CVO)and BiVO4(BVO).X-ray absorption spectroscopy(XAS)and theoretical calculations results confirm that CVO and BVO between interfaces are bonded by the way of unsaturated coordination oxygen(Ouc).The Ouc optimizes the O-O coupled energy barrier at the V active site and promotes the disconnection of O-H bond,which increases the photocurrent intensity of CVO by 6 times.In addition,due to the high electronegativity of the Ouc,the bonding energies of Bi-O and Cu-O at the interface are enhanced,resulting in the long-term stability of the photoanode during the water splitting.Finally,by integrating the working electrode with a polysilicon solar cell,we assembled a device that demonstrated exceptional catalytic performance,achieving a hydrogen production rate of 100.6μmol·cm^(-2),and maintaining a hydrogen-to-oxygen volume ratio of 2:1 after continuous operation for 4 h.This discovery aids in a deeper understanding of photoanode design and offers further insights for industrial applications.展开更多
In this paper,a distributed Event-Triggered(ET)collision avoidance coordinated control for Quadrotor Unmanned Aerial Vehicles(QUAVs)is proposed based on Virtual Tubes(VTs)with flexible boundaries in the presence of un...In this paper,a distributed Event-Triggered(ET)collision avoidance coordinated control for Quadrotor Unmanned Aerial Vehicles(QUAVs)is proposed based on Virtual Tubes(VTs)with flexible boundaries in the presence of unknown external disturbances.Firstly,VTs are constructed for each QUAV,and the QUAV is restricted into the corresponding VT by the artificial potential field,which is distributed around the boundary of the VT.Thus,the collisions between QUAVs are avoided.Besides,the boundaries of the VTs are flexible by the modification signals,which are generated by the self-regulating auxiliary systems,to make the repulsive force smaller and give more buffer space for QUAVs without collision.Then,a novel ET mechanism is designed by introducing the concept of prediction to the traditional fixed threshold ET mechanism.Furthermore,a disturbance observer is proposed to deal with the adverse effects of the unknown external disturbance.On this basis,a distributed ET collision avoidance coordinated controller is proposed.Then,the proposed controller is quantized by the hysteresis uniform quantizer and then sent to the actuator only at the ET instants.The boundedness of the closed-loop signals is verified by the Lyapunov method.Finally,simulation and experimental results are performed to demonstrate the superiority of the proposed control method.展开更多
Ports,the core hub of global supply chains,serve as vital links in the economic and trade exchanges among countries.Efficient,safe,green and smart ports are essential for the smooth operation of global trade.Recently,...Ports,the core hub of global supply chains,serve as vital links in the economic and trade exchanges among countries.Efficient,safe,green and smart ports are essential for the smooth operation of global trade.Recently,ISO established ISO/TC 8/SC 27,Ports and terminals,the secretariat of which is held by China.This is a big breakthrough of China’s participation in the international standardization activities in the area of transportation.展开更多
The coordinated control of PM_(2.5)and ozone has become the strategic goal of national air pollution control.Considering the gradual decline in PM_(2.5)concentration and the aggravation of ozone pollution,a better und...The coordinated control of PM_(2.5)and ozone has become the strategic goal of national air pollution control.Considering the gradual decline in PM_(2.5)concentration and the aggravation of ozone pollution,a better understanding of the coordinated control of PM_(2.5)and ozone is urgently needed.Here,we collected and sorted air pollutant data for 337 cities from 2015 to 2020 to explore the characteristics of PM_(2.5)and ozone pollution based on China’s five major air pollution regions.The results show that it is necessary to continue to strengthen the emission reduction in PM_(2.5)and ozone precursors,and control NO_(x) and VOCs while promoting a dramatic emission reduction in PM_(2.5).The primary method of curbing ozone pollution is to strengthen the emission control of VOCs,with a long-term strategy of achieving substantial emission reductions in NO_(x),because VOCs and NO_(x) are also precursors to PM_(2.5);hence,their reductions also contribute to the reduction in PM_(2.5).Therefore,the implementation of a multipollutant emission reduction control strategy aimed at the prevention and control of PM_(2.5)and ozone pollution is the only means to realize the coordinated control of PM_(2.5)and ozone.展开更多
Comprehensive analysis of the Economy-Energy-Carbon Emission(EECE)system is beneficial for promoting sustainable social development.This study analyzes the system development of major watersheds in China from 2010 to ...Comprehensive analysis of the Economy-Energy-Carbon Emission(EECE)system is beneficial for promoting sustainable social development.This study analyzes the system development of major watersheds in China from 2010 to 2019.The research fully considers the system’s internal and external inputs and outputs and proposes an evaluation index system for regional EECE coupling and coordinated development.Then,using the difference in system weight allocation to improve the coupling and coordination model,the study explores the dynamic system’s coupling and coordination.The results show that(1)The development of the system structure is relatively stable,but the overall development status is not ideal;(2)The downstream of China’s main river basins has obvious economic advantages,while the energy system fluctuates greatly.The efficiency of the carbon emission system will decrease in areas with rapid economic development.The coupling and coordination level of the EECE system is better in the Yangtze River Basin than in the Yellow River Basin;(3)From the perspective of dynamic coordinated development,the main river basins have been divided into two states since 2012,but it is relatively stable overall.Regional dynamic coordination is often at a disadvantage in regions with rapid economic and energy development;(4)The coupling coordination degree of the two river basins has significant positive spatial autocorrelation.Most provinces’significant spatial clustering characteristics of the coupling coordination degree are High-High type.Low-Low type provinces are mainly concentrated downstream.The research process has certain reference significance for the collaborative governance of complex regional systems.展开更多
Flowering time is a vital aspect of the plant life cycle which signifies the transition from the growth stage to the reproductive stage.To ensure the reproductive success and survival of a species,this narrow window m...Flowering time is a vital aspect of the plant life cycle which signifies the transition from the growth stage to the reproductive stage.To ensure the reproductive success and survival of a species,this narrow window must coincide with various environmental factors including pollinator presence,adequate temperature,and availability of nutrients and water.展开更多
基金funded by the Technology Project of State Grid Jibei Electric Power Supply Co.,Ltd.(Grant Number:52018F240001).
文摘As the development of new power systems accelerates and the impacts of high renewable energy integration and extreme weather intensify,grid-alternative energy storage is garnering increasing attention for its grid-interaction benefits and clear business models.Consequently,assessing the value of grid-alternative energy storage in the systemtransition has become critically important.Considering the performance characteristics of storage,we propose a value assessment frame-work for grid-alternative energy storage,quantifying its non-wires-alternative effects from both cost and benefit perspectives.Building on this,we developed a collaborative planning model for energy storage and transmission grids,aimed at maximizing the economic benefits of storage systems while balancing investment and operational costs.The model considers regional grid interconnections and their interactions with system operation.By participating in system operations,grid-alternative energy storage not only maximizes its own economic benefits but also generates social welfare transfer effects.Furthermore,based on multi-regional interconnected planning,grid-alternative energy storage can reduce system costs by approximately 35%,with the most significant changes observed in generation costs.Multi-regional coordinated planning significantly enhances the sys-tem’s flexibility in regulation.However,when the load factor of interconnection lines between regions remains constant,system operational flexibility tends to decrease,leading to a roughly 28.9%increase in storage investment.Additionally,under regional coordinated planning,the greater the disparity in wind power integration across interconnected regions,the more noticeable the reduction in system costs.
文摘This paper presents an investigation on the target-guided coordinated control(TACC)of unmanned surface vehicles(USVs).In the scenario of tracking non-cooperative targets,the status information of the target can only be obtained by some USVs.In order to achieve semi-encirclement tracking of noncooperative targets under maritime security conditions,a fixed-time tracking control method based on dynamic surface control(DSC)is proposed in this paper.Firstly,a novel TACC architecture with decoupled kinematic control law and decoupled kinetic control law was designed to reduce the complexity of control system design.Secondly,the proposed DSC-based target-guided kinematic control law including tracking points pre-allocation strategy and sigmoid artificial potential functions(SigAPFs)can avoid collisions during tracking process and optimize kinematic control output.Finally,a fixed-time TACC system was proposed to achieve fast convergence of kinematic and kinetics errors.The effectiveness of the proposed TACC approach in improving target tracking safety and reducing control output chattering was verified by simulation comparison results.
基金supported by the National Natural Science Foundation of China(22121005,92372203,92372001,52072186,and 52301278)the National Key Research and Development Program of China(2022YFB2402200)+3 种基金the Science and Technology Plans of Tianjin(23JCYBJC00170)the Fundamental Research Funds for the Central Universities,Nankai University(63241206 and 9242000710)Shanghai Jiao Tong University Shaoxing Research Institute of Renewable Energy and Molecular Engineering(JDSX2023003)the Natural Science Foundation of Jiangsu Province(BK20230937).
文摘Redox-active organic compounds have received much attention as high-capacity electrodes for rechargeable batteries.However,the high solubility in organic electrolytes during charge and discharge processes hinders the practical exploitation of organic compounds.This study presents a cobalt-based metal–organic coordination compound with bifunctional coordinated water(Co-MOC-H_(2)O)for sodium-ion storage.The coordinated water enhances interactions between sodium ions and nitrogen atoms in organic ligands through chelation,activating the inert sodium-ion storage sites(C=N).Moreover,the stable hydrogen bonded framework formed by the coordinated water molecules prevents the active organic compounds from dissolving into the electrolyte,thereby enhancing cycling stability.With the bifunctional coordinated water molecules,the Co-MOC-H_(2)O electrode delivers a high capacity of 403 mAh g^(-1)at 0.2 A g^(-1)over 600 cycles and exhibits a capacity retention of 77.9%at 2 A g^(-1)after 1100 cycles.This work highlights the crucial role of the coordinated water molecules in constructing high capacity and long-life sodium-ion storage materials.
文摘The coordinated regional development strategy,recognized as one of China’s seven development strategies,plays a crucial role in reducing regional development disparities,optimizing resource allocation,and facilitating high-quality development.This study analyzes a total of 418 relevant publications from China spanning the years 1998 to 2022.Utilizing CiteSpace software,a visualization analysis of keyword cooccurrence,mutation,and other bibliometric characteristics was conducted.The findings indicate that the number of publications during the specified period exhibited a fluctuating upward trend,with a notable increase observed after 2018.Furthermore,the research demonstrated a weak interdisciplinary crossover and a low intensity of collaboration among authors.The primary thematic areas of focus were identified as follows:connotation,mechanisms,countermeasure and suggestion,and evaluation.
基金supported by Science Fund for Creative Research Groups of the National Natural Science Foundation of China,No.42321002。
文摘In oil and gas exploration,small-scale karst cavities and faults are important targets.The former often serve as reservoir space for carbonate reservoirs,while the latter often provide migration pathways for oil and gas.Due to these differences,the classification and identification of karst cavities and faults are of great significance for reservoir development.Traditional seismic attributes and diffraction imaging techniques can effectively identify discontinuities in seismic images,but these techniques do not distinguish whether these discontinuities are karst cavities,faults,or other structures.It poses a challenge for seismic interpretation to accurately locate and classify karst cavities or faults within the seismic attribute maps and diffraction imaging profiles.In seismic data,the scattering waves are associated with small-scale scatters like karst cavities,while diffracted waves are seismic responses from discontinuous structures such as faults,reflector edges and fractures.In order to achieve classification and identification of small-scale karst cavities and faults in seismic images,we propose a diffraction classification imaging method which classifies diffracted and scattered waves in the azimuth-dip angle image matrix using a modified DenseNet.We introduce a coordinate attention module into DenseNet,enabling more precise extraction of dynamic and azimuthal features of diffracted and scattered waves in the azimuth-dip angle image matrix.Leveraging these extracted features,the modified DenseNet can produce reliable probabilities for diffracted/scattered waves,achieving high-accuracy automatic classification of cavities and faults based on diffraction imaging.The proposed method achieves 96%classification accuracy on the synthetic dataset.The field data experiment demonstrates that the proposed method can accurately classify small-scale faults and scatterers,further enhancing the resolution of diffraction imaging in complex geologic structures,and contributing to the localization of karstic fracture-cavern reservoirs.
基金Project supported by the National Natural Science Foundation of China(Nos.12241205 and 12032019)the National Key Research and Development Program of China(No.2022YFA1203200)the Strategic Priority Research Program of Chinese Academy of Sciences(Nos.XDB0620101 and XDB0620103)。
文摘The initial stresses widely exist in elastic materials.While achieving a continuum stress-free configuration through compatible unloading is desirable,mechanical unloading alone frequently proves insufficient,posing challenges in avoiding virtual stress-free configurations.In this paper,we introduce a novel concept of equivalent temperature variation to counteract the incompatible initial strain.Our focus is on initially stressed cylindrical and spherical elastomers,where we first derive the Saint-Venant,Beltrami-Michell,and Volterra integral conditions in orthogonal curvilinear coordinates using the exterior differential form theory.It is shown that for any given axially or spherically distributed initial stress,an equivalent temperature variation always exists.Furthermore,we propose two innovative initial stress forms based on the steady-state heat conduction.By introducing an equivalent temperature variation,the initial stress can be released through a compatible thermo-mechanical unloading process,offering valuable insights into the constitutive theory of initially stressed elastic materials.
基金financially supported by the National Natural Science Foundation of China(52472093,52176185)the Department of Science and Technology of Hubei Province of China(2022CFA069,2022BAA086)。
文摘The disorganized lithium dendrites and unstable solid electrolyte interphase(SEI)severely impede the practical application of lithium metal batteries(LMBs).Herein,the N-Zn-F coordinated triazine-based covalent organic framework(TTA-COF-ZnF_(2))is fabricated for the first time as an artificial SEI layer on the surface of lithium metal anodes(LMAs)to handle these issues.Zn-N coordination in onedimensional(1D)ordered COF can increase lithiophilic sites,reduce the Li-nucleation barrier,and regulate the Li+local coordination environment by optimizing surface charge density around the Zn metal.The electron-rich state induced by strong electron-withdrawing F-groups constructs electronegative nanochannels,which trigger efficient Li+desolvation.These beneficial attributes boost Li^(+)transfer,and homogenize Li^(+)flux,leading to uniform Li deposition.Besides,the lithiophilic triazine ring polar groups in TTA-COF-ZnF_(2)further facilitate the Li^(+)migration.The latent working mechanism of adjusting Li deposition behaviors and stabilizing LMAs for TTA-COF-ZnF_(2)is illustrated by detailed in-situ/ex-situ characterizations and density functional theory(DFT)calculations.As expected,TTA-COF-ZnF_(2)-modified Li|Cu half cells deliver a higher Coulombic efficiency(CE)of 98.4% over 250 cycles and lower nucleation overpotential(11 mV)at 1 mA cm^(-2),while TTA-COF-ZnF_(2)@Li symmetric cells display a long lifespan over3785 h at 2 mA cm^(-2).The TTA-COF-ZnF_(2)@Li|S full cells exert ultra high capacity retention of 81%(837 mA h g^(-1))after 600 cycles at 1C.Besides,the TTA-COF-ZnF_(2)@Li|LFP full cells with a high loading of 7.1 mg cm^(-2)exert ultrahigh capacity retention of 89%(108 mAh g^(-1))after 700 cycles at 5C.This synergistic strategy in N-Zn-F coordinated triazine-based COF provides a new insight to regulate the uniform platins/stripping behaviors for developing ultra-stable and dendrite-free LMBs.
基金This paper presents preliminary research findings from two projects:a major project funded by the National Social Science Fund of China,titled“Changes in the Nature of Rural Poverty in China in the New Era and Research on Post-2020 Anti-Poverty Policies”(Project No:19ZDA116)Doctoral Research Project under the Special Program for Talents in Shortage Areas Serving National Needs,Nanjing University of Finance and Economics,titled“The Impact of Policy-Based Agricultural Insurance on Farmers’Income and Welfare Levels”(Project No:BSZX2021-12).
文摘Agricultural insurance plays a key role in promoting the coordinated development of green agriculture and farmers’income growth,which is crucial for China’s high-quality agricultural development.Using the coupling coordination degree model,this study empirically demonstrates that the development of agricultural insurance significantly promotes the coordinated development of green agriculture and farmers’income growth once a certain threshold is exceeded.This effect is more pronounced in the major grain-producing regions and the central provinces.Expanding the scale of agricultural production and increasing investment in agricultural technology are the key mechanisms through which agricultural insurance supports the dual goals of green agriculture and income growth in China.In conclusion,this study proposes several policy recommendations,which include increasing investment in agricultural insurance infrastructure,strengthening the policy guidance for agricultural insurance,and designing differentiated agricultural insurance policies.
基金supported by the Na⁃tional Key R&D Program of China(No.2022YFC2204800)the Graduate Student Independent Exploration and Innovation Program of Central South University(No.2024ZZTS 0767).
文摘This paper concerns the exponential attitude-orbit coordinated control problems for gravitational-wave detection formation spacecraft systems.Notably,the large-scale communication delays resulting from oversized inter-satellite distance of space-based laser interferometers are first modeled.Subject to the delayed communication behaviors,a new delay-dependent attitude-orbit coordinated controller is designed.Moreover,by reconstructing the less conservative Lyapunov-Krasovskii functional and free-weight matrices,sufficient criteria are derived to ensure the exponential stability of the closed-loop relative translation and attitude error system.Finally,a simulation example is employed to illustrate the numerical validity of the proposed controller for in-orbit detection missions.
基金Under the auspices of National Natural Science Foundation of China(No.42471227,42171198)。
文摘The exploration of the coupling and coordination between urban innovation capability(IC)and industrial transformation(IF)serves as a novel perspective for interpreting the increasingly severe phenomenon of population shrinkage during the industrialization process.This study investigated the evolutionary characteristics of IC and IF in shrinking and growing cities in Northeast China from 2010 to 2020.It uses entropy weighted model,coupling coordination degree,the Dagum Gini coefficient,and geographic detectors to analyze the coordinated development of IC and IF in the context of population shrinkage.The study analyzed the spatiotemporal patterns and driving mechanisms for their coordinated development.The results show that:1)both urban IC and IF exhibited an overall positive trend during the study period.Shrinking cities depend more on IF to address the challenges of population shrinkage,while growing cities mainly rely on innovation-driven development.2)The coupling gap between IC and IF in shrinking and growing cities has widened over time,with the coordination level of shrinking cities steadily decreasing.Cities with serious disorder are concentrated in northern Heilongjiang Province,while most cities in Jilin Province experience moderate disorder.Liaoning Province,however,shows generally good coupling coordination.3)Human capital is the key factor driving coupling coordination in both types of cities.Shrinking cities rely on economic and financial development,with the‘repair-type’logic that emphasizes short-term economic growth and resource compensation.In contrast,the coupling of growing cities relies on basic support capabilities,with the‘optimization-type’logic focused on enhancing endogenous resilience and systemic coordination.Exploring the coordination between urban innovation capabilities and industrial transformation can provide a new perspective for research on population shrinkage,which holds certain theoretical and practical significance for implementing the new round of revitalization strategy in Northeast China.
基金supported by the National Key R&D Program of China(No.2023YFA1606701)the National Natural Science Foundation of China(Nos.12175042,11890710,11890714,12047514,12147101,and 12347106)+1 种基金Guangdong Major Project of Basic and Applied Basic Research(No.2020B0301030008)China National Key R&D Program(No.2022YFA1602402).
文摘We employed random distributions and gradient descent methods for the Generator Coordinate Method(GCM)to identify effective basis wave functions,taking halo nuclei ^(6)He and ^(6)Li as examples.By comparing the ground state(0^(+))energy of ^(6)He and the excited state(0^(+))energy of 6 Li calculated with various random distributions and manually selected generation coordinates,we found that the heavy tail characteristic of the logistic distribution better describes the features of the halo nuclei.Subsequently,the Adam algorithm from machine learning was applied to optimize the basis wave functions,indicating that a limited number of basis wave functions can approximate the converged values.These results offer some empirical insights for selecting basis wave functions and contribute to the broader application of machine learning methods in predicting effective basis wave functions.
基金supported by the National Natural Science Foundation of China(Nos.22102167 and U21A20317)。
文摘Designing highly active electrocatalysts for the hydrogen evolution reaction(HER)and oxygen evolution and reduction reactions(OER and ORR)is pivotal to renewable energy technology.Herein,based on density functional theory(DFT)calculations,we systematically investigate the catalytic activity of iron-nitrogen-carbon based covalent organic frameworks(COF)monolayers with axially coordinated ligands(denotes as Fe N_(4)-X@COF,X refers to axial ligand,X=-SCN,-I,-H,-SH,-NO_(2),-Br,-ClO,-Cl,-HCO_(3),-NO,-ClO_(2),-OH,-CN and-F).The calculated results demonstrate that all the catalysts possess good thermodynamic and electrochemical stabilities.The different ligands axially ligated to the Fe active center could induce changes in the charge of the Fe center,which further regulates the interaction strength between intermediates and catalysts that governs the catalytic activity.Importantly,FeN_(4)-SH@COF and Fe N_(4)-OH@COF are efficient bifunctional catalysts for HER and OER,FeN_(4)-OH@COF and FeN_(4)-I@COF are promising bifunctional catalysts for OER and ORR.These findings not only reveal promising bifunctional HER/OER and OER/ORR catalysts but also provide theoretical guidance for designing optimum ironnitrogen-carbon based catalysts.
文摘A group optimal penetration strategy in complex attack and defense confrontation situation is proposed in this paper to solve the coordinated penetration decision-making problem of endo-atmospheric gliding simultaneous multi-missile penetration of interceptors.First,the problem of large search space of multi-missile coordinated penetration maneuvers is fully considered,and the flight corridor of multi-missile coordinated penetration is designed to constrain search space of multi-agent coordinated strategy,comprehensively considering path constraints and anticollision constraints of gliding multi-missile flight.Then,a multi-missile hierarchical coordinated decision-making mechanism based on confrontation situation is proposed,and the swarm penetration strategy is optimized with the goal of maximizing swarm penetration effectiveness.The upper layer plans the swarm penetration formation according to confrontation situation,and generates the swarm coordinated penetration trajectory based on Multi-Agent Deep Deterministic Policy Gradient(MADDPG)method.The lower layer interpolates and smooths penetration trajectory,and generates the penetration guidance command based on Soft Actor-Critic and Extended Proportional Guidance(SAC-EPG)method.Simulation results verify that the proposed multi-missile cooperative penetration method based on hierarchical reinforcement learning converges faster than the penetration method based on MADDPG,and can quickly learn multi-missile cooperative penetration skills.In addition,multi-missile coordination can give full play to the group's detection and maneuverability,and occupy favorable penetration time and space through coordinated ballistic maneuvers.Thus the success rate of group penetration can be improved.
基金supported by the Natural Science Foundation of China(Nos.22278094 and 22379033)Guangdong Graduate Education Innovation Program(No.2023JGXM_102)+2 种基金the Basic and Applied Basic Research Program of Guangzhou(No.SL2024A03J00499)the University Innovation Team Scientific Research Project of Guangzhou(No.202235246)Hainan Province Graduate Innovation Research Project(No.Qhyb2023-143).
文摘Four-electron oxygen evolving reaction is limited by proton adsorption and desorption,making its reaction kinetics sluggish,which poses a major challenge for catalyst design.Here,we present an unsaturated coordination interface by constructing a fast electron transfer channel between Cu_(2)V_(2)O_(7)(CVO)and BiVO4(BVO).X-ray absorption spectroscopy(XAS)and theoretical calculations results confirm that CVO and BVO between interfaces are bonded by the way of unsaturated coordination oxygen(Ouc).The Ouc optimizes the O-O coupled energy barrier at the V active site and promotes the disconnection of O-H bond,which increases the photocurrent intensity of CVO by 6 times.In addition,due to the high electronegativity of the Ouc,the bonding energies of Bi-O and Cu-O at the interface are enhanced,resulting in the long-term stability of the photoanode during the water splitting.Finally,by integrating the working electrode with a polysilicon solar cell,we assembled a device that demonstrated exceptional catalytic performance,achieving a hydrogen production rate of 100.6μmol·cm^(-2),and maintaining a hydrogen-to-oxygen volume ratio of 2:1 after continuous operation for 4 h.This discovery aids in a deeper understanding of photoanode design and offers further insights for industrial applications.
基金supported in part by the National Key R&D Program of China(No.2023YFB4704400)in part by the National Natural Science Foundation of China(Nos.U23B2036,U2013201).
文摘In this paper,a distributed Event-Triggered(ET)collision avoidance coordinated control for Quadrotor Unmanned Aerial Vehicles(QUAVs)is proposed based on Virtual Tubes(VTs)with flexible boundaries in the presence of unknown external disturbances.Firstly,VTs are constructed for each QUAV,and the QUAV is restricted into the corresponding VT by the artificial potential field,which is distributed around the boundary of the VT.Thus,the collisions between QUAVs are avoided.Besides,the boundaries of the VTs are flexible by the modification signals,which are generated by the self-regulating auxiliary systems,to make the repulsive force smaller and give more buffer space for QUAVs without collision.Then,a novel ET mechanism is designed by introducing the concept of prediction to the traditional fixed threshold ET mechanism.Furthermore,a disturbance observer is proposed to deal with the adverse effects of the unknown external disturbance.On this basis,a distributed ET collision avoidance coordinated controller is proposed.Then,the proposed controller is quantized by the hysteresis uniform quantizer and then sent to the actuator only at the ET instants.The boundedness of the closed-loop signals is verified by the Lyapunov method.Finally,simulation and experimental results are performed to demonstrate the superiority of the proposed control method.
文摘Ports,the core hub of global supply chains,serve as vital links in the economic and trade exchanges among countries.Efficient,safe,green and smart ports are essential for the smooth operation of global trade.Recently,ISO established ISO/TC 8/SC 27,Ports and terminals,the secretariat of which is held by China.This is a big breakthrough of China’s participation in the international standardization activities in the area of transportation.
基金supported by the National Natural Science Foundation of China(No.91844301)by the Beijing Municipal Natural Science Fund(No.JQ21030)。
文摘The coordinated control of PM_(2.5)and ozone has become the strategic goal of national air pollution control.Considering the gradual decline in PM_(2.5)concentration and the aggravation of ozone pollution,a better understanding of the coordinated control of PM_(2.5)and ozone is urgently needed.Here,we collected and sorted air pollutant data for 337 cities from 2015 to 2020 to explore the characteristics of PM_(2.5)and ozone pollution based on China’s five major air pollution regions.The results show that it is necessary to continue to strengthen the emission reduction in PM_(2.5)and ozone precursors,and control NO_(x) and VOCs while promoting a dramatic emission reduction in PM_(2.5).The primary method of curbing ozone pollution is to strengthen the emission control of VOCs,with a long-term strategy of achieving substantial emission reductions in NO_(x),because VOCs and NO_(x) are also precursors to PM_(2.5);hence,their reductions also contribute to the reduction in PM_(2.5).Therefore,the implementation of a multipollutant emission reduction control strategy aimed at the prevention and control of PM_(2.5)and ozone pollution is the only means to realize the coordinated control of PM_(2.5)and ozone.
基金supported by the Chengdu University of Technology“Double First-Class”initiative Construction Philosophy and Social Sciences Key Construction Project(No.ZDJS202202)the Research on the realization path and strategy of strategic mineral resources supply security under the new road of Chinese modernization(No.SCKCZY2023-ZD002)The Second Tibetan Plateau Scientific Expedition and Research(No.2021QZKK0305)。
文摘Comprehensive analysis of the Economy-Energy-Carbon Emission(EECE)system is beneficial for promoting sustainable social development.This study analyzes the system development of major watersheds in China from 2010 to 2019.The research fully considers the system’s internal and external inputs and outputs and proposes an evaluation index system for regional EECE coupling and coordinated development.Then,using the difference in system weight allocation to improve the coupling and coordination model,the study explores the dynamic system’s coupling and coordination.The results show that(1)The development of the system structure is relatively stable,but the overall development status is not ideal;(2)The downstream of China’s main river basins has obvious economic advantages,while the energy system fluctuates greatly.The efficiency of the carbon emission system will decrease in areas with rapid economic development.The coupling and coordination level of the EECE system is better in the Yangtze River Basin than in the Yellow River Basin;(3)From the perspective of dynamic coordinated development,the main river basins have been divided into two states since 2012,but it is relatively stable overall.Regional dynamic coordination is often at a disadvantage in regions with rapid economic and energy development;(4)The coupling coordination degree of the two river basins has significant positive spatial autocorrelation.Most provinces’significant spatial clustering characteristics of the coupling coordination degree are High-High type.Low-Low type provinces are mainly concentrated downstream.The research process has certain reference significance for the collaborative governance of complex regional systems.
基金This work was supported by the National Natural Science Foundation of China(32000242 to Y.S.,32000241 to H.Z.,and 31871278 and U19A2021 to Y.D.)the Strategic Priority Research Program"Molecular Mechanisms of Plant Growth and Development"of CAS(XDB27030203).
文摘Flowering time is a vital aspect of the plant life cycle which signifies the transition from the growth stage to the reproductive stage.To ensure the reproductive success and survival of a species,this narrow window must coincide with various environmental factors including pollinator presence,adequate temperature,and availability of nutrients and water.