期刊文献+
共找到183篇文章
< 1 2 10 >
每页显示 20 50 100
Enhanced Coverage Path Planning Strategies for UAV Swarms Based on SADQN Algorithm
1
作者 Zhuoyan Xie Qi Wang +1 位作者 Bin Kong Shang Gao 《Computers, Materials & Continua》 2025年第8期3013-3027,共15页
In the current era of intelligent technologies,comprehensive and precise regional coverage path planning is critical for tasks such as environmental monitoring,emergency rescue,and agricultural plant protection.Owing ... In the current era of intelligent technologies,comprehensive and precise regional coverage path planning is critical for tasks such as environmental monitoring,emergency rescue,and agricultural plant protection.Owing to their exceptional flexibility and rapid deployment capabilities,unmanned aerial vehicles(UAVs)have emerged as the ideal platforms for accomplishing these tasks.This study proposes a swarm A^(*)-guided Deep Q-Network(SADQN)algorithm to address the coverage path planning(CPP)problem for UAV swarms in complex environments.Firstly,to overcome the dependency of traditional modeling methods on regular terrain environments,this study proposes an improved cellular decomposition method for map discretization.Simultaneously,a distributed UAV swarm system architecture is adopted,which,through the integration of multi-scale maps,addresses the issues of redundant operations and flight conflicts inmulti-UAV cooperative coverage.Secondly,the heuristic mechanism of the A^(*)algorithmis combinedwith full-coverage path planning,and this approach is incorporated at the initial stage ofDeep Q-Network(DQN)algorithm training to provide effective guidance in action selection,thereby accelerating convergence.Additionally,a prioritized experience replay mechanism is introduced to further enhance the coverage performance of the algorithm.To evaluate the efficacy of the proposed algorithm,simulation experiments were conducted in several irregular environments and compared with several popular algorithms.Simulation results show that the SADQNalgorithmoutperforms othermethods,achieving performance comparable to that of the baseline prior algorithm,with an average coverage efficiency exceeding 2.6 and fewer turning maneuvers.In addition,the algorithm demonstrates excellent generalization ability,enabling it to adapt to different environments. 展开更多
关键词 coverage path planning unmanned aerial vehicles swarmintelligence DeepQ-Network A^(*)algorithm prioritized experience replay
暂未订购
Multiple fixed-wing UAVs collaborative coverage 3D path planning method for complex areas
2
作者 Mengyang Wang Dong Zhang +1 位作者 Chaoyue Li Zhaohua Zhang 《Defence Technology(防务技术)》 2025年第5期197-215,共19页
Complex multi-area collaborative coverage path planning in dynamic environments poses a significant challenge for multi-fixed-wing UAVs(multi-UAV).This study establishes a comprehensive framework that incorporates UAV... Complex multi-area collaborative coverage path planning in dynamic environments poses a significant challenge for multi-fixed-wing UAVs(multi-UAV).This study establishes a comprehensive framework that incorporates UAV capabilities,terrain,complex areas,and mission dynamics.A novel dynamic collaborative path planning algorithm is introduced,designed to ensure complete coverage of designated areas.This algorithm meticulously optimizes the operation,entry,and transition paths for each UAV,while also establishing evaluation metrics to refine coverage sequences for each area.Additionally,a three-dimensional path is computed utilizing an altitude descent method,effectively integrating twodimensional coverage paths with altitude constraints.The efficacy of the proposed approach is validated through digital simulations and mixed-reality semi-physical experiments across a variety of dynamic scenarios,including both single-area and multi-area coverage by multi-UAV.Results show that the coverage paths generated by this method significantly reduce both computation time and path length,providing a reliable solution for dynamic multi-UAV mission planning in semi-physical environments. 展开更多
关键词 Multi-fixed-wing UAVs(multi-UAV) Minimum time cooperative coverage Dynamic complete coverage path planning(DCCPP) Dubins curves Improved dynamic programming algorithm(IDP)
在线阅读 下载PDF
Distributed collaborative complete coverage path planning based on hybrid strategy 被引量:1
3
作者 ZHANG Jia DU Xin +1 位作者 DONG Qichen XIN Bin 《Journal of Systems Engineering and Electronics》 SCIE CSCD 2024年第2期463-472,共10页
Collaborative coverage path planning(CCPP) refers to obtaining the shortest paths passing over all places except obstacles in a certain area or space. A multi-unmanned aerial vehicle(UAV) collaborative CCPP algorithm ... Collaborative coverage path planning(CCPP) refers to obtaining the shortest paths passing over all places except obstacles in a certain area or space. A multi-unmanned aerial vehicle(UAV) collaborative CCPP algorithm is proposed for the urban rescue search or military search in outdoor environment.Due to flexible control of small UAVs, it can be considered that all UAVs fly at the same altitude, that is, they perform search tasks on a two-dimensional plane. Based on the agents’ motion characteristics and environmental information, a mathematical model of CCPP problem is established. The minimum time for UAVs to complete the CCPP is the objective function, and complete coverage constraint, no-fly constraint, collision avoidance constraint, and communication constraint are considered. Four motion strategies and two communication strategies are designed. Then a distributed CCPP algorithm is designed based on hybrid strategies. Simulation results compared with patternbased genetic algorithm(PBGA) and random search method show that the proposed method has stronger real-time performance and better scalability and can complete the complete CCPP task more efficiently and stably. 展开更多
关键词 multi-agent cooperation unmanned aerial vehicles(UAV) distributed algorithm complete coverage path planning(CCPP)
在线阅读 下载PDF
A path planning method for robot patrol inspection in chemical industrial parks
4
作者 王伟峰 YANG Ze +1 位作者 LI Zhao ZHAO Xuanchong 《High Technology Letters》 EI CAS 2024年第2期109-116,共8页
Safety patrol inspection in chemical industrial parks is a complex multi-objective task with multiple degrees of freedom.Traditional pointer instruments with advantages like high reliability and strong adaptability to... Safety patrol inspection in chemical industrial parks is a complex multi-objective task with multiple degrees of freedom.Traditional pointer instruments with advantages like high reliability and strong adaptability to harsh environment,are widely applied in such parks.However,they rely on manual readings which have problems like heavy patrol workload,high labor cost,high false positives/negatives and poor timeliness.To address the above problems,this study proposes a path planning method for robot patrol in chemical industrial parks,where a path optimization model based on improved iterated local search and random variable neighborhood descent(ILS-RVND)algorithm is established by integrating the actual requirements of patrol tasks in chemical industrial parks.Further,the effectiveness of the model and algorithm is verified by taking real park data as an example.The results show that compared with GA and ILS-RVND,the improved algorithm reduces quantification cost by about 24%and saves patrol time by about 36%.Apart from shortening the patrol time of robots,optimizing their patrol path and reducing their maintenance loss,the proposed algorithm also avoids the untimely patrol of robots and enhances the safety factor of equipment. 展开更多
关键词 path planning robot patrol inspection iterated local search and random variableneighborhood descent(ILS-RVND)algorithm
在线阅读 下载PDF
Elite Dung Beetle Optimization Algorithm for Multi-UAV Cooperative Search in Mountainous Environments 被引量:2
5
作者 Xiaoyong Zhang Wei Yue 《Journal of Bionic Engineering》 SCIE EI CSCD 2024年第4期1677-1694,共18页
This paper aims to address the problem of multi-UAV cooperative search for multiple targets in a mountainous environment,considering the constraints of UAV dynamics and prior environmental information.Firstly,using th... This paper aims to address the problem of multi-UAV cooperative search for multiple targets in a mountainous environment,considering the constraints of UAV dynamics and prior environmental information.Firstly,using the target probability distribution map,two strategies of information fusion and information diffusion are employed to solve the problem of environmental information inconsistency caused by different UAVs searching different areas,thereby improving the coordination of UAV groups.Secondly,the task region is decomposed into several high-value sub-regions by using data clustering method.Based on this,a hierarchical search strategy is proposed,which allows precise or rough search in different probability areas by adjusting the altitude of the aircraft,thereby improving the search efficiency.Third,the Elite Dung Beetle Optimization Algorithm(EDBOA)is proposed based on bionics by accurately simulating the social behavior of dung beetles to plan paths that satisfy the UAV dynamics constraints and adapt to the mountainous terrain,where the mountain is considered as an obstacle to be avoided.Finally,the objective function for path optimization is formulated by considering factors such as coverage within the task region,smoothness of the search path,and path length.The effectiveness and superiority of the proposed schemes are verified by the simulation. 展开更多
关键词 Mountainous environment Multi-UAV cooperative search Environment information consistency Elite dung beetle optimization algorithm(EDBOA) path planning
在线阅读 下载PDF
Complete Coverage Path Planning Based on Improved Area Division
6
作者 Lihuan Ma Zhuo Sun Yuan Gao 《World Journal of Engineering and Technology》 2023年第4期965-975,共11页
It is difficult to solve complete coverage path planning directly in the obstructed area. Therefore, in this paper, we propose a method of complete coverage path planning with improved area division. Firstly, the bous... It is difficult to solve complete coverage path planning directly in the obstructed area. Therefore, in this paper, we propose a method of complete coverage path planning with improved area division. Firstly, the boustrophedon cell decomposition method is used to partition the map into sub-regions. The complete coverage paths within each sub-region are obtained by the Boustrophedon back-and-forth motions, and the order of traversal of the sub-regions is then described as a generalised traveling salesman problem with pickup and delivery based on the relative positions of the vertices of each sub-region. An adaptive large neighbourhood algorithm is proposed to quickly obtain solution results in traversal order. The effectiveness of the improved algorithm on traversal cost reduction is verified in this paper through multiple sets of experiments. . 展开更多
关键词 Generalized Traveling Salesman Problem with Pickup and Delivery Com-plete coverage path planning Boustrophedon Cellular Decomposition Adaptive Large-Neighborhood Search algorithm Mobile Robot
在线阅读 下载PDF
Robot coverage algorithm under rectangular decomposition environment
7
作者 张赤斌 颜肖龙 《Journal of Southeast University(English Edition)》 EI CAS 2008年第2期188-191,共4页
The environment modeling algorithm named rectangular decomposition, which is composed of cellular nodes and interleaving networks, is proposed. The principle of environment modeling is to divide the environment into i... The environment modeling algorithm named rectangular decomposition, which is composed of cellular nodes and interleaving networks, is proposed. The principle of environment modeling is to divide the environment into individual square sub-areas. Each sub-area is orientated by the central point of the sub-areas called a node. The rectangular map based on the square map can enlarge the square area side size to increase the coverage efficiency in the case of there being an adjacent obstacle. Based on this algorithm, a new coverage algorithm, which includes global path planning and local path planning, is introduced. In the global path planning, uncovered subspaces are found by using a special rule. A one-dimensional array P, which is used to obtain the searching priority of node in every direction, is defined as the search rule. The array P includes the condition of coverage towards the adjacent cells, the condition of connectivity and the priorities defined by the user in all eight directions. In the local path planning, every sub-area is covered by using template models according to the shape of the environment. The simulation experiments show that the coverage algorithm is simple, efficient and adapted for complex two- dimensional environments. 展开更多
关键词 path planning complete coverage algorithm rectangular decomposition
在线阅读 下载PDF
Coordinated Path Planning for UAVs Based on Sheep Optimization 被引量:5
8
作者 YANG Liuqing WANG Pengfei ZHANG Yong 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2020年第5期816-830,共15页
Using the traditional swarm intelligence algorithm to solve the cooperative path planning problem for multi-UAVs is easy to incur the problems of local optimization and a slow convergence rate.A cooperative path plann... Using the traditional swarm intelligence algorithm to solve the cooperative path planning problem for multi-UAVs is easy to incur the problems of local optimization and a slow convergence rate.A cooperative path planning method for multi-UAVs based on the improved sheep optimization is proposed to tackle these.Firstly,based on the three-dimensional planning space,a multi-UAV cooperative cost function model is established according to the path planning requirements,and an initial track set is constructed by combining multiple-population ideas.Then an improved sheep optimization is proposed and used to solve the path planning problem and obtain multiple cooperative paths.The simulation results show that the sheep optimization can meet the requirements of path planning and realize the cooperative path planning of multi-UAVs.Compared with grey wolf optimizer(GWO),improved gray wolf optimizer(IGWO),chaotic gray wolf optimizer(CGWO),differential evolution(DE)algorithm,and particle swam optimization(PSO),the convergence speed and search accuracy of the improved sheep optimization are significantly improved. 展开更多
关键词 multi-UAV cooperation path planning swarm intelligence algorithm MULTI-POPULATION improved sheep optimization(ISO)
在线阅读 下载PDF
Research on a Task Planning Method for Multi-Ship Cooperative Driving 被引量:4
9
作者 CHEN Yaojie XIANG Shanshan CHEN Feixiang 《Journal of Shanghai Jiaotong university(Science)》 EI 2019年第2期233-242,共10页
A new method for a cooperative multi-task allocation problem(CMTAP) is proposed in this paper,taking into account the multi-ship, multi-target, multi-task and multi-constraint characteristics in a multi-ship cooperati... A new method for a cooperative multi-task allocation problem(CMTAP) is proposed in this paper,taking into account the multi-ship, multi-target, multi-task and multi-constraint characteristics in a multi-ship cooperative driving(MCD) system. On the basis of the general CMTAP model, an MCD task assignment model is established. Furthermore, a genetic ant colony hybrid algorithm(GACHA) is proposed for this model using constraints, including timing constraints, multi-ship collaboration constraints and ship capacity constraints. This algorithm uses a genetic algorithm(GA) based on a task sequence, while the crossover and mutation operators are based on similar tasks. In order to reduce the dependence of the GA on the initial population, an ant colony algorithm(ACA) is used to produce the initial population. In order to meet the environmental constraints of ship navigation, the results of the task allocation and path planning are combined to generate an MCD task planning scheme. The results of a simulated experiment using simulated data show that the proposed method can make the assignment more optimized on the basis of satisfying the task assignment constraints and the ship navigation environment constraints. Moreover, the experimental results using real data also indicate that the proposed method can find the optimal solution rapidly, and thus improve the task allocation efficiency. 展开更多
关键词 multi-ship cooperative task allocation path planning MULTI-TASK MULTI-OBJECTIVE genetic ant colony hybrid algorithm(GACHA)
原文传递
Multi-Robot Task Allocation Using Multimodal Multi-Objective Evolutionary Algorithm Based on Deep Reinforcement Learning 被引量:4
10
作者 苗镇华 黄文焘 +1 位作者 张依恋 范勤勤 《Journal of Shanghai Jiaotong university(Science)》 EI 2024年第3期377-387,共11页
The overall performance of multi-robot collaborative systems is significantly affected by the multi-robot task allocation.To improve the effectiveness,robustness,and safety of multi-robot collaborative systems,a multi... The overall performance of multi-robot collaborative systems is significantly affected by the multi-robot task allocation.To improve the effectiveness,robustness,and safety of multi-robot collaborative systems,a multimodal multi-objective evolutionary algorithm based on deep reinforcement learning is proposed in this paper.The improved multimodal multi-objective evolutionary algorithm is used to solve multi-robot task allo-cation problems.Moreover,a deep reinforcement learning strategy is used in the last generation to provide a high-quality path for each assigned robot via an end-to-end manner.Comparisons with three popular multimodal multi-objective evolutionary algorithms on three different scenarios of multi-robot task allocation problems are carried out to verify the performance of the proposed algorithm.The experimental test results show that the proposed algorithm can generate sufficient equivalent schemes to improve the availability and robustness of multi-robot collaborative systems in uncertain environments,and also produce the best scheme to improve the overall task execution efficiency of multi-robot collaborative systems. 展开更多
关键词 multi-robot task allocation multi-robot cooperation path planning multimodal multi-objective evo-lutionary algorithm deep reinforcement learning
原文传递
基于改进粒子群算法的高地隙无人喷雾机对不规则凸田块的全覆盖作业路径规划 被引量:5
11
作者 刘国海 万亚连 +3 位作者 沈跃 刘慧 何思伟 张亚飞 《华南农业大学学报》 北大核心 2025年第3期390-398,共9页
【目的】满足高地隙无人喷雾机自主导航全覆盖作业的应用需求并优化农机作业效率。【方法】提出了一种针对不规则凸田块的全覆盖遍历路径规划算法。首先,通过获取农田区域的边界数据,得到不规则凸田块的边界轮廓模型;其次,在传统U型转... 【目的】满足高地隙无人喷雾机自主导航全覆盖作业的应用需求并优化农机作业效率。【方法】提出了一种针对不规则凸田块的全覆盖遍历路径规划算法。首先,通过获取农田区域的边界数据,得到不规则凸田块的边界轮廓模型;其次,在传统U型转弯方式的基础上,引入作业行与田块边界的夹角,对作业行间的衔接路径原理进行详细阐述;由经过不规则凸区域中心点的直线进行平行线偏移,生成随机方向角的全覆盖作业行后,通过改进的粒子群优化(Particle swarm optimizer,PSO)算法对作业行方向角进行最优化,规划出遍历田块的全覆盖作业路径;最后,将算法在4块典型实际田块中进行仿真测试。【结果】与传统路径规划算法相比,改进PSO算法在1~4个田块的总遍历距离分别减少9.01、23.25、8.71和14.32 m,转弯次数减少率分别下降11.1%、61.5%、16.7%和5.3%,额外覆盖比分别减少0.20、0.96、0.45和1.96个百分点,有效减少了无人农机的能量消耗、提高了作业效率。【结论】在作业区域被完全覆盖的前提下,本算法能规划出无人农机行驶路程较短、覆盖率较高和转弯次数较少的作业路径,可为无人农机的路径规划技术的发展提供理论支撑。 展开更多
关键词 无人农机 全覆盖路径规划 路径规划 粒子群算法 不规则凸田块 高地隙无人喷雾机
在线阅读 下载PDF
基于车辆与无人机协同的巡检任务分配与路径规划算法
12
作者 李晓辉 刘小飞 +3 位作者 孙炜桐 赵毅 董媛 靳引利 《山东大学学报(工学版)》 北大核心 2025年第5期101-109,共9页
为了研究地面车辆与无人机在巡检过程中的最佳任务分配策略及路径规划问题,提出一种两阶段混合式启发算法——改进自适应大邻域搜索(improved adaptive large neighborhood search,IALNS)算法。第一阶段根据待巡检节点的不同需求等级及... 为了研究地面车辆与无人机在巡检过程中的最佳任务分配策略及路径规划问题,提出一种两阶段混合式启发算法——改进自适应大邻域搜索(improved adaptive large neighborhood search,IALNS)算法。第一阶段根据待巡检节点的不同需求等级及距离等因素,利用聚类算法对目标节点进行划分;第二阶段采用一种混合式启发算法解决路线调度问题,增加6种新的局部优化算子,引入节点重分配策略,经过迭代得到成本最小的车辆与无人机协同混合路线。对所提算法解和其他算法解进行测试和比较分析,试验数据表明,IALNS算法在解决车辆与无人机协同巡检问题时具有显著优势。 展开更多
关键词 路径规划 车辆与无人机协同模式 聚类算法 自适应大邻域搜索 局部优化
原文传递
无人机监控巡检路径规划及ACO-AVNS求解算法
13
作者 陈群 孙乐天 余帆 《控制与决策》 北大核心 2025年第11期3253-3262,共10页
无人机作为一种新兴的数据采集工具,正在治安巡逻、森林防火和设施检查等监控巡检领域迅速普及.针对此类问题,提出一个混合整数规划模型,通过将监控资源的分配类比为库存管理问题,量化因过度频繁地监控而产生的成本,以优化资源分配.所... 无人机作为一种新兴的数据采集工具,正在治安巡逻、森林防火和设施检查等监控巡检领域迅速普及.针对此类问题,提出一个混合整数规划模型,通过将监控资源的分配类比为库存管理问题,量化因过度频繁地监控而产生的成本,以优化资源分配.所提出模型考虑无人机的续航限制以及监控需求拆分机制,综合优化巡检点的分配、无人机的服务路径以及每条路径的巡检周期,以最小化系统的总运营成本.为求解该模型,提出一种基于蚁群优化算法(ACO)和自适应变邻域搜索(AVNS)的混合启发式算法.在算法的每次迭代中,首先由ACO构建初始解,然后基于AVNS的6种邻域结构持续优化解的质量.在23个小规模实例中,该算法均可获得与求解器质量相当的解.对于采集自长沙市的121节点大规模实例,求解器在10 h内无法找到任何可行解,而所提出算法在较短时间内可得出质量较高的解决方案,并通过消融实验验证了所提出算法的有效性和良好的求解稳定性. 展开更多
关键词 监控巡检 无人机 路径规划 需求拆分 蚁群优化算法 变邻域搜索
原文传递
基于改进QMIX算法的远洋捕捞多无人艇全覆盖路径规划策略研究
14
作者 吴清云 王东 +2 位作者 陶军 李志坚 殷奕杰 《农业机械学报》 北大核心 2025年第10期63-70,共8页
在远洋捕捞任务中,需要在特定水域内进行多无人艇全覆盖巡航以探测鱼群分布情况,但传统多智能体强化学习路径规划方法缺乏考虑自身与相邻智能体状态的能力,且反馈机制不够明确,导致路径覆盖效率较低、重复率过高。本文提出了一种基于改... 在远洋捕捞任务中,需要在特定水域内进行多无人艇全覆盖巡航以探测鱼群分布情况,但传统多智能体强化学习路径规划方法缺乏考虑自身与相邻智能体状态的能力,且反馈机制不够明确,导致路径覆盖效率较低、重复率过高。本文提出了一种基于改进QMIX算法(LH-QMIX)的远洋捕捞多无人艇全覆盖路径规划策略。由一个混合网络和多个智能体网络组成多智能体强化学习结构,通过混合网络将每个智能体网络的局部Q值融合成全局Q值,以指导各智能体行动。考虑到在远洋捕捞环境中无人艇通信和感知范围受限,为每个智能体网络引入一个局部损失函数,提供更明确的反馈机制,同时,引入混合注意力机制以加强无人艇之间的协作能力。在简单障碍物环境和复杂障碍物环境中,将提出的LH-QMIX算法与IQL算法、QMIX算法进行对比仿真。结果表明,LH-QMIX算法在简单障碍物环境下覆盖效率分别提升14.2%、6.9%,在复杂障碍物环境下覆盖效率分别提升22.3%、10.6%,奖励曲线在收敛后也更加稳定。研究结果为多无人艇远洋捕捞全覆盖探测任务提供了一个高效可行的解决方案,能够提升远洋捕捞效率。 展开更多
关键词 多无人艇路径规划 LH-QMIX算法 多智能体强化学习 覆盖效率 模型稳定性
在线阅读 下载PDF
复杂环境下农机全覆盖作业路径优化问题研究 被引量:1
15
作者 李政 张璠 +2 位作者 常淑惠 姚竟发 李子康 《中国农机化学报》 北大核心 2025年第9期120-128,共9页
针对农业收割机在不规则农田边界和田间障碍物作业环境中作业效率低、作业成本高等问题,研究单台农机在多障碍物和不规则地块中的路径优化策略,以直线作业路径长度、转弯路径长度最短为研究目标,路径重复率、转弯次数和作业成本为评价指... 针对农业收割机在不规则农田边界和田间障碍物作业环境中作业效率低、作业成本高等问题,研究单台农机在多障碍物和不规则地块中的路径优化策略,以直线作业路径长度、转弯路径长度最短为研究目标,路径重复率、转弯次数和作业成本为评价指标,构建全覆盖路径优化模型,提出改进的灰狼优化算法(IGWO)。为验证本算法的有效性,设计4类作业场景,分别采用本文算法(IGWO)、遗传算法(GA)、蚁群算法(ACO)以及灰狼算法(GWO)4种算法进行试验验证。结果表明,IGWO算法得到的全覆盖作业路径优化方案要明显优于其他3种算法。在复杂作业环境中,IGWO算法得到的路径规划结果转弯次数平均减少25.84%,作业成本平均降低8.53%,平均重复率降低至1.51%。 展开更多
关键词 全覆盖路径规划 灰狼优化算法 复杂环境 农业机械 农田
在线阅读 下载PDF
自动装箱系统中多AGV在线调度问题研究 被引量:2
16
作者 周国诚 陶翼飞 +2 位作者 何毅 李立山 吴佳兴 《现代制造工程》 北大核心 2025年第2期17-25,36,共10页
为提高自动装箱系统中多AGV运行效率,针对多AGV在线调度问题,以最小化AGV运行时间为优化目标,结合实际工况下约束条件建立该问题数学模型,并提出一种两阶段在线协同调度算法进行求解。该算法基于自动装箱系统仿真模型开发,首先,利用基于... 为提高自动装箱系统中多AGV运行效率,针对多AGV在线调度问题,以最小化AGV运行时间为优化目标,结合实际工况下约束条件建立该问题数学模型,并提出一种两阶段在线协同调度算法进行求解。该算法基于自动装箱系统仿真模型开发,首先,利用基于AGV运行时间的搬运任务指派算法求解搬运任务指派问题;其次,设计了带有AGV优先级规则与冲突解决策略的路径规划算法求解路径规划问题;最后,使用时空拥堵表(Spatio-Temporal Blocking Table,STBT)来记录路径的时空拥挤度(Spatio-Temporal Blocking Degree,STBD)和预计等待时间,并将表中信息作为约束条件融入到算法两阶段的寻优过程中,求解过程实现了多AGV搬运任务指派与路径规划的集成优化。通过不同规模仿真案例验证了所提算法的有效性,并与相关研究成果展开对比实验,验证所提算法的优越性。 展开更多
关键词 自动装箱系统 自动导引小车 两阶段在线协同调度算法 路径规划 任务指派
在线阅读 下载PDF
面向飞机蒙皮检测任务的空-地异构机器人协同覆盖路径规划 被引量:1
17
作者 朴敏楠 罗佳 +1 位作者 李海丰 周雨晗 《计算机应用研究》 北大核心 2025年第4期1044-1049,共6页
飞机蒙皮检测对于保证飞机飞行安全至关重要。采用移动机器人自主检测方式能够大大提高检测效率以及降低安全风险。但由于飞机结构复杂,仅使用单一种类机器人作业难以实现飞机蒙皮全覆盖。所以,提出了一种空-地异构机器人协同覆盖路径... 飞机蒙皮检测对于保证飞机飞行安全至关重要。采用移动机器人自主检测方式能够大大提高检测效率以及降低安全风险。但由于飞机结构复杂,仅使用单一种类机器人作业难以实现飞机蒙皮全覆盖。所以,提出了一种空-地异构机器人协同覆盖路径规划方法(AG-CCPP)。首先引入无人机(UAV)、无人车(UGV)异构机器人系统,分析规划过程中必要的约束条件,包括作业空间约束、续航时间约束等,采用整数线性规划方法建立优化模型。其次,提出一种基于贪婪分配策略的多精英种群双染色体遗传算法进行任务分配与路径规划联合求解,增加分配染色体实现任务分配与路径规划联合求解,实现全局优化;基于续航约束进行贪婪分配,充分利用异构机器人优点;多层次精英种群设计,减少低效交叉种群数量,提升算法运行效率。最后,通过波音737-300的仿真实验进行对比分析,结果表明所提方法在机器人协同覆盖完成时间与程序执行时间方面均优于现有算法。 展开更多
关键词 飞机蒙皮检测 异构机器人协同 覆盖路径规划 遗传算法 任务分配
在线阅读 下载PDF
面向飞机表面视觉检查的无人机覆盖路径规划 被引量:1
18
作者 陈威 王从庆 +1 位作者 曾强 李战 《系统工程与电子技术》 北大核心 2025年第4期1206-1213,共8页
为了高效规划无人机执行飞机表面视觉检查任务时的飞行路径,提出一种基于自适应混合采样策略的覆盖路径规划算法,通过视点生成、视点筛选和覆盖路径规划求解无人机最优检查路径。首先,基于待检查飞机模型进行视线最优采样和自适应补充采... 为了高效规划无人机执行飞机表面视觉检查任务时的飞行路径,提出一种基于自适应混合采样策略的覆盖路径规划算法,通过视点生成、视点筛选和覆盖路径规划求解无人机最优检查路径。首先,基于待检查飞机模型进行视线最优采样和自适应补充采样,生成冗余视点集合。然后,采用一种基于动态加权启发式的图搜索算法,搜索并选择一组提供增量覆盖的有效视点。最后,在原Lin-Kernighan启发式(Lin-Kernighan heuristic,LKH)算法中设计了路径碰撞检测模块,并通过改进后的LKH算法求解无人机无碰撞检查路径。仿真实验结果表明,所提算法在两种不同场景下规划出的无人机检查路径最大飞机表面覆盖率分别为93.44%和96.44%,在路径长度、视点数量和算法耗费时间方面均优于其他对比算法。 展开更多
关键词 飞机表面检查 覆盖路径规划 自适应混合采样 图搜索算法 无人机
在线阅读 下载PDF
复杂环境输电线路巡检机器人协同路径规划 被引量:3
19
作者 郑武略 郑扬亮 +2 位作者 张鑫 刘楠 陈庆鹏 《自动化技术与应用》 2025年第2期13-16,25,共5页
为提升协同路径规划效果,降低碰撞危险,提出复杂环境输电线路巡检机器人协同路径规划方法。以最小总能耗为目标函数,建立复杂环境输电线路巡检机器人路径规划模型;在该模型的基础上,引入基于优先级的交通规则与基于定时等待的交通规则,... 为提升协同路径规划效果,降低碰撞危险,提出复杂环境输电线路巡检机器人协同路径规划方法。以最小总能耗为目标函数,建立复杂环境输电线路巡检机器人路径规划模型;在该模型的基础上,引入基于优先级的交通规则与基于定时等待的交通规则,建立以最短路径距离与最小总能耗为目标的巡检机器人协同路径规划模型;利用改进蚁群算法,求解协同路径规划模型,得到最短路径距离与最小总能耗的协同路径规划结果。实验证明:该方法可有效协同规划巡检机器人路径,降低巡检时间与巡检能耗;不同障碍物比率时,该方法规划路径的覆盖率较高,规划效果较优。 展开更多
关键词 输电线路巡检 机器人 协同路径规划 蚁群算法
在线阅读 下载PDF
基于多无人机协同的巡检路径规划研究 被引量:3
20
作者 刘修康 李龙 《航空计算技术》 2025年第2期65-70,共6页
工业生产、港口物流等行业需要定期对仓库内的储备货物进行检查,以确保库存及进出数据的准确性。传统基于单无人机的仓库巡检和货物盘点面临耗时长、效率低等问题,不利于仓储数据的实时动态跟踪。为了更好地服务实际需求,亟需开展多无... 工业生产、港口物流等行业需要定期对仓库内的储备货物进行检查,以确保库存及进出数据的准确性。传统基于单无人机的仓库巡检和货物盘点面临耗时长、效率低等问题,不利于仓储数据的实时动态跟踪。为了更好地服务实际需求,亟需开展多无人机协同巡检的路径规划研究。在保证无人机不发生碰撞前提下,充分考虑了检查仓库内货物的完成率需求和能耗成本需求,提出了针对射频识别点的多无人机协同巡检路径规划模型。此外,针对传统灰狼算法收敛性不足的问题,提出一种基于自适应变异机制策略的改进型灰狼算法。并对某仓库典型环境建模,验证了算法在多机协同巡检路径规划中的有效性,并且AMGWO的收敛性相较另一种基于非线性控制因子策略和随机权重策略改进的灰狼算法(IGWO)提高了40.1%。 展开更多
关键词 无人机 路径规划 仓库巡检 多机协同 智能优化算法
在线阅读 下载PDF
上一页 1 2 10 下一页 到第
使用帮助 返回顶部