The advent of sixth-generation(6G)networks introduces unprecedented challenges in achieving seamless connectivity,ultra-low latency,and efficient resource management in highly dynamic environments.Although fifth-gener...The advent of sixth-generation(6G)networks introduces unprecedented challenges in achieving seamless connectivity,ultra-low latency,and efficient resource management in highly dynamic environments.Although fifth-generation(5G)networks transformed mobile broadband and machine-type communications at massive scales,their properties of scaling,interference management,and latency remain a limitation in dense high mobility settings.To overcome these limitations,artificial intelligence(AI)and unmanned aerial vehicles(UAVs)have emerged as potential solutions to develop versatile,dynamic,and energy-efficient communication systems.The study proposes an AI-based UAV architecture that utilizes cooperative reinforcement learning(CoRL)to manage an autonomous network.The UAVs collaborate by sharing local observations and real-time state exchanges to optimize user connectivity,movement directions,allocate power,and resource distribution.Unlike conventional centralized or autonomous methods,CoRL involves joint state sharing and conflict-sensitive reward shaping,which ensures fair coverage,less interference,and enhanced adaptability in a dynamic urban environment.Simulations conducted in smart city scenarios with 10 UAVs and 50 ground users demonstrate that the proposed CoRL-based UAV system increases user coverage by up to 10%,achieves convergence 40%faster,and reduces latency and energy consumption by 30%compared with centralized and decentralized baselines.Furthermore,the distributed nature of the algorithm ensures scalability and flexibility,making it well-suited for future large-scale 6G deployments.The results highlighted that AI-enabled UAV systems enhance connectivity,support ultra-reliable low-latency communications(URLLC),and improve 6G network efficiency.Future work will extend the framework with adaptive modulation,beamforming-aware positioning,and real-world testbed deployment.展开更多
For multi-vehicle networks,Cooperative Positioning(CP)technique has become a promising way to enhance vehicle positioning accuracy.Especially,the CP performance could be further improved by introducing Sensor-Rich Veh...For multi-vehicle networks,Cooperative Positioning(CP)technique has become a promising way to enhance vehicle positioning accuracy.Especially,the CP performance could be further improved by introducing Sensor-Rich Vehicles(SRVs)into CP networks,which is called SRV-aided CP.However,the CP system may split into several sub-clusters that cannot be connected with each other in dense urban environments,in which the sub-clusters with few SRVs will suffer from degradation of CP performance.Since Unmanned Aerial Vehicles(UAVs)have been widely used to aid vehicular communications,we intend to utilize UAVs to assist sub-clusters in CP.In this paper,a UAV-aided CP network is constructed to fully utilize information from SRVs.First,the inter-node connection structure among the UAV and vehicles is designed to share available information from SRVs.After that,the clustering optimization strategy is proposed,in which the UAV cooperates with the high-precision sub-cluster to obtain available information from SRVs,and then broadcasts this positioning-related information to other low-precision sub-clusters.Finally,the Locally-Centralized Factor Graph Optimization(LC-FGO)algorithm is designed to fuse positioning information from cooperators.Simulation results indicate that the positioning accuracy of the CP system could be improved by fully utilizing positioning-related information from SRVs.展开更多
The ability to control the preparation of one-dimensional(1D)porous carbon nanorods,especially during rapid polymerization,is key to their practical application.We report a method for synthesizing 1D porous carbon nan...The ability to control the preparation of one-dimensional(1D)porous carbon nanorods,especially during rapid polymerization,is key to their practical application.We report a method for synthesizing 1D porous carbon nanorods,characterized by the formation of rod-like mi-celles that are assembled from sodium palmitate and Pluronic F127,facilitated by protonated melamine,and subsequently converted into melamine-based N-doped polymer nanorods which were carbonized to produce the corres-ponding N-doped carbon nanorods.The specific capacitance of the supercapacitor used the as-pre-pared N-doped nanorods as electrode material in a three-electrode system was calculated to be 301.66 F g^(-1) at a current density of 0.2 A g^(-1),with an ultra-high specific surface area normalized capacitance of up to 67.07μF cm^(-2).The N-doping and their one-dimensionality give the nanorods a low internal resistance and good stability,making them well suited for fundamental studies and practical applications ranging from materials chemistry to electrochemical energy storage.展开更多
Dear Editor,This letter focuses on the distributed cooperative regulation problem for a class of networked re-entrant manufacturing systems(RMSs).The networked system is structured with a three-tier architecture:the p...Dear Editor,This letter focuses on the distributed cooperative regulation problem for a class of networked re-entrant manufacturing systems(RMSs).The networked system is structured with a three-tier architecture:the production line,the manufacturing layer and the workshop layer.The dynamics of re-entrant production lines are governed by hyperbolic partial differential equations(PDEs)based on the law of mass conservation.展开更多
This study investigates the current status,challenges,and strategies for enhancing international cooperation and exchange at Jiangxi University of Technology.Through in-depth interviews and questionnaire surveys,the r...This study investigates the current status,challenges,and strategies for enhancing international cooperation and exchange at Jiangxi University of Technology.Through in-depth interviews and questionnaire surveys,the research identifies key issues such as low participation rates,lack of funding,insufficient publicity,and the need for a more robust international faculty team.The findings reveal significant challenges in policy implementation,resource allocation,and faculty development.To address these challenges,the study proposes a series of countermeasures,including the formulation of a comprehensive internationalization strategy,enhanced publicity and promotion of international projects,increased financial support,and the development of an internationalized faculty and management team.The study concludes that implementing these strategies can enhance the university’s internationalization efforts and improve its overall capacity for international cooperation and exchange.展开更多
The existing Low-Earth-Orbit(LEO)positioning performance cannot meet the requirements of Unmanned Aerial Vehicle(UAV)clusters for high-precision real-time positioning in the Global Navigation Satellite System(GNSS)den...The existing Low-Earth-Orbit(LEO)positioning performance cannot meet the requirements of Unmanned Aerial Vehicle(UAV)clusters for high-precision real-time positioning in the Global Navigation Satellite System(GNSS)denial conditions.Therefore,this paper proposes a UAV Clusters Information Geometry Fusion Positioning(UC-IGFP)method using pseudoranges from the LEO satellites.A novel graph model for linking and computing between the UAV clusters and LEO satellites was established.By utilizing probability to describe the positional states of UAVs and sensor errors,the distributed multivariate Probability Fusion Cooperative Positioning(PF-CP)algorithm is proposed to achieve high-precision cooperative positioning and integration of the cluster.Criteria to select the centroid of the cluster were set.A new Kalman filter algorithm that is suitable for UAV clusters was designed based on the global benchmark and Riemann information geometry theory,which overcomes the discontinuity problem caused by the change of cluster centroids.Finally,the UC-IGFP method achieves the LEO continuous highprecision positioning of UAV clusters.The proposed method effectively addresses the positioning challenges caused by the strong direction of signal beams from LEO satellites and the insufficient constraint quantity of information sources at the edge nodes of the cluster.It significantly improves the accuracy and reliability of LEO-UAV cluster positioning.The results of comprehensive simulation experiments show that the proposed method has a 30.5%improvement in performance over the mainstream positioning methods,with a positioning error of 14.267 m.展开更多
Formation control in multi-agent systems has become a critical area of interest due to its wide-ranging applications in robotics,autonomous transportation,and surveillance.While various studies have explored distribut...Formation control in multi-agent systems has become a critical area of interest due to its wide-ranging applications in robotics,autonomous transportation,and surveillance.While various studies have explored distributed cooperative control,this review focuses on the theoretical foundations and recent developments in formation control strategies.The paper categorizes and analyzes key formation types,including formation maintenance,group or cluster formation,bipartite formations,event-triggered formations,finite-time convergence,and constrained formations.A significant portion of the review addresses formation control under constrained dynamics,presenting both modelbased and model-free approaches that consider practical limitations such as actuator bounds,communication delays,and nonholonomic constraints.Additionally,the paper discusses emerging trends,including the integration of eventdriven mechanisms and AI-enhanced coordination strategies.Comparative evaluations highlight the trade-offs among various methodologies regarding scalability,robustness,and real-world feasibility.Practical implementations are reviewed across diverse platforms,and the review identifies the current achievements and unresolved challenges in the field.The paper concludes by outlining promising research directions,such as adaptive control for dynamic environments,energy-efficient coordination,and using learning-based control under uncertainty.This review synthesizes the current state of the art and provides a road map for future investigation,making it a valuable reference for researchers and practitioners aiming to advance formation control in multi-agent systems.展开更多
The event-triggered mechanism serves as an effective discontinuous control strategy for addressing the consensus tracking problem in multiagent systems(MASs).This approach optimizes energy consumption by updating the ...The event-triggered mechanism serves as an effective discontinuous control strategy for addressing the consensus tracking problem in multiagent systems(MASs).This approach optimizes energy consumption by updating the controller only when some observed errors exceed a predefined threshold.Considering the influence of noise on agent dynamics in complex control environments,this study investigates an event-triggered control scheme for stochastic MASs,where noise is modeled as Brownian motion.Furthermore,the communication topology of the stochastic MASs is assumed to exhibit a Markovian switching mechanism.Analytical criteria are derived to guarantee consensus tracking in the mean square sense,and a numerical example is provided to validate the effectiveness of the proposed control methods.展开更多
With the advent of in-wheel motors and corner modules,the structure of vehicle chassis subsystems has shifted from traditionally centralized to distributed.This review focuses on the distributed chassis system(DCS)equ...With the advent of in-wheel motors and corner modules,the structure of vehicle chassis subsystems has shifted from traditionally centralized to distributed.This review focuses on the distributed chassis system(DCS)equipped with corner modules.It first provides a comprehensive summary and description of the revolution of the structure and control methods of vehicle chassis systems(including driving,braking,suspension,and steering systems).Given that DCS integrates various chassis subsystems,this review moves beyond individual subsystem analysis and delves into the coordination of these subsystems at the vehicle level.It provides a detailed summary of the methods and architectures used for integrated coordination and control,ensuring that multiple subsystems can function seamlessly as an integrated whole.Finally,this review summarizes the latest distributed control architecture for DCS.It also examines current control theories in the fields of control and information technology for distributed systems,such as multi-agent systems and cyber-physical systems.Based on these two control approaches,a multi-domain cooperative control framework for DCS is proposed.展开更多
In order to solve the problem of limited computational resources of multi-unmanned systems airborne navigation platform,a distributed cooperative positioning method based on confidence evaluation is proposed.Firstly,t...In order to solve the problem of limited computational resources of multi-unmanned systems airborne navigation platform,a distributed cooperative positioning method based on confidence evaluation is proposed.Firstly,the impact of ranging error,priori information,spatial geometric configuration and adjacent nodes count on cooperative positioning performance are analyzed individually.Secondly,a confidence evaluation method for measurement information of adjacent nodes is designed according to the cooperative positioning principle,which comprehensively considers the coupling relationship between influencing factors.Finally,a distributed cooperative navigation filter based on inter-vehicle ranging is designed.Simulation studies show that confidence evaluation method proposed in this paper can effectively characterize the contribution of measurement information to positioning results,and positioning accuracy under the proposed method is improved by more than 15%compared with the traditional screening methods based on optimal geometric configuration and closest distance.展开更多
Under the current long-term electricity market mechanism,new energy and thermal power face issues such as deviation assessment and compression of generation space.The profitability of market players is limited.Simulta...Under the current long-term electricity market mechanism,new energy and thermal power face issues such as deviation assessment and compression of generation space.The profitability of market players is limited.Simultaneously,the cooperation model among various energy sources will have a direct impact on the alliance’s revenue and the equity of income distribution within the alliance.Therefore,integrating new energy with thermal power units into an integrated multi-energy complementary system to participate in the long-term electricity market holds significant potential.To simulate and evaluate the benefits and internal distribution methods of a multi-energy complementary system participating in long-term market transactions,this paper first constructs a multi-energy complementary system integrated with new energy and thermal power generation units at the same connection point,and participates in the annual bilateral game as a unified market entity to obtain the revenue value under the annual bilateral market.Secondly,based on the entropy weight method,improvements are made to the traditional Shapley value distribution model,and an internal distribution model for multi-energy complementary systems with multiple participants is constructed.Finally,a Markov Decision Process(MDP)evaluation system is constructed for practical case verification.The research results show that the improved Shapley value distribution model achieves higher satisfaction,providing a reasonable allocation scheme for multi-energy complementary cooperation models.展开更多
This paper focuses on ACF artificial cartilage biomimetic energy-absorbing materials,exploring the entire process from fundamental research to industrial transformation.By analyzing the key nodes and technological bre...This paper focuses on ACF artificial cartilage biomimetic energy-absorbing materials,exploring the entire process from fundamental research to industrial transformation.By analyzing the key nodes and technological breakthroughs in the research and development journey,as well as the market strategies and collaboration models in the transformation practices,this study reveals the profound insights ACF provides to the technological innovation ecosystem in terms of concepts,mechanisms,and resource integration,and constructs a universally applicable and forward-looking paradigm for technological innovation.Aiming to provide comprehensive and in-depth case studies for materials science and the entire technological innovation system,facilitating the innovative development and progress in related areas.展开更多
This paper studies a cooperative relay transmission system within the framework of Multiple-Input Multiple-Output Radio Frequency/Underwater Optical Wireless Communication(MIMO-RF/UOWC),aiming to establish sea-based h...This paper studies a cooperative relay transmission system within the framework of Multiple-Input Multiple-Output Radio Frequency/Underwater Optical Wireless Communication(MIMO-RF/UOWC),aiming to establish sea-based heterogeneous networks.In this setup,the RF links obey κ-μ fading,while the UOWC links undergo the generalized Gamma fading with the pointing error impairments.The relay operates under an Amplify-and-Forward(AF)protocol.Additionally,the attenuation caused by the Absorption and Scattering(AaS)is considered in UOWC links.The work yields precise results for the Average Channel Capacity(ACC),Outage Probability(OP),and average Bit Error Rate(BER).Furthermore,to reveal deeper insights,bounds on the ACC and asymptotic results for the OP and average BER are derived.The findings highlight the superior performance of MIMO-RF/UOWC AF systems compared to Single-Input-Single-Output(SISO)-RF/UOWC AF systems.Various factors affecting the Diversity Gain(DG)of the MIMO-RF/UOWC AF system include the number of antennas/apertures,fading parameters of both links,and pointing error parameters.Moreover,while an increase in the AaS effect can result in significant attenuation,it does not determine the achievable DG of the proposed MIMO-RF/UOWC AF relaying system.展开更多
In this study,a solution based on deep Q network(DQN)is proposed to address the relay selection problem in cooperative non-orthogonal multiple access(NOMA)systems.DQN is particularly effective in addressing problems w...In this study,a solution based on deep Q network(DQN)is proposed to address the relay selection problem in cooperative non-orthogonal multiple access(NOMA)systems.DQN is particularly effective in addressing problems within dynamic and complex communication environ-ments.By formulating the relay selection problem as a Markov decision process(MDP),the DQN algorithm employs deep neural networks(DNNs)to learn and make decisions through real-time interactions with the communication environment,aiming to minimize the system’s outage proba-bility.During the learning process,the DQN algorithm progressively acquires channel state infor-mation(CSI)between two nodes,thereby minimizing the system’s outage probability until a sta-ble level is reached.Simulation results show that the proposed method effectively reduces the out-age probability by 82%compared to the two-way relay selection scheme(Two-Way)when the sig-nal-to-noise ratio(SNR)is 30 dB.This study demonstrates the applicability and advantages of the DQN algorithm in cooperative NOMA systems,providing a novel approach to addressing real-time relay selection challenges in dynamic communication environments.展开更多
Aimed at the doubly near-far problems in a large range suffered by the remote user group and in a small range existing in both nearby and remote user groups during energy harvesting and computation offloading,a resour...Aimed at the doubly near-far problems in a large range suffered by the remote user group and in a small range existing in both nearby and remote user groups during energy harvesting and computation offloading,a resource allocation method for unmanned aerial vehicle(UAV)-assisted and user cooperation non-linear energy harvesting mobile edge computing(MEC)system is proposed.The UAV equipped with an MEC server is introduced to provide energy and computing services for the remote user group to alleviate the doubly near-far problem in a large range suffered by the remote user group.The doubly near-far problem in a small range existing in both nearby and remote user groups is mitigated by user cooperation.The specific user cooperation strategy is that the user near the base station or the UAV is used as a relay to transfer the computing task of the user far from the base station or the UAV to the MEC server for computing.By jointly optimizing users’offloading time,users’transmitting power,and the hovering position of the UAV,the resource allocation problem is modeled as a nonlinear programming problem with the objective of maximizing computation efficiency.The suboptimal solution is obtained by adopting the differential evolution algorithm.Simulation results show that,compared with the resource allocation method based on genetic algorithm and the without user cooperation method,the proposed method has higher computation efficiency.展开更多
Sixth Generation(6G)mobile communication networks will involve sensing as a new function,with the overwhelming trend of Integrated Sensing And Communications(ISAC).Although expanding the serving range of the networks,...Sixth Generation(6G)mobile communication networks will involve sensing as a new function,with the overwhelming trend of Integrated Sensing And Communications(ISAC).Although expanding the serving range of the networks,there exists performance trade-offbetween communication and sensing,in that they have competitions on the physical resources.Different resource allocation schemes will result in different sensing and communication performance,thus influencing the system’s overall performance.Therefore,how to model the system’s overall performance,and how to optimize it are key issues for ISAC.Relying on the large-scale deployment of the networks,cooperative ISAC has the advantages of wider coverage,more robust performance and good compatibility of multiple monostatic and multistatic sensing,compared to the non-cooperative ISAC.How to capture the performance gain of cooperation is a key issue for cooperative ISAC.To address the aforementioned vital problems,in this paper,we analyze the sensing accuracy gain,propose a unified ISAC performance evaluation framework and design several optimization methods in cooperative ISAC systems.The cooperative sensing accuracy gain is theoretically analyzed via Cramér Rao lower bound.The unified ISAC performance evaluation model is established by converting the communication mutual information to the effective minimum mean squared error.To optimize the unified ISAC performance,we design the optimization algorithms considering three factors:base stations’working modes,power allocation schemes and waveform design.Through simulations,we show the performance gain of the cooperative ISAC system and the effectiveness of the proposed optimization methods.展开更多
The cooperative control and stability analysis problems for the multi-agent system with sampled com- munication are investigated. Distributed state feedback controllers are adopted for the cooperation of networked age...The cooperative control and stability analysis problems for the multi-agent system with sampled com- munication are investigated. Distributed state feedback controllers are adopted for the cooperation of networked agents. A theorem in the form of linear matrix inequalities(LMI) is derived to analyze the system stability. An- other theorem in the form of optimization problem subject to LMI constraints is proposed to design the controller, and then the algorithm is presented. The simulation results verify the validity and the effectiveness of the pro- posed approach.展开更多
Aiming at the flexible manufacturing system with multi-machining and multi-assembly equipment, a new scheduling algorithm is proposed to decompose the assembly structure of the products, thus obtaining simple scheduli...Aiming at the flexible manufacturing system with multi-machining and multi-assembly equipment, a new scheduling algorithm is proposed to decompose the assembly structure of the products, thus obtaining simple scheduling problems and forming the cOrrespOnding agents. Then, the importance and the restriction of each agent are cOnsidered, to obtain an order of simple scheduling problems based on the cooperation game theory. With this order, the scheduling of sub-questions is implemented in term of rules, and the almost optimal scheduling results for meeting the restriction can be obtained. Experimental results verify the effectiveness of the proposed scheduling algorithm.展开更多
In downlink cellular multiple users in multiple cells systems using beams, the should cooperate to generate beams to improve the spectrum efficiency. A mathematical model for the multi-cell multi-user downlink transm...In downlink cellular multiple users in multiple cells systems using beams, the should cooperate to generate beams to improve the spectrum efficiency. A mathematical model for the multi-cell multi-user downlink transmission is established, and the gradients of the variables including beamfonning filters, receiving filters and transmitting power are calculated. Then, a gradient-project-based cooperative beamforming scheme is proposed in which each user iteratively adjusts bearnforming variables in the direction of the gradients and projects onto feasible spaces. The information exchange protocol needed to support the scheme is also described. Simulation results show that the proposed scheme can achieve an average spectral efficiency of about 5 bit/( s · Hz · cell). The results show that cooperative beamforming can improve the spectrum efficiency of the cellular systems.展开更多
Owing to their global search capabilities and gradient-free operation,metaheuristic algorithms are widely applied to a wide range of optimization problems.However,their computational demands become prohibitive when ta...Owing to their global search capabilities and gradient-free operation,metaheuristic algorithms are widely applied to a wide range of optimization problems.However,their computational demands become prohibitive when tackling high-dimensional optimization challenges.To effectively address these challenges,this study introduces cooperative metaheuristics integrating dynamic dimension reduction(DR).Building upon particle swarm optimization(PSO)and differential evolution(DE),the proposed cooperative methods C-PSO and C-DE are developed.In the proposed methods,the modified principal components analysis(PCA)is utilized to reduce the dimension of design variables,thereby decreasing computational costs.The dynamic DR strategy implements periodic execution of modified PCA after a fixed number of iterations,resulting in the important dimensions being dynamically identified.Compared with the static one,the dynamic DR strategy can achieve precise identification of important dimensions,thereby enabling accelerated convergence toward optimal solutions.Furthermore,the influence of cumulative contribution rate thresholds on optimization problems with different dimensions is investigated.Metaheuristic algorithms(PSO,DE)and cooperative metaheuristics(C-PSO,C-DE)are examined by 15 benchmark functions and two engineering design problems(speed reducer and composite pressure vessel).Comparative results demonstrate that the cooperative methods achieve significantly superior performance compared to standard methods in both solution accuracy and computational efficiency.Compared to standard metaheuristic algorithms,cooperative metaheuristics achieve a reduction in computational cost of at least 40%.The cooperative metaheuristics can be effectively used to tackle both high-dimensional unconstrained and constrained optimization problems.展开更多
基金supported by the National Research Foundation of Korea(NRF)grant funded by the Korea government(MSIT)(RS-2025-00559546)supported by the IITP(Institute of Information&Coummunications Technology Planning&Evaluation)-ITRC(Information Technology Research Center)grant funded by the Korea government(Ministry of Science and ICT)(IITP-2025-RS-2023-00259004).
文摘The advent of sixth-generation(6G)networks introduces unprecedented challenges in achieving seamless connectivity,ultra-low latency,and efficient resource management in highly dynamic environments.Although fifth-generation(5G)networks transformed mobile broadband and machine-type communications at massive scales,their properties of scaling,interference management,and latency remain a limitation in dense high mobility settings.To overcome these limitations,artificial intelligence(AI)and unmanned aerial vehicles(UAVs)have emerged as potential solutions to develop versatile,dynamic,and energy-efficient communication systems.The study proposes an AI-based UAV architecture that utilizes cooperative reinforcement learning(CoRL)to manage an autonomous network.The UAVs collaborate by sharing local observations and real-time state exchanges to optimize user connectivity,movement directions,allocate power,and resource distribution.Unlike conventional centralized or autonomous methods,CoRL involves joint state sharing and conflict-sensitive reward shaping,which ensures fair coverage,less interference,and enhanced adaptability in a dynamic urban environment.Simulations conducted in smart city scenarios with 10 UAVs and 50 ground users demonstrate that the proposed CoRL-based UAV system increases user coverage by up to 10%,achieves convergence 40%faster,and reduces latency and energy consumption by 30%compared with centralized and decentralized baselines.Furthermore,the distributed nature of the algorithm ensures scalability and flexibility,making it well-suited for future large-scale 6G deployments.The results highlighted that AI-enabled UAV systems enhance connectivity,support ultra-reliable low-latency communications(URLLC),and improve 6G network efficiency.Future work will extend the framework with adaptive modulation,beamforming-aware positioning,and real-world testbed deployment.
基金supported by the National Natural Science Foundation of China(No.62271399)the National Key Research and Development Program of China(No.2022YFB1807102)。
文摘For multi-vehicle networks,Cooperative Positioning(CP)technique has become a promising way to enhance vehicle positioning accuracy.Especially,the CP performance could be further improved by introducing Sensor-Rich Vehicles(SRVs)into CP networks,which is called SRV-aided CP.However,the CP system may split into several sub-clusters that cannot be connected with each other in dense urban environments,in which the sub-clusters with few SRVs will suffer from degradation of CP performance.Since Unmanned Aerial Vehicles(UAVs)have been widely used to aid vehicular communications,we intend to utilize UAVs to assist sub-clusters in CP.In this paper,a UAV-aided CP network is constructed to fully utilize information from SRVs.First,the inter-node connection structure among the UAV and vehicles is designed to share available information from SRVs.After that,the clustering optimization strategy is proposed,in which the UAV cooperates with the high-precision sub-cluster to obtain available information from SRVs,and then broadcasts this positioning-related information to other low-precision sub-clusters.Finally,the Locally-Centralized Factor Graph Optimization(LC-FGO)algorithm is designed to fuse positioning information from cooperators.Simulation results indicate that the positioning accuracy of the CP system could be improved by fully utilizing positioning-related information from SRVs.
文摘The ability to control the preparation of one-dimensional(1D)porous carbon nanorods,especially during rapid polymerization,is key to their practical application.We report a method for synthesizing 1D porous carbon nanorods,characterized by the formation of rod-like mi-celles that are assembled from sodium palmitate and Pluronic F127,facilitated by protonated melamine,and subsequently converted into melamine-based N-doped polymer nanorods which were carbonized to produce the corres-ponding N-doped carbon nanorods.The specific capacitance of the supercapacitor used the as-pre-pared N-doped nanorods as electrode material in a three-electrode system was calculated to be 301.66 F g^(-1) at a current density of 0.2 A g^(-1),with an ultra-high specific surface area normalized capacitance of up to 67.07μF cm^(-2).The N-doping and their one-dimensionality give the nanorods a low internal resistance and good stability,making them well suited for fundamental studies and practical applications ranging from materials chemistry to electrochemical energy storage.
文摘Dear Editor,This letter focuses on the distributed cooperative regulation problem for a class of networked re-entrant manufacturing systems(RMSs).The networked system is structured with a three-tier architecture:the production line,the manufacturing layer and the workshop layer.The dynamics of re-entrant production lines are governed by hyperbolic partial differential equations(PDEs)based on the law of mass conservation.
文摘This study investigates the current status,challenges,and strategies for enhancing international cooperation and exchange at Jiangxi University of Technology.Through in-depth interviews and questionnaire surveys,the research identifies key issues such as low participation rates,lack of funding,insufficient publicity,and the need for a more robust international faculty team.The findings reveal significant challenges in policy implementation,resource allocation,and faculty development.To address these challenges,the study proposes a series of countermeasures,including the formulation of a comprehensive internationalization strategy,enhanced publicity and promotion of international projects,increased financial support,and the development of an internationalized faculty and management team.The study concludes that implementing these strategies can enhance the university’s internationalization efforts and improve its overall capacity for international cooperation and exchange.
基金supported in part by the National Natural Science Foundation of China(Nos.62171375,62271397,62001392,62101458,62173276,61803310 and 61801394)the Shenzhen Science and Technology Innovation ProgramChina(No.JCYJ20220530161615033)。
文摘The existing Low-Earth-Orbit(LEO)positioning performance cannot meet the requirements of Unmanned Aerial Vehicle(UAV)clusters for high-precision real-time positioning in the Global Navigation Satellite System(GNSS)denial conditions.Therefore,this paper proposes a UAV Clusters Information Geometry Fusion Positioning(UC-IGFP)method using pseudoranges from the LEO satellites.A novel graph model for linking and computing between the UAV clusters and LEO satellites was established.By utilizing probability to describe the positional states of UAVs and sensor errors,the distributed multivariate Probability Fusion Cooperative Positioning(PF-CP)algorithm is proposed to achieve high-precision cooperative positioning and integration of the cluster.Criteria to select the centroid of the cluster were set.A new Kalman filter algorithm that is suitable for UAV clusters was designed based on the global benchmark and Riemann information geometry theory,which overcomes the discontinuity problem caused by the change of cluster centroids.Finally,the UC-IGFP method achieves the LEO continuous highprecision positioning of UAV clusters.The proposed method effectively addresses the positioning challenges caused by the strong direction of signal beams from LEO satellites and the insufficient constraint quantity of information sources at the edge nodes of the cluster.It significantly improves the accuracy and reliability of LEO-UAV cluster positioning.The results of comprehensive simulation experiments show that the proposed method has a 30.5%improvement in performance over the mainstream positioning methods,with a positioning error of 14.267 m.
基金supported in part by the National Natural Science Foundation of China under Grant 6237319in part by the Postgraduate Research and Practice Innovation Program of Jiangsu Province under Grant KYCX230479.
文摘Formation control in multi-agent systems has become a critical area of interest due to its wide-ranging applications in robotics,autonomous transportation,and surveillance.While various studies have explored distributed cooperative control,this review focuses on the theoretical foundations and recent developments in formation control strategies.The paper categorizes and analyzes key formation types,including formation maintenance,group or cluster formation,bipartite formations,event-triggered formations,finite-time convergence,and constrained formations.A significant portion of the review addresses formation control under constrained dynamics,presenting both modelbased and model-free approaches that consider practical limitations such as actuator bounds,communication delays,and nonholonomic constraints.Additionally,the paper discusses emerging trends,including the integration of eventdriven mechanisms and AI-enhanced coordination strategies.Comparative evaluations highlight the trade-offs among various methodologies regarding scalability,robustness,and real-world feasibility.Practical implementations are reviewed across diverse platforms,and the review identifies the current achievements and unresolved challenges in the field.The paper concludes by outlining promising research directions,such as adaptive control for dynamic environments,energy-efficient coordination,and using learning-based control under uncertainty.This review synthesizes the current state of the art and provides a road map for future investigation,making it a valuable reference for researchers and practitioners aiming to advance formation control in multi-agent systems.
文摘The event-triggered mechanism serves as an effective discontinuous control strategy for addressing the consensus tracking problem in multiagent systems(MASs).This approach optimizes energy consumption by updating the controller only when some observed errors exceed a predefined threshold.Considering the influence of noise on agent dynamics in complex control environments,this study investigates an event-triggered control scheme for stochastic MASs,where noise is modeled as Brownian motion.Furthermore,the communication topology of the stochastic MASs is assumed to exhibit a Markovian switching mechanism.Analytical criteria are derived to guarantee consensus tracking in the mean square sense,and a numerical example is provided to validate the effectiveness of the proposed control methods.
基金Supported by National Natural Science Foundation of China(Grant Nos.52072072,52025121,52394263).
文摘With the advent of in-wheel motors and corner modules,the structure of vehicle chassis subsystems has shifted from traditionally centralized to distributed.This review focuses on the distributed chassis system(DCS)equipped with corner modules.It first provides a comprehensive summary and description of the revolution of the structure and control methods of vehicle chassis systems(including driving,braking,suspension,and steering systems).Given that DCS integrates various chassis subsystems,this review moves beyond individual subsystem analysis and delves into the coordination of these subsystems at the vehicle level.It provides a detailed summary of the methods and architectures used for integrated coordination and control,ensuring that multiple subsystems can function seamlessly as an integrated whole.Finally,this review summarizes the latest distributed control architecture for DCS.It also examines current control theories in the fields of control and information technology for distributed systems,such as multi-agent systems and cyber-physical systems.Based on these two control approaches,a multi-domain cooperative control framework for DCS is proposed.
基金supported in part by National Natural Science Foundation of China(Nos.62073163,62103285,62203228)National Defense Basic Research Program(No.JCKY2020605C009)+1 种基金Aeronautic Science Foundation of China(Nos.ASFC-2020Z071052001,202055052003)Foundation Strengthening Program Technology 173 Field Fund(No.2021-JCJQ-JJ-0308)。
文摘In order to solve the problem of limited computational resources of multi-unmanned systems airborne navigation platform,a distributed cooperative positioning method based on confidence evaluation is proposed.Firstly,the impact of ranging error,priori information,spatial geometric configuration and adjacent nodes count on cooperative positioning performance are analyzed individually.Secondly,a confidence evaluation method for measurement information of adjacent nodes is designed according to the cooperative positioning principle,which comprehensively considers the coupling relationship between influencing factors.Finally,a distributed cooperative navigation filter based on inter-vehicle ranging is designed.Simulation studies show that confidence evaluation method proposed in this paper can effectively characterize the contribution of measurement information to positioning results,and positioning accuracy under the proposed method is improved by more than 15%compared with the traditional screening methods based on optimal geometric configuration and closest distance.
文摘Under the current long-term electricity market mechanism,new energy and thermal power face issues such as deviation assessment and compression of generation space.The profitability of market players is limited.Simultaneously,the cooperation model among various energy sources will have a direct impact on the alliance’s revenue and the equity of income distribution within the alliance.Therefore,integrating new energy with thermal power units into an integrated multi-energy complementary system to participate in the long-term electricity market holds significant potential.To simulate and evaluate the benefits and internal distribution methods of a multi-energy complementary system participating in long-term market transactions,this paper first constructs a multi-energy complementary system integrated with new energy and thermal power generation units at the same connection point,and participates in the annual bilateral game as a unified market entity to obtain the revenue value under the annual bilateral market.Secondly,based on the entropy weight method,improvements are made to the traditional Shapley value distribution model,and an internal distribution model for multi-energy complementary systems with multiple participants is constructed.Finally,a Markov Decision Process(MDP)evaluation system is constructed for practical case verification.The research results show that the improved Shapley value distribution model achieves higher satisfaction,providing a reasonable allocation scheme for multi-energy complementary cooperation models.
文摘This paper focuses on ACF artificial cartilage biomimetic energy-absorbing materials,exploring the entire process from fundamental research to industrial transformation.By analyzing the key nodes and technological breakthroughs in the research and development journey,as well as the market strategies and collaboration models in the transformation practices,this study reveals the profound insights ACF provides to the technological innovation ecosystem in terms of concepts,mechanisms,and resource integration,and constructs a universally applicable and forward-looking paradigm for technological innovation.Aiming to provide comprehensive and in-depth case studies for materials science and the entire technological innovation system,facilitating the innovative development and progress in related areas.
基金supported in part by the National Natural Science Foundation of China under Grant 62301272the Natural Science Research Start-up Foundation of Recruiting Talents of Nanjing University of Posts and Telecommunications under Grants NY223023 and NY223027.
文摘This paper studies a cooperative relay transmission system within the framework of Multiple-Input Multiple-Output Radio Frequency/Underwater Optical Wireless Communication(MIMO-RF/UOWC),aiming to establish sea-based heterogeneous networks.In this setup,the RF links obey κ-μ fading,while the UOWC links undergo the generalized Gamma fading with the pointing error impairments.The relay operates under an Amplify-and-Forward(AF)protocol.Additionally,the attenuation caused by the Absorption and Scattering(AaS)is considered in UOWC links.The work yields precise results for the Average Channel Capacity(ACC),Outage Probability(OP),and average Bit Error Rate(BER).Furthermore,to reveal deeper insights,bounds on the ACC and asymptotic results for the OP and average BER are derived.The findings highlight the superior performance of MIMO-RF/UOWC AF systems compared to Single-Input-Single-Output(SISO)-RF/UOWC AF systems.Various factors affecting the Diversity Gain(DG)of the MIMO-RF/UOWC AF system include the number of antennas/apertures,fading parameters of both links,and pointing error parameters.Moreover,while an increase in the AaS effect can result in significant attenuation,it does not determine the achievable DG of the proposed MIMO-RF/UOWC AF relaying system.
基金supported by the National Natural Science Foundation of China(Nos.61841107 and 62061024)Gansu Natural Sci-ence Foundation(Nos.22JR5RA274 and 23YFGA0062)Gansu Innovation Foundation(No.2022A-215).
文摘In this study,a solution based on deep Q network(DQN)is proposed to address the relay selection problem in cooperative non-orthogonal multiple access(NOMA)systems.DQN is particularly effective in addressing problems within dynamic and complex communication environ-ments.By formulating the relay selection problem as a Markov decision process(MDP),the DQN algorithm employs deep neural networks(DNNs)to learn and make decisions through real-time interactions with the communication environment,aiming to minimize the system’s outage proba-bility.During the learning process,the DQN algorithm progressively acquires channel state infor-mation(CSI)between two nodes,thereby minimizing the system’s outage probability until a sta-ble level is reached.Simulation results show that the proposed method effectively reduces the out-age probability by 82%compared to the two-way relay selection scheme(Two-Way)when the sig-nal-to-noise ratio(SNR)is 30 dB.This study demonstrates the applicability and advantages of the DQN algorithm in cooperative NOMA systems,providing a novel approach to addressing real-time relay selection challenges in dynamic communication environments.
基金the National Natural Science Foundation of China(No.61871133)the Natural Science Foundation of Fujian Province(No.2021J01587)。
文摘Aimed at the doubly near-far problems in a large range suffered by the remote user group and in a small range existing in both nearby and remote user groups during energy harvesting and computation offloading,a resource allocation method for unmanned aerial vehicle(UAV)-assisted and user cooperation non-linear energy harvesting mobile edge computing(MEC)system is proposed.The UAV equipped with an MEC server is introduced to provide energy and computing services for the remote user group to alleviate the doubly near-far problem in a large range suffered by the remote user group.The doubly near-far problem in a small range existing in both nearby and remote user groups is mitigated by user cooperation.The specific user cooperation strategy is that the user near the base station or the UAV is used as a relay to transfer the computing task of the user far from the base station or the UAV to the MEC server for computing.By jointly optimizing users’offloading time,users’transmitting power,and the hovering position of the UAV,the resource allocation problem is modeled as a nonlinear programming problem with the objective of maximizing computation efficiency.The suboptimal solution is obtained by adopting the differential evolution algorithm.Simulation results show that,compared with the resource allocation method based on genetic algorithm and the without user cooperation method,the proposed method has higher computation efficiency.
文摘Sixth Generation(6G)mobile communication networks will involve sensing as a new function,with the overwhelming trend of Integrated Sensing And Communications(ISAC).Although expanding the serving range of the networks,there exists performance trade-offbetween communication and sensing,in that they have competitions on the physical resources.Different resource allocation schemes will result in different sensing and communication performance,thus influencing the system’s overall performance.Therefore,how to model the system’s overall performance,and how to optimize it are key issues for ISAC.Relying on the large-scale deployment of the networks,cooperative ISAC has the advantages of wider coverage,more robust performance and good compatibility of multiple monostatic and multistatic sensing,compared to the non-cooperative ISAC.How to capture the performance gain of cooperation is a key issue for cooperative ISAC.To address the aforementioned vital problems,in this paper,we analyze the sensing accuracy gain,propose a unified ISAC performance evaluation framework and design several optimization methods in cooperative ISAC systems.The cooperative sensing accuracy gain is theoretically analyzed via Cramér Rao lower bound.The unified ISAC performance evaluation model is established by converting the communication mutual information to the effective minimum mean squared error.To optimize the unified ISAC performance,we design the optimization algorithms considering three factors:base stations’working modes,power allocation schemes and waveform design.Through simulations,we show the performance gain of the cooperative ISAC system and the effectiveness of the proposed optimization methods.
基金Supported by the National Natural Science Foundation of China(91016017)the National Aviation Found of China(20115868009)~~
文摘The cooperative control and stability analysis problems for the multi-agent system with sampled com- munication are investigated. Distributed state feedback controllers are adopted for the cooperation of networked agents. A theorem in the form of linear matrix inequalities(LMI) is derived to analyze the system stability. An- other theorem in the form of optimization problem subject to LMI constraints is proposed to design the controller, and then the algorithm is presented. The simulation results verify the validity and the effectiveness of the pro- posed approach.
文摘Aiming at the flexible manufacturing system with multi-machining and multi-assembly equipment, a new scheduling algorithm is proposed to decompose the assembly structure of the products, thus obtaining simple scheduling problems and forming the cOrrespOnding agents. Then, the importance and the restriction of each agent are cOnsidered, to obtain an order of simple scheduling problems based on the cooperation game theory. With this order, the scheduling of sub-questions is implemented in term of rules, and the almost optimal scheduling results for meeting the restriction can be obtained. Experimental results verify the effectiveness of the proposed scheduling algorithm.
基金The National Natural Science Foundation of China(No.61001103)the National Science and Technology Major Project of China (No.2008ZX03003-005)the National Basic Research Program ofChina(973 Program) (No.2007CB310603)
文摘In downlink cellular multiple users in multiple cells systems using beams, the should cooperate to generate beams to improve the spectrum efficiency. A mathematical model for the multi-cell multi-user downlink transmission is established, and the gradients of the variables including beamfonning filters, receiving filters and transmitting power are calculated. Then, a gradient-project-based cooperative beamforming scheme is proposed in which each user iteratively adjusts bearnforming variables in the direction of the gradients and projects onto feasible spaces. The information exchange protocol needed to support the scheme is also described. Simulation results show that the proposed scheme can achieve an average spectral efficiency of about 5 bit/( s · Hz · cell). The results show that cooperative beamforming can improve the spectrum efficiency of the cellular systems.
基金funded by National Natural Science Foundation of China(Nos.12402142,11832013 and 11572134)Natural Science Foundation of Hubei Province(No.2024AFB235)+1 种基金Hubei Provincial Department of Education Science and Technology Research Project(No.Q20221714)the Opening Foundation of Hubei Key Laboratory of Digital Textile Equipment(Nos.DTL2023019 and DTL2022012).
文摘Owing to their global search capabilities and gradient-free operation,metaheuristic algorithms are widely applied to a wide range of optimization problems.However,their computational demands become prohibitive when tackling high-dimensional optimization challenges.To effectively address these challenges,this study introduces cooperative metaheuristics integrating dynamic dimension reduction(DR).Building upon particle swarm optimization(PSO)and differential evolution(DE),the proposed cooperative methods C-PSO and C-DE are developed.In the proposed methods,the modified principal components analysis(PCA)is utilized to reduce the dimension of design variables,thereby decreasing computational costs.The dynamic DR strategy implements periodic execution of modified PCA after a fixed number of iterations,resulting in the important dimensions being dynamically identified.Compared with the static one,the dynamic DR strategy can achieve precise identification of important dimensions,thereby enabling accelerated convergence toward optimal solutions.Furthermore,the influence of cumulative contribution rate thresholds on optimization problems with different dimensions is investigated.Metaheuristic algorithms(PSO,DE)and cooperative metaheuristics(C-PSO,C-DE)are examined by 15 benchmark functions and two engineering design problems(speed reducer and composite pressure vessel).Comparative results demonstrate that the cooperative methods achieve significantly superior performance compared to standard methods in both solution accuracy and computational efficiency.Compared to standard metaheuristic algorithms,cooperative metaheuristics achieve a reduction in computational cost of at least 40%.The cooperative metaheuristics can be effectively used to tackle both high-dimensional unconstrained and constrained optimization problems.