Switchable radiative cooling/heating holds great promise for mitigating the global energy and environmental crisis.Here,we reported a cost-effective,high-strength Janus film through surface optical engineering waste p...Switchable radiative cooling/heating holds great promise for mitigating the global energy and environmental crisis.Here,we reported a cost-effective,high-strength Janus film through surface optical engineering waste paper with one side decorated by a hydrophobic polymeric cooling coating consisting of micro/nanopore/particle hierarchical structure and the other side coated with hydrophilic MXene nanosheets for heating.The cooling surface demonstrates high solar reflectivity(96.3%)and infrared emissivity(95.5%),resulting in daytime/nighttime sub-ambient radiative cooling of 6℃/8℃with the theoretical cooling power of 100.6 and 138.5Wm^(−2),respectively.The heating surface exhibits high solar absorptivity(83.7%)and low infrared emissivity(15.2%),resulting in excellent radiative heating capacity for vehicle charging pile(~6.2℃)and solar heating performance.Impressively,the mechanical strength of Janus film increased greatly by 563%compared with that of pristine waste paper,which is helpful for its practical applications in various scenarios for switchable radiative thermal management through mechanical flipping.Energy-saving simulation results reveal that significant total energy savings of up to 32.4MJm^(−2) can be achieved annually(corresponding to the 12.4%saving ratio),showing the immense importance of reducing carbon footprint and promoting carbon neutrality.展开更多
The knowledge representation mode and inference control strategy were analyzed according to the specialties of air-conditioning cooling/heating sources selection. The constructing idea and working procedure for knowle...The knowledge representation mode and inference control strategy were analyzed according to the specialties of air-conditioning cooling/heating sources selection. The constructing idea and working procedure for knowledge base and inference engine were proposed while the realization technique of the C language was discussed. An intelligent decision support system (IDSS) model based on such knowledge representation and inference mechanism was developed by domain engineers. The model was verified to have a small kernel and powerful capability in list processing and data driving, which was successfully used in the design of a cooling/heating sources system for a large-sized office building.展开更多
The influence of local cooling/heating on two types of nonlinear instabilities of the high-speed boundary layer,namely,the First and Second Mode Oblique Breakdown(FMOB and SMOB),is studied using direct numerical simul...The influence of local cooling/heating on two types of nonlinear instabilities of the high-speed boundary layer,namely,the First and Second Mode Oblique Breakdown(FMOB and SMOB),is studied using direct numerical simulations.Local cooling and heating are performed at the weak and strong nonlinear stages of the two types of nonlinear instabilities.It is found that for the FMOB,local cooling at the weak nonlinear region will suppress the increase of the fundamental mode,leading to transition delay.Opposite to local cooling,local heating at the weak nonlinear region of the FMOB will promote the growth of the fundamental mode,resulting in the occurrence of more upstream transition onset.However,if local cooling and heating are performed at the strong nonlinear region,the influence of both local cooling and heating on the FMOB can be neglected.Remarkably,both local heating and cooling can delay the SMOB for different mechanisms.Performing local cooling at the weak nonlinear region of the SMOB,the low amplitude of higher spanwise wavenumber steady mode caused by local cooling lies behind transition delay.When local cooling is set at the strong nonlinear region,the low amplitude of harmonic modes around the cooling area can cause transition delay.Additionally,local heating will suppress the SMOB for the slowing amplification rate of various modes caused by the local heating at both the weak and strong nonlinear stages of the SMOB.展开更多
Due to the heat pipes’ transient conduction,phase change and fluid dynamics during cooling/heating with high frequency charging/discharging of batteries,it is crucial to investigate in depth the experimental dynamic ...Due to the heat pipes’ transient conduction,phase change and fluid dynamics during cooling/heating with high frequency charging/discharging of batteries,it is crucial to investigate in depth the experimental dynamic thermal characteristics in such complex heat transfer processes for more accurate thermal analysis and design of a BTMS. In this paper,the use of ultra?thin micro heat pipe(UMHP) for thermal management of a lithium?ion battery pack in EVs is explored by experiments to reveal the cooling/heating characteristics of the UMHP pack. The cooling performance is evaluated under di erent constant discharging and transient heat inputs conditions. And the heating e ciency is assessed under several sub?zero temperatures through heating films with/without UMHPs. Results show that the pro?posed UMHP BTMS with forced convection can keep the maximum temperature of the pack below 40 °C under 1 ~ 3 C discharging,and e ectively reduced the instant temperature increases and minimize the temperature fluctuation of the pack during transient federal urban driving schedule(FUDS) road conditions. Experimental data also indicate that heating films stuck on the fins of UMHPs brought about adequate high heating e ciency comparing with that stuck on the surface of cells under the same heating power,but has more convenient maintenance and less cost for the BTMS. The experimental dynamic temperature characteristics of UMHP which is found to be a high?e cient and low?energy consumption cooling/heating method for BTMSs,can be performed to guide thermal analysis and optimiza?tion of heat pipe BTMSs.展开更多
By combining the merits of radiative cooling(RC)and evaporation cooling(EC),radiative coupled evaporative cooling(REC)has attracted considerable attention for sub-ambient cooling purposes.However,for outdoor devices,t...By combining the merits of radiative cooling(RC)and evaporation cooling(EC),radiative coupled evaporative cooling(REC)has attracted considerable attention for sub-ambient cooling purposes.However,for outdoor devices,the interior heating power would increase the working temperature and fire risk,which would suppress their above-ambient heat dissipation capabilities and passive water cycle properties.In this work,we introduced a REC design based on an all-in-one photonic hydrogel for above-ambient heat dissipation and flame retardancy.Unlike conventional design RC film for heat dissipation with limited cooling power and fire risk,REC hydrogel can greatly improve the heat dissipation performance in the daytime with a high workload,indicating a 12.0℃lower temperature than the RC film under the same conditions in the outdoor experiment.In the nighttime with a low workload,RC-assisted adsorption can improve atmospheric water harvesting to ensure EC in the daytime.In addition,our REC hydrogel significantly enhanced flame retardancy by absorbing heat without a corresponding temperature rise,thus mitigating fire risks.Thus,our design shows a promising solution for the thermal management of outdoor devices,delivering outstanding performance in both heat dissipation and flame retardancy.展开更多
Friction rolling additive manufacturing(FRAM)is a solid-state additive manufacturing technology that plasticizes the feed and deposits a material using frictional heat generated by the tool head.The thermal efficiency...Friction rolling additive manufacturing(FRAM)is a solid-state additive manufacturing technology that plasticizes the feed and deposits a material using frictional heat generated by the tool head.The thermal efficiency of FRAM,which depends only on friction to generate heat,is low,and the thermal-accumulation effect of the deposition process must be addressed.An FRAM heat-balance-control method that combines plasma-arc preheating and instant water cooling(PC-FRAM)is devised in this study,and a temperature field featuring rapidly increasing and decreasing temperature is constructed around the tool head.Additionally,2195-T87 Al-Li alloy is used as the feed material,and the effects of heating and cooling rates on the microstructure and mechanical properties are investigated.The results show that water cooling significantly improves heat accumulation during the deposition process.The cooling rate increases by 11.7 times,and the high-temperature residence time decreases by more than 50%.The grain size of the PC-FRAM sample is the smallest,i.e.,3.77±1.03μm,its dislocation density is the highest,and the number density of precipitates is the highest,the size of precipitates is the smallest,which shows the best precipitation-strengthening effect.The hardness test results are consistent with the precipitation distribution.The ultimate tensile strength,yield strength and elongation of the PC-FRAM samples are the highest(351±15.6 MPa,251.3±15.8 MPa and 16.25%±1.25%,respectively)among the samples investigated.The preheating and water-cooling-assisted deposition simultaneously increases the tensile strength and elongation of the deposited samples.The combination of preheating and instant cooling improves the deposition efficiency of FRAM and weakens the thermal-softening effect.展开更多
The indoor parameters are generally non-uniform distributed.Consequently,it is important to study the space cooling/heating load oriented to local requirements.Though the influence of indoor set point,heat sources,and...The indoor parameters are generally non-uniform distributed.Consequently,it is important to study the space cooling/heating load oriented to local requirements.Though the influence of indoor set point,heat sources,and ambient temperature of convective thermal boundary on cooling/heating load has been investigated in the uniform environment in previous research,the influence of these factors,particularly the convective heat gain/loss through a building envelope,on cooling/heating load of non-uniform environment has not yet been investigated.Therefore,based on the explicit expression of indoor temperature under the convective boundary condition,the expression of space cooling/heating load with convective heat transfer from the building envelope is derived and compared through case studies.The results can be summarized as follows.(1)The convective heat transferred through the building envelope is significantly related to the airflow patterns:the heating load in the case with ceiling supply air,where the supply air has a smaller contribution to the local zone,is 24%higher than that in the case with bottom supply air.(2)The degree of influence from each thermal boundary to the local zone of space cooling cases is close to that of a uniform environment,while the influence of each factor,particularly that of supply air,is non-uniformly distributed in space heating.(3)It is possible to enhance the influence of supply air and heat source with a reasonable airflow pattern to reduce the space heating load.In general,the findings of this study can be used to guide the energy savings of rooms with non-uniform environments for space cooling/heating.展开更多
The stress-strain behavior of confined concrete under heating and residual conditions has been preliminarily addressed in previous research;however,its behavior at subsequent cooling temperatures after being heated to...The stress-strain behavior of confined concrete under heating and residual conditions has been preliminarily addressed in previous research;however,its behavior at subsequent cooling temperatures after being heated to peak temperature has yet to be thoroughly investigated.It is crucial for determining confined concrete structures’post-fire performance and burnout resistance.The paper presents the fundamental behavior of the confined concrete constitutive parameters and stress-strain curve at subsequent cooling temperatures after being heated to peak temperature.The study includes the stress-stress relationship of a 200 mm diameter cylinder with two distinct confinement spacings of 60 mm and 120 mm.The constitutive parameters for confined concrete were initially determined for a peak heating temperature of 750℃ and then modified to establish the stress-strain relationship for successive cooling temperatures of 500℃,250℃,and ambient temperature.The study results show that confinement has a considerable impact on compressive strength,stiffness,and ductility at ambient and fire conditions.After being heated to peak temperature,the confined concrete compressive strength recovers during successive cooling temperatures,with the recovery dependent on confinement spacing.The established stress-strain relationship can assist in better comprehending structural performance and capacity degradation for different tie spacings,and is useful for the analysis and design of confined RC(reinforced concrete)elements during and after a fire.展开更多
A new ground source heat pump system combined with radiant heating/cooling is proposed, and the principles and the advantages of the system are analyzed. A demonstration of the system is applied to a rebuilt building...A new ground source heat pump system combined with radiant heating/cooling is proposed, and the principles and the advantages of the system are analyzed. A demonstration of the system is applied to a rebuilt building: Xijindu exhibition hall, which is located in Zhenjiang city in China. Numerical studies on the thermal comfort and energy consumption of the system are carded out by using TRNSYS software. The results indicate that the system with the radiant floor method or the radiant ceiling method shows good thermal comfort without mechanical ventilation in winter. However, the system with either of the methods should add mechanical ventilation to ensure good comfort in summer. At the same level of thermal comfort, it can also be found that the annual energy consumption of the radiant ceiling system is less than that of the radiant floor system.展开更多
Radiative cooling textiles with spectrally selective surfaces offer a promising energy-efficient approach for sub-ambient cooling of outdoor objects and individuals.However,the spectrally selective mid-infrared emissi...Radiative cooling textiles with spectrally selective surfaces offer a promising energy-efficient approach for sub-ambient cooling of outdoor objects and individuals.However,the spectrally selective mid-infrared emission of these textiles significantly hinders their efficient radiative heat exchange with self-heated objects,thereby posing a significant challenge to their versatile cooling applicability.Herein,we present a bicomponent blow spinning strategy for the production of scalable,ultra-flexible,and healable textiles featuring a tailored dual gradient in both chemical composition and fiber diameter.The gradient in the fiber diameter of this textile introduces a hierarchically porous structure across the sunlight incident area,thereby achieving a competitive solar reflectivity of 98.7%on its outer surface.Additionally,the gradient in the chemical composition of this textile contributes to the formation of Janus infrared-absorbing surfaces:The outer surface demonstrates a high mid-infrared emission,whereas the inner surface shows a broad infrared absorptivity,facilitating radiative heat exchange with underlying self-heated objects.Consequently,this textile demonstrates multi-scenario radiative cooling capabilities,enabling versatile outdoor cooling for unheated objects by 7.8℃ and self-heated objects by 13.6℃,compared to commercial sunshade fabrics.展开更多
The high-alloyed wrought superalloy GH4975 tends to form coarse MC carbides and eutectic(γ+γ′)phases,which adversely affect the cogging and homogenization process.To provide theoretical guidance for control of MC c...The high-alloyed wrought superalloy GH4975 tends to form coarse MC carbides and eutectic(γ+γ′)phases,which adversely affect the cogging and homogenization process.To provide theoretical guidance for control of MC carbides and eutectic(γ+γ′)formation,differential thermal analysis(DTA)was utilized to investigate the effect of cooing rate(10-90℃·min^(-1))on solidification behavior and micro-segregation of GH4975 alloy.According to the thermodynamic calculation and distribution characteristics of precipitates,the MC carbides can act as nucleation sites forγdendrites,but the nucleation ofγdendrites becomes less dependent on the MC carbide primers at higher cooling rates.As theγdendrites grow,the elements including Ti and Nb gradually accumulate in the residual liquid and leads to the formation of more MC carbides near the interdendritic region.Finally,the solidification is terminated with the formation of eutectic(γ+γ′).With an increase in cooling rate,the liquidus temperature rises,but the solidus temperature decreases,and thus the solidification range is obviously enlarged.The dendritic structure is significantly refined by the increase of cooling rate.The secondary dendrite arm spacing,λ_(2),as a function of cooling rate,T,can be expressed asλ_(2)=216.78T^(-0.42).Moreover,the increasing cooling rate weakens the back diffusion of Al,Ti,and Nb,increases the undercooling,and limits the growth of precipitates.Consequently,the sizes of MC carbides,eutectic(γ+γ′),and primaryγ′significantly decrease,but the area fraction of eutectic(γ+γ′)linerly increases as the cooling rate rises.Thus moderate cooling rate(such as 30℃·min^(-1))should be selected during the solidification process of GH4975 alloy.展开更多
Radiative cooling systems(RCSs)possess the distinctive capability to dissipate heat energy via solar and thermal radiation,making them suitable for thermal regulation and energy conservation applications,essential for...Radiative cooling systems(RCSs)possess the distinctive capability to dissipate heat energy via solar and thermal radiation,making them suitable for thermal regulation and energy conservation applications,essential for mitigating the energy crisis.A comprehensive review connecting the advancements in engineered radiative cooling systems(ERCSs),encompassing material and structural design as well as thermal and energy-related applications,is currently absent.Herein,this review begins with a concise summary of the essential concepts of ERCSs,followed by an introduction to engineered materials and structures,containing nature-inspired designs,chromatic materials,meta-structural configurations,and multilayered constructions.It subsequently encapsulates the primary applications,including thermal-regulating textiles and energy-saving devices.Next,it highlights the challenges of ERCSs,including maximized thermoregulatory effects,environmental adaptability,scalability and sustainability,and interdisciplinary integration.It seeks to offer direction for forthcoming fundamental research and industrial advancement of radiative cooling systems in real-world applications.展开更多
Due to the complex high-temperature characteristics of hydrocarbon fuel,the research on the long-term working process of parallel channel structure under variable working conditions,especially under high heat-mass rat...Due to the complex high-temperature characteristics of hydrocarbon fuel,the research on the long-term working process of parallel channel structure under variable working conditions,especially under high heat-mass ratio,has not been systematically carried out.In this paper,the heat transfer and flow characteristics of related high temperature fuels are studied by using typical engine parallel channel structure.Through numeri⁃cal simulation and systematic experimental verification,the flow and heat transfer characteristics of parallel chan⁃nels under typical working conditions are obtained,and the effectiveness of high-precision calculation method is preliminarily established.It is known that the stable time required for hot start of regenerative cooling engine is about 50 s,and the flow resistance of parallel channel structure first increases and then decreases with the in⁃crease of equivalence ratio(The following equivalence ratio is expressed byΦ),and there is a flow resistance peak in the range ofΦ=0.5~0.8.This is mainly caused by the coupling effect of high temperature physical proper⁃ties,flow rate and pressure of fuel in parallel channels.At the same time,the cooling and heat transfer character⁃istics of parallel channels under some conditions of high heat-mass ratio are obtained,and the main factors affect⁃ing the heat transfer of parallel channels such as improving surface roughness and strengthening heat transfer are mastered.In the experiment,whenΦis less than 0.9,the phenomenon of local heat transfer enhancement and deterioration can be obviously observed,and the temperature rise of local structures exceeds 200℃,which is the risk of structural damage.Therefore,the reliability of long-term parallel channel structure under the condition of high heat-mass ratio should be fully considered in structural design.展开更多
Flash Joule heating(FJH),as a high-efficiency and low-energy consumption technology for advanced materials synthesis,has shown significant potential in the synthesis of graphene and other functional carbon materials.B...Flash Joule heating(FJH),as a high-efficiency and low-energy consumption technology for advanced materials synthesis,has shown significant potential in the synthesis of graphene and other functional carbon materials.Based on the Joule effect,the solid carbon sources can be rapidly heated to ultra-high temperatures(>3000 K)through instantaneous high-energy current pulses during FJH,thus driving the rapid rearrangement and graphitization of carbon atoms.This technology demonstrates numerous advantages,such as solvent-and catalyst-free features,high energy conversion efficiency,and a short process cycle.In this review,we have systematically summarized the technology principle and equipment design for FJH,as well as its raw materials selection and pretreatment strategies.The research progress in the FJH synthesis of flash graphene,carbon nanotubes,graphene fibers,and anode hard carbon,as well as its by-products,is also presented.FJH can precisely optimize the microstructures of carbon materials(e.g.,interlayer spacing of turbostratic graphene,defect concentration,and heteroatom doping)by regulating its operation parameters like flash voltage and flash time,thereby enhancing their performances in various applications,such as composite reinforcement,metal-ion battery electrodes,supercapacitors,and electrocatalysts.However,this technology is still challenged by low process yield,macroscopic material uniformity,and green power supply system construction.More research efforts are also required to promote the transition of FJH from laboratory to industrial-scale applications,thus providing innovative solutions for advanced carbon materials manufacturing and waste management toward carbon neutrality.展开更多
This study develops an analytical model to evaluate the cooling performance of a porous terracotta tubular direct evaporative heat and mass exchanger. By combining energy and mass balance equations with heat and mass ...This study develops an analytical model to evaluate the cooling performance of a porous terracotta tubular direct evaporative heat and mass exchanger. By combining energy and mass balance equations with heat and mass transfer coefficients and air psychrometric correlations, the model provides insights into the impact of design and operational parameters on the exchanger cooling performance. Validated against an established numerical model, it accurately simulates cooling behavior with a Root Mean Square Deviation of 0.43 - 1.18˚C under varying inlet air conditions. The results show that tube geometry, including equivalent diameter, flatness ratio, and length significantly influences cooling outcomes. Smaller diameters enhance wet-bulb effectiveness but reduce cooling capacity, while increased flatness and length improve both. For example, extending the flatness ratio of a 15 mm diameter, 0.6 m long tube from 1 (circular) to 4 raises the exchange surface area from 0.028 to 0.037 m2, increasing wet-bulb effectiveness from 60% to 71%. Recommended diameters range from 5 mm for tubes under 0.5 m to 1 cm for tubes 0.5 to 1 m in length. Optimal air velocities depend on tube length: 1 m/s for tubes under 0.8 m, 1.5 m/s for lengths of 0.8 to 1.2 m, and up to 2 m/s for longer tubes. This model offers a practical alternative to complex numerical and CFD methods, with potential applications in cooling tower optimization for thermal and nuclear power plants and geothermal heat exchangers.展开更多
To improve the thermal performance and temperature uniformity of battery pack,this paper presents a novel battery thermal management system(BTMS)that integrates oscillating heat pipe(OHP)technology with liquid cooling...To improve the thermal performance and temperature uniformity of battery pack,this paper presents a novel battery thermal management system(BTMS)that integrates oscillating heat pipe(OHP)technology with liquid cooling.The primary innovation of the new hybrid BTMS lies in the use of an OHP with vertically arranged evaporator and condenser,enabling dual heat transfer pathways through liquid cooling plate and OHP.This study experimentally investigates the performance characteristics of the⊥-shaped OHP and hybrid BTMS.Results show that lower filling ratios significantly enhance the OHP’s startup performance but reduce operational stability,with optimal performance achieved at a 26.1%filling ratio.Acetone,as a single working fluid,exhibited superior heat transfer performance under low-load conditions compared to mixed fluids,while the acetone/ethanol mixture,forming a non-azeotropic solution,minimized temperature fluctuations.At 100 W,the⊥-shaped OHP with a horizontally arranged evaporator demonstrated better heat transfer performance than 2D-OHP designs.Compared to a liquid BTMS using water coolant at 280 W,the hybrid BTMS reduced the equivalent thermal resistance(RBTMS)and maximum temperature difference(ΔTmax)by 8.06%and 19.1%,respectively.When graphene nanofluid was used as the coolant in hybrid BTMS,the battery pack’s average temperature(Tb)dropped from 52.2℃ to 47.9℃,with RBTMS andΔTmax decreasing by 20.1%and 32.7%,respectively.These findings underscore the hybrid BTMS’s suitability for high heat load applications,offering a promising solution for electric vehicle thermal management.展开更多
This study investigates the feasibility of a novel dual two-phase cooling system for thermal management in lithium-ion batteries used in electric vehicles(EVs).The proposed system aims to combine low-boiling dielectri...This study investigates the feasibility of a novel dual two-phase cooling system for thermal management in lithium-ion batteries used in electric vehicles(EVs).The proposed system aims to combine low-boiling dielectric fluid immersion cooling and pulsating heat pipes(PHPs),in order to leverage the advantages of both technologies for efficient heat dissipation in a completely passive configuration.Experimental evaluations conducted under different discharge conditions demonstrate that the systemeffectivelymaintains battery temperatureswithin the optimal range of 20–40℃,with enhanced temperature uniformity and stability.While the PHP exhibited minimal impact at low power,its role became critical under higher discharge rates,ensuring efficient vapor condensation and pressure stability.The results highlight the potential of this passive cooling system to improve battery performance and safety,supporting its application in EV battery thermal management.Future work aims to optimize design parameters and evaluate real battery modules under ultra-fast charging scenarios.展开更多
Optimizing the microchannel design of the next generation of chips requires an understanding of the in situ property evolution of the chip-based materials under fast cooling.This work overcomes the conventional relian...Optimizing the microchannel design of the next generation of chips requires an understanding of the in situ property evolution of the chip-based materials under fast cooling.This work overcomes the conventional reliance on reheating data of melt-quenched glasses by demonstrating direct observations of glass transition on cooling curves utilizing the most advanced fast differential scanning calorimetry.By leveraging an MEMS chip sensor that allows for rapid heat extraction from microgram-sized samples to a purged gas coolant,the device is able to reach ultra-fast cooling rates of up to 40,000 K·s^(−1).Four thermal regions are identified by examining the cooling behaviors of two metallic glasses.This is because the actual rate of the specimen can differ from the programmed rate,especially at high set rate when the actual rate decreases before the glass transition is completed.We define the operational window for reliable cooling curve analysis,build models with empirical and theoretical analyses to determine the maximum feasible cooling rate,and demonstrate how optimizing sample mass and environment temperature broaden this window.The method avoids deceptive structural relaxation effects verified by fictivetemperature analysis and permits the capture of full glass transition during cooling.展开更多
Future changes of heating degree days (HDD) and cooling degree days (CDD) in the 21st century with and without considering populationfactor are investigated based on four sets of climate change simulations over Ea...Future changes of heating degree days (HDD) and cooling degree days (CDD) in the 21st century with and without considering populationfactor are investigated based on four sets of climate change simulations over East Asia using the regional climate model version 4.4 (RegCM4.4)driven by the global models of CSIRO-Mk3-6-0, EC-EARTH, HadGEM2-ES, and MPI-ESM-MR. Under global warming of 1.5℃, 2℃, 3℃,and 4℃, significant decrease of HDD can be found over China without considering population factor, with greater decrease over high elevationand high latitude regions, including the Tibetan Plateau, the northern part of Northeast China, and Northwest China; while population-weightedHDD increased in areas where population will increase in the future, such as Beijing, Tianjin, parts of southern Hebei, northern Shandong andHenan provinces. Similarly, the CDD projections with and without considering population factor are largely different. Specifically, withoutconsidering population, increase of CDD were observed over most parts of China except the Tibetan Plateau where the CDD remained zerobecause of the cold climate even under global warming; while considering population factor, the future CDD decreases in South China andincreases in North China, the Sichuan Basin, and the southeastern coastal areas, which is directly related to the population changes. The differentfuture changes of HDD and CDD when considering and disregarding the effects of population show that population distribution plays animportant role in energy consumption, which should be considered in future research.展开更多
基金National Natural Science Foundation of China,Grant/Award Number:52003248Henan Province Youth Health Science and Technology Innovation Talent Training Program,Grant/Award Number:YQRC2023007+1 种基金Henan Province Excellent Youth Science Fund,Grant/Award Number:242300421064Joint Fund Predominant Discipline Cultivation Project of Henan Province,Grant/Award Number:232301420036.
文摘Switchable radiative cooling/heating holds great promise for mitigating the global energy and environmental crisis.Here,we reported a cost-effective,high-strength Janus film through surface optical engineering waste paper with one side decorated by a hydrophobic polymeric cooling coating consisting of micro/nanopore/particle hierarchical structure and the other side coated with hydrophilic MXene nanosheets for heating.The cooling surface demonstrates high solar reflectivity(96.3%)and infrared emissivity(95.5%),resulting in daytime/nighttime sub-ambient radiative cooling of 6℃/8℃with the theoretical cooling power of 100.6 and 138.5Wm^(−2),respectively.The heating surface exhibits high solar absorptivity(83.7%)and low infrared emissivity(15.2%),resulting in excellent radiative heating capacity for vehicle charging pile(~6.2℃)and solar heating performance.Impressively,the mechanical strength of Janus film increased greatly by 563%compared with that of pristine waste paper,which is helpful for its practical applications in various scenarios for switchable radiative thermal management through mechanical flipping.Energy-saving simulation results reveal that significant total energy savings of up to 32.4MJm^(−2) can be achieved annually(corresponding to the 12.4%saving ratio),showing the immense importance of reducing carbon footprint and promoting carbon neutrality.
文摘The knowledge representation mode and inference control strategy were analyzed according to the specialties of air-conditioning cooling/heating sources selection. The constructing idea and working procedure for knowledge base and inference engine were proposed while the realization technique of the C language was discussed. An intelligent decision support system (IDSS) model based on such knowledge representation and inference mechanism was developed by domain engineers. The model was verified to have a small kernel and powerful capability in list processing and data driving, which was successfully used in the design of a cooling/heating sources system for a large-sized office building.
基金supported by the National Natural Science Foundation of China(No.11721202)。
文摘The influence of local cooling/heating on two types of nonlinear instabilities of the high-speed boundary layer,namely,the First and Second Mode Oblique Breakdown(FMOB and SMOB),is studied using direct numerical simulations.Local cooling and heating are performed at the weak and strong nonlinear stages of the two types of nonlinear instabilities.It is found that for the FMOB,local cooling at the weak nonlinear region will suppress the increase of the fundamental mode,leading to transition delay.Opposite to local cooling,local heating at the weak nonlinear region of the FMOB will promote the growth of the fundamental mode,resulting in the occurrence of more upstream transition onset.However,if local cooling and heating are performed at the strong nonlinear region,the influence of both local cooling and heating on the FMOB can be neglected.Remarkably,both local heating and cooling can delay the SMOB for different mechanisms.Performing local cooling at the weak nonlinear region of the SMOB,the low amplitude of higher spanwise wavenumber steady mode caused by local cooling lies behind transition delay.When local cooling is set at the strong nonlinear region,the low amplitude of harmonic modes around the cooling area can cause transition delay.Additionally,local heating will suppress the SMOB for the slowing amplification rate of various modes caused by the local heating at both the weak and strong nonlinear stages of the SMOB.
基金Supported by National Natural Science Foundation of China(Grant No.51775193)Guangdong Provincial Science and Technology Planning Project of China(Grant Nos.2014B010125001,2014B010106002,2016A050503021)Guangzhou Municipal Science and Technology Planning Project of China(Grant No.201707020045)
文摘Due to the heat pipes’ transient conduction,phase change and fluid dynamics during cooling/heating with high frequency charging/discharging of batteries,it is crucial to investigate in depth the experimental dynamic thermal characteristics in such complex heat transfer processes for more accurate thermal analysis and design of a BTMS. In this paper,the use of ultra?thin micro heat pipe(UMHP) for thermal management of a lithium?ion battery pack in EVs is explored by experiments to reveal the cooling/heating characteristics of the UMHP pack. The cooling performance is evaluated under di erent constant discharging and transient heat inputs conditions. And the heating e ciency is assessed under several sub?zero temperatures through heating films with/without UMHPs. Results show that the pro?posed UMHP BTMS with forced convection can keep the maximum temperature of the pack below 40 °C under 1 ~ 3 C discharging,and e ectively reduced the instant temperature increases and minimize the temperature fluctuation of the pack during transient federal urban driving schedule(FUDS) road conditions. Experimental data also indicate that heating films stuck on the fins of UMHPs brought about adequate high heating e ciency comparing with that stuck on the surface of cells under the same heating power,but has more convenient maintenance and less cost for the BTMS. The experimental dynamic temperature characteristics of UMHP which is found to be a high?e cient and low?energy consumption cooling/heating method for BTMSs,can be performed to guide thermal analysis and optimiza?tion of heat pipe BTMSs.
基金financially supported by the Science and Technology Innovation Program of Hunan Province(2024RC3003)the Central South University Innovation-Driven Research Programme(2023CXQD012)the Initiative for Sustainable Energy for its financial support。
文摘By combining the merits of radiative cooling(RC)and evaporation cooling(EC),radiative coupled evaporative cooling(REC)has attracted considerable attention for sub-ambient cooling purposes.However,for outdoor devices,the interior heating power would increase the working temperature and fire risk,which would suppress their above-ambient heat dissipation capabilities and passive water cycle properties.In this work,we introduced a REC design based on an all-in-one photonic hydrogel for above-ambient heat dissipation and flame retardancy.Unlike conventional design RC film for heat dissipation with limited cooling power and fire risk,REC hydrogel can greatly improve the heat dissipation performance in the daytime with a high workload,indicating a 12.0℃lower temperature than the RC film under the same conditions in the outdoor experiment.In the nighttime with a low workload,RC-assisted adsorption can improve atmospheric water harvesting to ensure EC in the daytime.In addition,our REC hydrogel significantly enhanced flame retardancy by absorbing heat without a corresponding temperature rise,thus mitigating fire risks.Thus,our design shows a promising solution for the thermal management of outdoor devices,delivering outstanding performance in both heat dissipation and flame retardancy.
基金supported by the National Natural Science Foundation of China(Nos.52275299,52105313)R&D Program of Beijing Municipal Education Commission(No.KM202210005036)+1 种基金Natural Science Foundation of Chongqing,China(No.CSTB2023NSCQ-MSX0701)National Defense Basic Research Projects of China(No.JCKY2022405C002).
文摘Friction rolling additive manufacturing(FRAM)is a solid-state additive manufacturing technology that plasticizes the feed and deposits a material using frictional heat generated by the tool head.The thermal efficiency of FRAM,which depends only on friction to generate heat,is low,and the thermal-accumulation effect of the deposition process must be addressed.An FRAM heat-balance-control method that combines plasma-arc preheating and instant water cooling(PC-FRAM)is devised in this study,and a temperature field featuring rapidly increasing and decreasing temperature is constructed around the tool head.Additionally,2195-T87 Al-Li alloy is used as the feed material,and the effects of heating and cooling rates on the microstructure and mechanical properties are investigated.The results show that water cooling significantly improves heat accumulation during the deposition process.The cooling rate increases by 11.7 times,and the high-temperature residence time decreases by more than 50%.The grain size of the PC-FRAM sample is the smallest,i.e.,3.77±1.03μm,its dislocation density is the highest,and the number density of precipitates is the highest,the size of precipitates is the smallest,which shows the best precipitation-strengthening effect.The hardness test results are consistent with the precipitation distribution.The ultimate tensile strength,yield strength and elongation of the PC-FRAM samples are the highest(351±15.6 MPa,251.3±15.8 MPa and 16.25%±1.25%,respectively)among the samples investigated.The preheating and water-cooling-assisted deposition simultaneously increases the tensile strength and elongation of the deposited samples.The combination of preheating and instant cooling improves the deposition efficiency of FRAM and weakens the thermal-softening effect.
基金supported by the National Natural Science Foundation of China(No.51638010 and No.51578306).
文摘The indoor parameters are generally non-uniform distributed.Consequently,it is important to study the space cooling/heating load oriented to local requirements.Though the influence of indoor set point,heat sources,and ambient temperature of convective thermal boundary on cooling/heating load has been investigated in the uniform environment in previous research,the influence of these factors,particularly the convective heat gain/loss through a building envelope,on cooling/heating load of non-uniform environment has not yet been investigated.Therefore,based on the explicit expression of indoor temperature under the convective boundary condition,the expression of space cooling/heating load with convective heat transfer from the building envelope is derived and compared through case studies.The results can be summarized as follows.(1)The convective heat transferred through the building envelope is significantly related to the airflow patterns:the heating load in the case with ceiling supply air,where the supply air has a smaller contribution to the local zone,is 24%higher than that in the case with bottom supply air.(2)The degree of influence from each thermal boundary to the local zone of space cooling cases is close to that of a uniform environment,while the influence of each factor,particularly that of supply air,is non-uniformly distributed in space heating.(3)It is possible to enhance the influence of supply air and heat source with a reasonable airflow pattern to reduce the space heating load.In general,the findings of this study can be used to guide the energy savings of rooms with non-uniform environments for space cooling/heating.
文摘The stress-strain behavior of confined concrete under heating and residual conditions has been preliminarily addressed in previous research;however,its behavior at subsequent cooling temperatures after being heated to peak temperature has yet to be thoroughly investigated.It is crucial for determining confined concrete structures’post-fire performance and burnout resistance.The paper presents the fundamental behavior of the confined concrete constitutive parameters and stress-strain curve at subsequent cooling temperatures after being heated to peak temperature.The study includes the stress-stress relationship of a 200 mm diameter cylinder with two distinct confinement spacings of 60 mm and 120 mm.The constitutive parameters for confined concrete were initially determined for a peak heating temperature of 750℃ and then modified to establish the stress-strain relationship for successive cooling temperatures of 500℃,250℃,and ambient temperature.The study results show that confinement has a considerable impact on compressive strength,stiffness,and ductility at ambient and fire conditions.After being heated to peak temperature,the confined concrete compressive strength recovers during successive cooling temperatures,with the recovery dependent on confinement spacing.The established stress-strain relationship can assist in better comprehending structural performance and capacity degradation for different tie spacings,and is useful for the analysis and design of confined RC(reinforced concrete)elements during and after a fire.
基金The National Natural Science Foundation of China(No. 51036001 )the Natural Science Foundation of Jiangsu Province(No. BK2010043)
文摘A new ground source heat pump system combined with radiant heating/cooling is proposed, and the principles and the advantages of the system are analyzed. A demonstration of the system is applied to a rebuilt building: Xijindu exhibition hall, which is located in Zhenjiang city in China. Numerical studies on the thermal comfort and energy consumption of the system are carded out by using TRNSYS software. The results indicate that the system with the radiant floor method or the radiant ceiling method shows good thermal comfort without mechanical ventilation in winter. However, the system with either of the methods should add mechanical ventilation to ensure good comfort in summer. At the same level of thermal comfort, it can also be found that the annual energy consumption of the radiant ceiling system is less than that of the radiant floor system.
基金financial support from the National Natural Science Foundation of China(Grant No.52273067,52233006)the Fundamental Research Funds for the Central Universities(Grant No.2232023A-03)+3 种基金the Shuguang Program of Shanghai Education Development Foundation and Shanghai Municipal Education Commission(Grant No.23SG29)the Natural Science Foundation of Shanghai(Grant No.24ZR1402400)the Shanghai Scientific and Technological Innovation Project(Grant No.24520713000)Innovation Program of Shanghai Municipal Education Commission(Grant No.2021-01-07-00-03-E00108).
文摘Radiative cooling textiles with spectrally selective surfaces offer a promising energy-efficient approach for sub-ambient cooling of outdoor objects and individuals.However,the spectrally selective mid-infrared emission of these textiles significantly hinders their efficient radiative heat exchange with self-heated objects,thereby posing a significant challenge to their versatile cooling applicability.Herein,we present a bicomponent blow spinning strategy for the production of scalable,ultra-flexible,and healable textiles featuring a tailored dual gradient in both chemical composition and fiber diameter.The gradient in the fiber diameter of this textile introduces a hierarchically porous structure across the sunlight incident area,thereby achieving a competitive solar reflectivity of 98.7%on its outer surface.Additionally,the gradient in the chemical composition of this textile contributes to the formation of Janus infrared-absorbing surfaces:The outer surface demonstrates a high mid-infrared emission,whereas the inner surface shows a broad infrared absorptivity,facilitating radiative heat exchange with underlying self-heated objects.Consequently,this textile demonstrates multi-scenario radiative cooling capabilities,enabling versatile outdoor cooling for unheated objects by 7.8℃ and self-heated objects by 13.6℃,compared to commercial sunshade fabrics.
基金financially supported by the National Natural Science Foundation of China(Grant Nos.52474362,52174317 and 51904146)the General Project Funded by Liaoning Province Education Department(Grant No.JYTMS20230943)。
文摘The high-alloyed wrought superalloy GH4975 tends to form coarse MC carbides and eutectic(γ+γ′)phases,which adversely affect the cogging and homogenization process.To provide theoretical guidance for control of MC carbides and eutectic(γ+γ′)formation,differential thermal analysis(DTA)was utilized to investigate the effect of cooing rate(10-90℃·min^(-1))on solidification behavior and micro-segregation of GH4975 alloy.According to the thermodynamic calculation and distribution characteristics of precipitates,the MC carbides can act as nucleation sites forγdendrites,but the nucleation ofγdendrites becomes less dependent on the MC carbide primers at higher cooling rates.As theγdendrites grow,the elements including Ti and Nb gradually accumulate in the residual liquid and leads to the formation of more MC carbides near the interdendritic region.Finally,the solidification is terminated with the formation of eutectic(γ+γ′).With an increase in cooling rate,the liquidus temperature rises,but the solidus temperature decreases,and thus the solidification range is obviously enlarged.The dendritic structure is significantly refined by the increase of cooling rate.The secondary dendrite arm spacing,λ_(2),as a function of cooling rate,T,can be expressed asλ_(2)=216.78T^(-0.42).Moreover,the increasing cooling rate weakens the back diffusion of Al,Ti,and Nb,increases the undercooling,and limits the growth of precipitates.Consequently,the sizes of MC carbides,eutectic(γ+γ′),and primaryγ′significantly decrease,but the area fraction of eutectic(γ+γ′)linerly increases as the cooling rate rises.Thus moderate cooling rate(such as 30℃·min^(-1))should be selected during the solidification process of GH4975 alloy.
基金support from the Contract Research(“Development of Breathable Fabrics with Nano-Electrospun Membrane”,CityU ref.:9231419“Research and application of antibacterial and healing-promoting smart nanofiber dressing for children’s burn wounds”,CityU ref:PJ9240111)+1 种基金the National Natural Science Foundation of China(“Study of Multi-Responsive Shape Memory Polyurethane Nanocomposites Inspired by Natural Fibers”,Grant No.51673162)Startup Grant of CityU(“Laboratory of Wearable Materials for Healthcare”,Grant No.9380116).
文摘Radiative cooling systems(RCSs)possess the distinctive capability to dissipate heat energy via solar and thermal radiation,making them suitable for thermal regulation and energy conservation applications,essential for mitigating the energy crisis.A comprehensive review connecting the advancements in engineered radiative cooling systems(ERCSs),encompassing material and structural design as well as thermal and energy-related applications,is currently absent.Herein,this review begins with a concise summary of the essential concepts of ERCSs,followed by an introduction to engineered materials and structures,containing nature-inspired designs,chromatic materials,meta-structural configurations,and multilayered constructions.It subsequently encapsulates the primary applications,including thermal-regulating textiles and energy-saving devices.Next,it highlights the challenges of ERCSs,including maximized thermoregulatory effects,environmental adaptability,scalability and sustainability,and interdisciplinary integration.It seeks to offer direction for forthcoming fundamental research and industrial advancement of radiative cooling systems in real-world applications.
文摘Due to the complex high-temperature characteristics of hydrocarbon fuel,the research on the long-term working process of parallel channel structure under variable working conditions,especially under high heat-mass ratio,has not been systematically carried out.In this paper,the heat transfer and flow characteristics of related high temperature fuels are studied by using typical engine parallel channel structure.Through numeri⁃cal simulation and systematic experimental verification,the flow and heat transfer characteristics of parallel chan⁃nels under typical working conditions are obtained,and the effectiveness of high-precision calculation method is preliminarily established.It is known that the stable time required for hot start of regenerative cooling engine is about 50 s,and the flow resistance of parallel channel structure first increases and then decreases with the in⁃crease of equivalence ratio(The following equivalence ratio is expressed byΦ),and there is a flow resistance peak in the range ofΦ=0.5~0.8.This is mainly caused by the coupling effect of high temperature physical proper⁃ties,flow rate and pressure of fuel in parallel channels.At the same time,the cooling and heat transfer character⁃istics of parallel channels under some conditions of high heat-mass ratio are obtained,and the main factors affect⁃ing the heat transfer of parallel channels such as improving surface roughness and strengthening heat transfer are mastered.In the experiment,whenΦis less than 0.9,the phenomenon of local heat transfer enhancement and deterioration can be obviously observed,and the temperature rise of local structures exceeds 200℃,which is the risk of structural damage.Therefore,the reliability of long-term parallel channel structure under the condition of high heat-mass ratio should be fully considered in structural design.
基金supported by the National Natural Science Foundation of China(52276196)the Foundation of State Key Laboratory of Coal Combustion(FSKLCCA2508)the High-level Talent Foundation of Anhui Agricultural University(rc412307).
文摘Flash Joule heating(FJH),as a high-efficiency and low-energy consumption technology for advanced materials synthesis,has shown significant potential in the synthesis of graphene and other functional carbon materials.Based on the Joule effect,the solid carbon sources can be rapidly heated to ultra-high temperatures(>3000 K)through instantaneous high-energy current pulses during FJH,thus driving the rapid rearrangement and graphitization of carbon atoms.This technology demonstrates numerous advantages,such as solvent-and catalyst-free features,high energy conversion efficiency,and a short process cycle.In this review,we have systematically summarized the technology principle and equipment design for FJH,as well as its raw materials selection and pretreatment strategies.The research progress in the FJH synthesis of flash graphene,carbon nanotubes,graphene fibers,and anode hard carbon,as well as its by-products,is also presented.FJH can precisely optimize the microstructures of carbon materials(e.g.,interlayer spacing of turbostratic graphene,defect concentration,and heteroatom doping)by regulating its operation parameters like flash voltage and flash time,thereby enhancing their performances in various applications,such as composite reinforcement,metal-ion battery electrodes,supercapacitors,and electrocatalysts.However,this technology is still challenged by low process yield,macroscopic material uniformity,and green power supply system construction.More research efforts are also required to promote the transition of FJH from laboratory to industrial-scale applications,thus providing innovative solutions for advanced carbon materials manufacturing and waste management toward carbon neutrality.
文摘This study develops an analytical model to evaluate the cooling performance of a porous terracotta tubular direct evaporative heat and mass exchanger. By combining energy and mass balance equations with heat and mass transfer coefficients and air psychrometric correlations, the model provides insights into the impact of design and operational parameters on the exchanger cooling performance. Validated against an established numerical model, it accurately simulates cooling behavior with a Root Mean Square Deviation of 0.43 - 1.18˚C under varying inlet air conditions. The results show that tube geometry, including equivalent diameter, flatness ratio, and length significantly influences cooling outcomes. Smaller diameters enhance wet-bulb effectiveness but reduce cooling capacity, while increased flatness and length improve both. For example, extending the flatness ratio of a 15 mm diameter, 0.6 m long tube from 1 (circular) to 4 raises the exchange surface area from 0.028 to 0.037 m2, increasing wet-bulb effectiveness from 60% to 71%. Recommended diameters range from 5 mm for tubes under 0.5 m to 1 cm for tubes 0.5 to 1 m in length. Optimal air velocities depend on tube length: 1 m/s for tubes under 0.8 m, 1.5 m/s for lengths of 0.8 to 1.2 m, and up to 2 m/s for longer tubes. This model offers a practical alternative to complex numerical and CFD methods, with potential applications in cooling tower optimization for thermal and nuclear power plants and geothermal heat exchangers.
基金funded by the Science and Technology Research Project of Jiangxi Provincial Department of Education(GJJ2404911)the Ministry of Higher Education,Malaysia through the Fundamental Research Grant Scheme:FRGS/1/2024/TK10/UMP/02/15 and Universiti Malaysia Pahang Al-Sultan Abdullah(RDU240117).
文摘To improve the thermal performance and temperature uniformity of battery pack,this paper presents a novel battery thermal management system(BTMS)that integrates oscillating heat pipe(OHP)technology with liquid cooling.The primary innovation of the new hybrid BTMS lies in the use of an OHP with vertically arranged evaporator and condenser,enabling dual heat transfer pathways through liquid cooling plate and OHP.This study experimentally investigates the performance characteristics of the⊥-shaped OHP and hybrid BTMS.Results show that lower filling ratios significantly enhance the OHP’s startup performance but reduce operational stability,with optimal performance achieved at a 26.1%filling ratio.Acetone,as a single working fluid,exhibited superior heat transfer performance under low-load conditions compared to mixed fluids,while the acetone/ethanol mixture,forming a non-azeotropic solution,minimized temperature fluctuations.At 100 W,the⊥-shaped OHP with a horizontally arranged evaporator demonstrated better heat transfer performance than 2D-OHP designs.Compared to a liquid BTMS using water coolant at 280 W,the hybrid BTMS reduced the equivalent thermal resistance(RBTMS)and maximum temperature difference(ΔTmax)by 8.06%and 19.1%,respectively.When graphene nanofluid was used as the coolant in hybrid BTMS,the battery pack’s average temperature(Tb)dropped from 52.2℃ to 47.9℃,with RBTMS andΔTmax decreasing by 20.1%and 32.7%,respectively.These findings underscore the hybrid BTMS’s suitability for high heat load applications,offering a promising solution for electric vehicle thermal management.
基金National Recovery and Resilience Plan(NRRP)Mission 4 Component 2 Investment 1.5-Call for tender No.3277 of 30/12/2021 of Italian Ministry of University and Research funded by the European Union-NextGenerationEU(Award Number:Project code ECS00000033,Concession Decree No.1052 of 23 June 2022 adopted by the Italian Ministry of,CUP D93C22000460001,“Ecosystem for Sustainable Transition in Emilia-Romagna”(Ecosister)).
文摘This study investigates the feasibility of a novel dual two-phase cooling system for thermal management in lithium-ion batteries used in electric vehicles(EVs).The proposed system aims to combine low-boiling dielectric fluid immersion cooling and pulsating heat pipes(PHPs),in order to leverage the advantages of both technologies for efficient heat dissipation in a completely passive configuration.Experimental evaluations conducted under different discharge conditions demonstrate that the systemeffectivelymaintains battery temperatureswithin the optimal range of 20–40℃,with enhanced temperature uniformity and stability.While the PHP exhibited minimal impact at low power,its role became critical under higher discharge rates,ensuring efficient vapor condensation and pressure stability.The results highlight the potential of this passive cooling system to improve battery performance and safety,supporting its application in EV battery thermal management.Future work aims to optimize design parameters and evaluate real battery modules under ultra-fast charging scenarios.
基金supported by the National Natural Science Foundation of China (Grant Nos.92580120 and 52471188)。
文摘Optimizing the microchannel design of the next generation of chips requires an understanding of the in situ property evolution of the chip-based materials under fast cooling.This work overcomes the conventional reliance on reheating data of melt-quenched glasses by demonstrating direct observations of glass transition on cooling curves utilizing the most advanced fast differential scanning calorimetry.By leveraging an MEMS chip sensor that allows for rapid heat extraction from microgram-sized samples to a purged gas coolant,the device is able to reach ultra-fast cooling rates of up to 40,000 K·s^(−1).Four thermal regions are identified by examining the cooling behaviors of two metallic glasses.This is because the actual rate of the specimen can differ from the programmed rate,especially at high set rate when the actual rate decreases before the glass transition is completed.We define the operational window for reliable cooling curve analysis,build models with empirical and theoretical analyses to determine the maximum feasible cooling rate,and demonstrate how optimizing sample mass and environment temperature broaden this window.The method avoids deceptive structural relaxation effects verified by fictivetemperature analysis and permits the capture of full glass transition during cooling.
基金supported by Major International(Regional)Joint Research Project of the National Natural Science Foundation of China(61320106011)National High Technology Research and Development Program of China(863 Program)(2014AA052802)National Natural Science Foundation of China(61573224)
文摘Future changes of heating degree days (HDD) and cooling degree days (CDD) in the 21st century with and without considering populationfactor are investigated based on four sets of climate change simulations over East Asia using the regional climate model version 4.4 (RegCM4.4)driven by the global models of CSIRO-Mk3-6-0, EC-EARTH, HadGEM2-ES, and MPI-ESM-MR. Under global warming of 1.5℃, 2℃, 3℃,and 4℃, significant decrease of HDD can be found over China without considering population factor, with greater decrease over high elevationand high latitude regions, including the Tibetan Plateau, the northern part of Northeast China, and Northwest China; while population-weightedHDD increased in areas where population will increase in the future, such as Beijing, Tianjin, parts of southern Hebei, northern Shandong andHenan provinces. Similarly, the CDD projections with and without considering population factor are largely different. Specifically, withoutconsidering population, increase of CDD were observed over most parts of China except the Tibetan Plateau where the CDD remained zerobecause of the cold climate even under global warming; while considering population factor, the future CDD decreases in South China andincreases in North China, the Sichuan Basin, and the southeastern coastal areas, which is directly related to the population changes. The differentfuture changes of HDD and CDD when considering and disregarding the effects of population show that population distribution plays animportant role in energy consumption, which should be considered in future research.