期刊文献+
共找到139,828篇文章
< 1 2 250 >
每页显示 20 50 100
Experiments on image data augmentation techniques for geological rock type classification with convolutional neural networks 被引量:1
1
作者 Afshin Tatar Manouchehr Haghighi Abbas Zeinijahromi 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第1期106-125,共20页
The integration of image analysis through deep learning(DL)into rock classification represents a significant leap forward in geological research.While traditional methods remain invaluable for their expertise and hist... The integration of image analysis through deep learning(DL)into rock classification represents a significant leap forward in geological research.While traditional methods remain invaluable for their expertise and historical context,DL offers a powerful complement by enhancing the speed,objectivity,and precision of the classification process.This research explores the significance of image data augmentation techniques in optimizing the performance of convolutional neural networks(CNNs)for geological image analysis,particularly in the classification of igneous,metamorphic,and sedimentary rock types from rock thin section(RTS)images.This study primarily focuses on classic image augmentation techniques and evaluates their impact on model accuracy and precision.Results demonstrate that augmentation techniques like Equalize significantly enhance the model's classification capabilities,achieving an F1-Score of 0.9869 for igneous rocks,0.9884 for metamorphic rocks,and 0.9929 for sedimentary rocks,representing improvements compared to the baseline original results.Moreover,the weighted average F1-Score across all classes and techniques is 0.9886,indicating an enhancement.Conversely,methods like Distort lead to decreased accuracy and F1-Score,with an F1-Score of 0.949 for igneous rocks,0.954 for metamorphic rocks,and 0.9416 for sedimentary rocks,exacerbating the performance compared to the baseline.The study underscores the practicality of image data augmentation in geological image classification and advocates for the adoption of DL methods in this domain for automation and improved results.The findings of this study can benefit various fields,including remote sensing,mineral exploration,and environmental monitoring,by enhancing the accuracy of geological image analysis both for scientific research and industrial applications. 展开更多
关键词 Deep learning(DL) Image analysis Image data augmentation convolutional neural networks(CNNs) Geological image analysis Rock classification Rock thin section(RTS)images
在线阅读 下载PDF
Identification and distribution patterns of the ultra-deep small-scale strike-slip faults based on convolutional neural network in Tarim Basin,NW China 被引量:1
2
作者 Hao Li Jun Han +4 位作者 Cheng Huang Lian-Bo Zeng Bo Lin Ying-Tao Yao Yi-Chen Song 《Petroleum Science》 2025年第8期3152-3167,共16页
The isolated fracture-vug systems controlled by small-scale strike-slip faults within ultra-deep carbonate rocks of the Tarim Basin exhibit significant exploration potential.The study employs a novel training set inco... The isolated fracture-vug systems controlled by small-scale strike-slip faults within ultra-deep carbonate rocks of the Tarim Basin exhibit significant exploration potential.The study employs a novel training set incorporating innovative fault labels to train a U-Net-structured CNN model,enabling effective identification of small-scale strike-slip faults through seismic data interpretation.Based on the CNN faults,we analyze the distribution patterns of small-scale strike-slip faults.The small-scale strike-slip faults can be categorized into NNW-trending and NE-trending groups with strike lengths ranging 200–5000 m.The development intensity of small-scale strike-slip faults in the Lower Yingshan Member notably exceeds that in the Upper Member.The Lower and Upper Yingshan members are two distinct mechanical layers with contrasting brittleness characteristics,separated by a low-brittleness layer.The superior brittleness of the Lower Yingshan Member enhances the development intensity of small-scale strike-slip faults compared to the upper member,while the low-brittleness layer exerts restrictive effects on vertical fault propagation.Fracture-vug systems formed by interactions of two or more small-scale strike-slip faults demonstrate larger sizes than those controlled by individual faults.All fracture-vug system sizes show positive correlations with the vertical extents of associated small-scale strike-slip faults,particularly intersection and approaching fracture-vug systems exhibit accelerated size increases proportional to the vertical extents. 展开更多
关键词 Small-scale strike-slip faults convolutional neural network Fault label Isolated fracture-vug system Distribution patterns
原文传递
Investigation of spatiotemporal distribution and formation mechanisms of ozone pollution in eastern Chinese cities applying convolutional neural network 被引量:1
3
作者 Qiaoli Wang Dongping Sheng +7 位作者 Chengzhi Wu Xiaojie Ou Shengdong Yao Jingkai Zhao Feili Li Wei Li Jianmeng Chen 《Journal of Environmental Sciences》 2025年第2期126-138,共13页
Severe ground-level ozone(O_(3))pollution over major Chinese cities has become one of the most challenging problems,which have deleterious effects on human health and the sustainability of society.This study explored ... Severe ground-level ozone(O_(3))pollution over major Chinese cities has become one of the most challenging problems,which have deleterious effects on human health and the sustainability of society.This study explored the spatiotemporal distribution characteristics of ground-level O_(3) and its precursors based on conventional pollutant and meteorological monitoring data in Zhejiang Province from 2016 to 2021.Then,a high-performance convolutional neural network(CNN)model was established by expanding the moment and the concentration variations to general factors.Finally,the response mechanism of O_(3) to the variation with crucial influencing factors is explored by controlling variables and interpolating target variables.The results indicated that the annual average MDA8-90th concentrations in Zhejiang Province are higher in the northern and lower in the southern.When the wind direction(WD)ranges from east to southwest and the wind speed(WS)ranges between 2 and 3 m/sec,higher O_(3) concentration prone to occur.At different temperatures(T),the O_(3) concentration showed a trend of first increasing and subsequently decreasing with increasing NO_(2) concentration,peaks at the NO_(2) concentration around 0.02mg/m^(3).The sensitivity of NO_(2) to O_(3) formation is not easily affected by temperature,barometric pressure and dew point temperature.Additionally,there is a minimum IRNO_(2) at each temperature when the NO_(2) concentration is 0.03 mg/m^(3),and this minimum IRNO_(2) decreases with increasing temperature.The study explores the response mechanism of O_(3) with the change of driving variables,which can provide a scientific foundation and methodological support for the targeted management of O_(3) pollution. 展开更多
关键词 OZONE Spatiotemporal distribution convolutional neural network Ozone formation rules Incremental reactivity
原文传递
Dynamic Multi-Graph Spatio-Temporal Graph Traffic Flow Prediction in Bangkok:An Application of a Continuous Convolutional Neural Network
4
作者 Pongsakon Promsawat Weerapan Sae-dan +2 位作者 Marisa Kaewsuwan Weerawat Sudsutad Aphirak Aphithana 《Computer Modeling in Engineering & Sciences》 SCIE EI 2025年第1期579-607,共29页
The ability to accurately predict urban traffic flows is crucial for optimising city operations.Consequently,various methods for forecasting urban traffic have been developed,focusing on analysing historical data to u... The ability to accurately predict urban traffic flows is crucial for optimising city operations.Consequently,various methods for forecasting urban traffic have been developed,focusing on analysing historical data to understand complex mobility patterns.Deep learning techniques,such as graph neural networks(GNNs),are popular for their ability to capture spatio-temporal dependencies.However,these models often become overly complex due to the large number of hyper-parameters involved.In this study,we introduce Dynamic Multi-Graph Spatial-Temporal Graph Neural Ordinary Differential Equation Networks(DMST-GNODE),a framework based on ordinary differential equations(ODEs)that autonomously discovers effective spatial-temporal graph neural network(STGNN)architectures for traffic prediction tasks.The comparative analysis of DMST-GNODE and baseline models indicates that DMST-GNODE model demonstrates superior performance across multiple datasets,consistently achieving the lowest Root Mean Square Error(RMSE)and Mean Absolute Error(MAE)values,alongside the highest accuracy.On the BKK(Bangkok)dataset,it outperformed other models with an RMSE of 3.3165 and an accuracy of 0.9367 for a 20-min interval,maintaining this trend across 40 and 60 min.Similarly,on the PeMS08 dataset,DMST-GNODE achieved the best performance with an RMSE of 19.4863 and an accuracy of 0.9377 at 20 min,demonstrating its effectiveness over longer periods.The Los_Loop dataset results further emphasise this model’s advantage,with an RMSE of 3.3422 and an accuracy of 0.7643 at 20 min,consistently maintaining superiority across all time intervals.These numerical highlights indicate that DMST-GNODE not only outperforms baseline models but also achieves higher accuracy and lower errors across different time intervals and datasets. 展开更多
关键词 Graph neural networks convolutional neural network deep learning dynamic multi-graph SPATIO-TEMPORAL
在线阅读 下载PDF
IDSSCNN-XgBoost:Improved Dual-Stream Shallow Convolutional Neural Network Based on Extreme Gradient Boosting Algorithm for Micro Expression Recognition
5
作者 Adnan Ahmad Zhao Li +1 位作者 Irfan Tariq Zhengran He 《Computers, Materials & Continua》 SCIE EI 2025年第1期729-749,共21页
Micro-expressions(ME)recognition is a complex task that requires advanced techniques to extract informative features fromfacial expressions.Numerous deep neural networks(DNNs)with convolutional structures have been pr... Micro-expressions(ME)recognition is a complex task that requires advanced techniques to extract informative features fromfacial expressions.Numerous deep neural networks(DNNs)with convolutional structures have been proposed.However,unlike DNNs,shallow convolutional neural networks often outperform deeper models in mitigating overfitting,particularly with small datasets.Still,many of these methods rely on a single feature for recognition,resulting in an insufficient ability to extract highly effective features.To address this limitation,in this paper,an Improved Dual-stream Shallow Convolutional Neural Network based on an Extreme Gradient Boosting Algorithm(IDSSCNN-XgBoost)is introduced for ME Recognition.The proposed method utilizes a dual-stream architecture where motion vectors(temporal features)are extracted using Optical Flow TV-L1 and amplify subtle changes(spatial features)via EulerianVideoMagnification(EVM).These features are processed by IDSSCNN,with an attention mechanism applied to refine the extracted effective features.The outputs are then fused,concatenated,and classified using the XgBoost algorithm.This comprehensive approach significantly improves recognition accuracy by leveraging the strengths of both temporal and spatial information,supported by the robust classification power of XgBoost.The proposed method is evaluated on three publicly available ME databases named Chinese Academy of Sciences Micro-expression Database(CASMEII),Spontaneous Micro-Expression Database(SMICHS),and Spontaneous Actions and Micro-Movements(SAMM).Experimental results indicate that the proposed model can achieve outstanding results compared to recent models.The accuracy results are 79.01%,69.22%,and 68.99%on CASMEII,SMIC-HS,and SAMM,and the F1-score are 75.47%,68.91%,and 63.84%,respectively.The proposed method has the advantage of operational efficiency and less computational time. 展开更多
关键词 ME recognition dual stream shallow convolutional neural network euler video magnification TV-L1 XgBoost
在线阅读 下载PDF
Detection of geohazards caused by human disturbance activities based on convolutional neural networks
6
作者 ZHANG Heng ZHANG Diandian +1 位作者 YUAN Da LIU Tao 《水利水电技术(中英文)》 北大核心 2025年第S1期731-738,共8页
Human disturbance activities is one of the main reasons for inducing geohazards.Ecological impact assessment metrics of roads are inconsistent criteria and multiple.From the perspective of visual observation,the envir... Human disturbance activities is one of the main reasons for inducing geohazards.Ecological impact assessment metrics of roads are inconsistent criteria and multiple.From the perspective of visual observation,the environment damage can be shown through detecting the uncovered area of vegetation in the images along road.To realize this,an end-to-end environment damage detection model based on convolutional neural network is proposed.A 50-layer residual network is used to extract feature map.The initial parameters are optimized by transfer learning.An example is shown by this method.The dataset including cliff and landslide damage are collected by us along road in Shennongjia national forest park.Results show 0.4703 average precision(AP)rating for cliff damage and 0.4809 average precision(AP)rating for landslide damage.Compared with YOLOv3,our model shows a better accuracy in cliff and landslide detection although a certain amount of speed is sacrificed. 展开更多
关键词 convolutional neural network DETECTION environment damage CLIFF LANDSLIDE
在线阅读 下载PDF
Two-Phase Software Fault Localization Based on Relational Graph Convolutional Neural Networks 被引量:1
7
作者 Xin Fan Zhenlei Fu +2 位作者 Jian Shu Zuxiong Shen Yun Ge 《Computers, Materials & Continua》 2025年第2期2583-2607,共25页
Spectrum-based fault localization (SBFL) generates a ranked list of suspicious elements by using the program execution spectrum, but the excessive number of elements ranked in parallel results in low localization accu... Spectrum-based fault localization (SBFL) generates a ranked list of suspicious elements by using the program execution spectrum, but the excessive number of elements ranked in parallel results in low localization accuracy. Most researchers consider intra-class dependencies to improve localization accuracy. However, some studies show that inter-class method call type faults account for more than 20%, which means such methods still have certain limitations. To solve the above problems, this paper proposes a two-phase software fault localization based on relational graph convolutional neural networks (Two-RGCNFL). Firstly, in Phase 1, the method call dependence graph (MCDG) of the program is constructed, the intra-class and inter-class dependencies in MCDG are extracted by using the relational graph convolutional neural network, and the classifier is used to identify the faulty methods. Then, the GraphSMOTE algorithm is improved to alleviate the impact of class imbalance on classification accuracy. Aiming at the problem of parallel ranking of element suspicious values in traditional SBFL technology, in Phase 2, Doc2Vec is used to learn static features, while spectrum information serves as dynamic features. A RankNet model based on siamese multi-layer perceptron is constructed to score and rank statements in the faulty method. This work conducts experiments on 5 real projects of Defects4J benchmark. Experimental results show that, compared with the traditional SBFL technique and two baseline methods, our approach improves the Top-1 accuracy by 262.86%, 29.59% and 53.01%, respectively, which verifies the effectiveness of Two-RGCNFL. Furthermore, this work verifies the importance of inter-class dependencies through ablation experiments. 展开更多
关键词 Software fault localization graph neural network RankNet inter-class dependency class imbalance
在线阅读 下载PDF
Anatomic Boundary-Aware Explanation for Convolutional Neural Networks in Diagnostic Radiology
8
作者 Han Yuan 《iRADIOLOGY》 2025年第1期47-60,共14页
Background:Convolutional neural networks(CNN)have achieved remarkable success in medical image analysis.However,unlike some general-domain tasks where model accuracy is paramount,medical applications demand both accur... Background:Convolutional neural networks(CNN)have achieved remarkable success in medical image analysis.However,unlike some general-domain tasks where model accuracy is paramount,medical applications demand both accuracy and explainability due to the high stakes affecting patients'lives.Based on model explanations,clinicians can evaluate the diagnostic decisions suggested by CNN.Nevertheless,prior explainable artificial intelligence methods treat medical image tasks akin to general vision tasks,following end-to-end paradigms to generate explanations and frequently overlooking crucial clinical domain knowledge.Methods:We propose a plug-and-play module that explicitly integrates anatomic boundary information into the explanation process for CNN-based thoracopathy classifiers.To generate the anatomic boundary of the lung parenchyma,we utilize a lung segmentation model developed on external public datasets and deploy it on the unseen target dataset to constrain model ex-planations within the lung parenchyma for the clinical task of thoracopathy classification.Results:Assessed by the intersection over union and dice similarity coefficient between model-extracted explanations and expert-annotated lesion areas,our method consistently outperformed the baseline devoid of clinical domain knowledge in 71 out of 72 scenarios,encompassing 3 CNN architectures(VGG-11,ResNet-18,and AlexNet),2 classification settings(binary and multi-label),3 explanation methods(Saliency Map,Grad-CAM,and Integrated Gradients),and 4 co-occurred thoracic diseases(Atelectasis,Fracture,Mass,and Pneumothorax).Conclusions:We underscore the effectiveness of leveraging radiology knowledge in improving model explanations for CNN and envisage that it could inspire future efforts to integrate clinical domain knowledge into medical image analysis. 展开更多
关键词 ATELECTASIS convolutional neural networks diagnostic radiology explainable artificial intelligence FRACTURE grad-cam integrated gradients mass PNEUMOTHORAX saliency map
在线阅读 下载PDF
A Convolutional Neural Network-Based Deep Support Vector Machine for Parkinson’s Disease Detection with Small-Scale and Imbalanced Datasets
9
作者 Kwok Tai Chui Varsha Arya +2 位作者 Brij B.Gupta Miguel Torres-Ruiz Razaz Waheeb Attar 《Computers, Materials & Continua》 2026年第1期1410-1432,共23页
Parkinson’s disease(PD)is a debilitating neurological disorder affecting over 10 million people worldwide.PD classification models using voice signals as input are common in the literature.It is believed that using d... Parkinson’s disease(PD)is a debilitating neurological disorder affecting over 10 million people worldwide.PD classification models using voice signals as input are common in the literature.It is believed that using deep learning algorithms further enhances performance;nevertheless,it is challenging due to the nature of small-scale and imbalanced PD datasets.This paper proposed a convolutional neural network-based deep support vector machine(CNN-DSVM)to automate the feature extraction process using CNN and extend the conventional SVM to a DSVM for better classification performance in small-scale PD datasets.A customized kernel function reduces the impact of biased classification towards the majority class(healthy candidates in our consideration).An improved generative adversarial network(IGAN)was designed to generate additional training data to enhance the model’s performance.For performance evaluation,the proposed algorithm achieves a sensitivity of 97.6%and a specificity of 97.3%.The performance comparison is evaluated from five perspectives,including comparisons with different data generation algorithms,feature extraction techniques,kernel functions,and existing works.Results reveal the effectiveness of the IGAN algorithm,which improves the sensitivity and specificity by 4.05%–4.72%and 4.96%–5.86%,respectively;and the effectiveness of the CNN-DSVM algorithm,which improves the sensitivity by 1.24%–57.4%and specificity by 1.04%–163%and reduces biased detection towards the majority class.The ablation experiments confirm the effectiveness of individual components.Two future research directions have also been suggested. 展开更多
关键词 convolutional neural network data generation deep support vector machine feature extraction generative artificial intelligence imbalanced dataset medical diagnosis Parkinson’s disease small-scale dataset
在线阅读 下载PDF
An Advanced Medical Diagnosis of Breast Cancer Histopathology Using Convolutional Neural Networks
10
作者 Ahmed Ben Atitallah Jannet Kamoun +3 位作者 Meshari D.Alanazi Turki M.Alanazi Mohammed Albekairi Khaled Kaaniche 《Computers, Materials & Continua》 2025年第6期5761-5779,共19页
Breast Cancer(BC)remains a leadingmalignancy among women,resulting in highmortality rates.Early and accurate detection is crucial for improving patient outcomes.Traditional diagnostic tools,while effective,have limita... Breast Cancer(BC)remains a leadingmalignancy among women,resulting in highmortality rates.Early and accurate detection is crucial for improving patient outcomes.Traditional diagnostic tools,while effective,have limitations that reduce their accessibility and accuracy.This study investigates the use ofConvolutionalNeuralNetworks(CNNs)to enhance the diagnostic process of BC histopathology.Utilizing the BreakHis dataset,which contains thousands of histopathological images,we developed a CNN model designed to improve the speed and accuracy of image analysis.Our CNN architecture was designed with multiple convolutional layers,max-pooling layers,and a fully connected network optimized for feature extraction and classification.Hyperparameter tuning was conducted to identify the optimal learning rate,batch size,and number of epochs,ensuring robust model performance.The dataset was divided into training(80%),validation(10%),and testing(10%)subsets,with performance evaluated using accuracy,precision,recall,and F1-score metrics.Our CNN model achieved a magnification-independent accuracy of 97.72%,with specific accuracies of 97.50%at 40×,97.61%at 100×,99.06%at 200×,and 97.25%at 400×magnification levels.These results demonstrate the model’s superior performance relative to existing methods.The integration of CNNs in diagnostic workflows can potentially reduce pathologist workload,minimize interpretation errors,and increase the availability of diagnostic testing,thereby improving BC management and patient survival rates.This study highlights the effectiveness of deep learning in automating BC histopathological classification and underscores the potential for AI-driven diagnostic solutions to improve patient care. 展开更多
关键词 HISTOPATHOLOGY breast cancer convolutional neural networks BreakHis dataset medical imaging healthcare technology
暂未订购
Optimization of convolutional neural networks for predicting water pollutants using spectral data in the middle and lower reaches of the Yangtze River Basin,China
11
作者 ZHANG Guohao LI Song +3 位作者 WANG Cailing WANG Hongwei YU Tao DAI Xiaoxu 《Journal of Mountain Science》 2025年第8期2851-2869,共19页
Developing an accurate and efficient comprehensive water quality prediction model and its assessment method is crucial for the prevention and control of water pollution.Deep learning(DL),as one of the most promising t... Developing an accurate and efficient comprehensive water quality prediction model and its assessment method is crucial for the prevention and control of water pollution.Deep learning(DL),as one of the most promising technologies today,plays a crucial role in the effective assessment of water body health,which is essential for water resource management.This study models using both the original dataset and a dataset augmented with Generative Adversarial Networks(GAN).It integrates optimization algorithms(OA)with Convolutional Neural Networks(CNN)to propose a comprehensive water quality model evaluation method aiming at identifying the optimal models for different pollutants.Specifically,after preprocessing the spectral dataset,data augmentation was conducted to obtain two datasets.Then,six new models were developed on these datasets using particle swarm optimization(PSO),genetic algorithm(GA),and simulated annealing(SA)combined with CNN to simulate and forecast the concentrations of three water pollutants:Chemical Oxygen Demand(COD),Total Nitrogen(TN),and Total Phosphorus(TP).Finally,seven model evaluation methods,including uncertainty analysis,were used to evaluate the constructed models and select the optimal models for the three pollutants.The evaluation results indicate that the GPSCNN model performed best in predicting COD and TP concentrations,while the GGACNN model excelled in TN concentration prediction.Compared to existing technologies,the proposed models and evaluation methods provide a more comprehensive and rapid approach to water body prediction and assessment,offering new insights and methods for water pollution prevention and control. 展开更多
关键词 Water pollutants convolutional neural networks Data augmentation Optimization algorithms Model evaluation methods Deep Learning
原文传递
A hybrid data-driven approach for rainfall-induced landslide susceptibility mapping:Physically-based probabilistic model with convolutional neural network
12
作者 Hong-Zhi Cui Bin Tong +2 位作者 Tao Wang Jie Dou Jian Ji 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第8期4933-4951,共19页
Landslide susceptibility mapping(LSM)plays a crucial role in assessing geological risks.The current LSM techniques face a significant challenge in achieving accurate results due to uncertainties associated with region... Landslide susceptibility mapping(LSM)plays a crucial role in assessing geological risks.The current LSM techniques face a significant challenge in achieving accurate results due to uncertainties associated with regional-scale geotechnical parameters.To explore rainfall-induced LSM,this study proposes a hybrid model that combines the physically-based probabilistic model(PPM)with convolutional neural network(CNN).The PPM is capable of effectively capturing the spatial distribution of landslides by incorporating the probability of failure(POF)considering the slope stability mechanism under rainfall conditions.This significantly characterizes the variation of POF caused by parameter uncertainties.CNN was used as a binary classifier to capture the spatial and channel correlation between landslide conditioning factors and the probability of landslide occurrence.OpenCV image enhancement technique was utilized to extract non-landslide points based on the POF of landslides.The proposed model comprehensively considers physical mechanics when selecting non-landslide samples,effectively filtering out samples that do not adhere to physical principles and reduce the risk of overfitting.The results indicate that the proposed PPM-CNN hybrid model presents a higher prediction accuracy,with an area under the curve(AUC)value of 0.85 based on the landslide case of the Niangniangba area of Gansu Province,China compared with the individual CNN model(AUC=0.61)and the PPM(AUC=0.74).This model can also consider the statistical correlation and non-normal probability distributions of model parameters.These results offer practical guidance for future research on rainfall-induced LSM at the regional scale. 展开更多
关键词 Rainfall landslides Landslide susceptibility mapping Hybrid model Physically-based model Convolution neural network(CNN) Probability of failure(POF)
在线阅读 下载PDF
Co-DeepNet:A Cooperative Convolutional Neural Network for DNA Methylation-Based Age Prediction
13
作者 Najmeh Sadat Jaddi Mohammad Saniee Abadeh +4 位作者 Niousha Bagheri Khoulenjani Salwani Abdullah MohammadMahdi Ariannejad Mohd Zakree Ahmad Nazri Fatemeh Alvankarian 《CAAI Transactions on Intelligence Technology》 2025年第4期1118-1134,共17页
Prediction of the age of each individual is possible using the changing pattern of DNA methylation with age.In this paper an age prediction approach to work out multivariate regression problems using DNA methylation d... Prediction of the age of each individual is possible using the changing pattern of DNA methylation with age.In this paper an age prediction approach to work out multivariate regression problems using DNA methylation data is developed.In this research study a convolutional neural network(CNN)-based model optimised by the genetic algorithm(GA)is addressed.This paper contributes to enhancing age prediction as a regression problem using a union of two CNNs and exchanging knowledge be-tween them.This specifically re-starts the training process from a possibly higher-quality point in different iterations and,consequently,causes potentially yeilds better results at each iteration.The method proposed,which is called cooperative deep neural network(Co-DeepNet),is tested on two types of age prediction problems.Sixteen datasets containing 1899 healthy blood samples and nine datasets containing 2395 diseased blood samples are employed to examine the method's efficiency.As a result,the mean absolute deviation(MAD)is 1.49 and 3.61 years for training and testing data,respectively,when the healthy data is tested.The diseased blood data show MAD results of 3.81 and 5.43 years for training and testing data,respectively.The results of the Co-DeepNet are compared with six other methods proposed in previous studies and a single CNN using four prediction accuracy measurements(R^(2),MAD,MSE and RMSE).The effectiveness of the Co-DeepNet and superiority of its results is proved through the statistical analysis. 展开更多
关键词 age prediction convolutional neural network COOPERATIVE genetic algorithm knowledge transmission
在线阅读 下载PDF
Plant Disease Detection and Classification Using Hybrid Model Based on Convolutional Auto Encoder and Convolutional Neural Network
14
作者 Tajinder Kumar Sarbjit Kaur +4 位作者 Purushottam Sharma Ankita Chhikara Xiaochun Cheng Sachin Lalar Vikram Verma 《Computers, Materials & Continua》 2025年第6期5219-5234,共16页
During its growth stage,the plant is exposed to various diseases.Detection and early detection of crop diseases is amajor challenge in the horticulture industry.Crop infections can harmtotal crop yield and reduce farm... During its growth stage,the plant is exposed to various diseases.Detection and early detection of crop diseases is amajor challenge in the horticulture industry.Crop infections can harmtotal crop yield and reduce farmers’income if not identified early.Today’s approved method involves a professional plant pathologist to diagnose the disease by visual inspection of the afflicted plant leaves.This is an excellent use case for Community Assessment and Treatment Services(CATS)due to the lengthy manual disease diagnosis process and the accuracy of identification is directly proportional to the skills of pathologists.An alternative to conventional Machine Learning(ML)methods,which require manual identification of parameters for exact results,is to develop a prototype that can be classified without pre-processing.To automatically diagnose tomato leaf disease,this research proposes a hybrid model using the Convolutional Auto-Encoders(CAE)network and the CNN-based deep learning architecture of DenseNet.To date,none of the modern systems described in this paper have a combined model based on DenseNet,CAE,and ConvolutionalNeuralNetwork(CNN)todiagnose the ailments of tomato leaves automatically.Themodelswere trained on a dataset obtained from the Plant Village repository.The dataset consisted of 9920 tomato leaves,and the model-tomodel accuracy ratio was 98.35%.Unlike other approaches discussed in this paper,this hybrid strategy requires fewer training components.Therefore,the training time to classify plant diseases with the trained algorithm,as well as the training time to automatically detect the ailments of tomato leaves,is significantly reduced. 展开更多
关键词 Tomato leaf disease deep learning DenseNet-121 convolutional autoencoder convolutional neural network
在线阅读 下载PDF
Application of deep learning-based convolutional neural networks in gastrointestinal disease endoscopic examination
15
作者 Yang-Yang Wang Bin Liu Ji-Han Wang 《World Journal of Gastroenterology》 2025年第36期50-69,共20页
Gastrointestinal(GI)diseases,including gastric and colorectal cancers,signi-ficantly impact global health,necessitating accurate and efficient diagnostic me-thods.Endoscopic examination is the primary diagnostic tool;... Gastrointestinal(GI)diseases,including gastric and colorectal cancers,signi-ficantly impact global health,necessitating accurate and efficient diagnostic me-thods.Endoscopic examination is the primary diagnostic tool;however,its accu-racy is limited by operator dependency and interobserver variability.Advance-ments in deep learning,particularly convolutional neural networks(CNNs),show great potential for enhancing GI disease detection and classification.This review explores the application of CNNs in endoscopic imaging,focusing on polyp and tumor detection,disease classification,endoscopic ultrasound,and capsule endo-scopy analysis.We discuss the performance of CNN models with traditional dia-gnostic methods,highlighting their advantages in accuracy and real-time decision support.Despite promising results,challenges remain,including data availability,model interpretability,and clinical integration.Future directions include impro-ving model generalization,enhancing explainability,and conducting large-scale clinical trials.With continued advancements,CNN-powered artificial intelligence systems could revolutionize GI endoscopy by enhancing early disease detection,reducing diagnostic errors,and improving patient outcomes. 展开更多
关键词 Gastrointestinal diseases Endoscopic examination Deep learning convolutional neural networks Computer-aided diagnosis
在线阅读 下载PDF
Stochastic state of health estimation for lithium-ion batteries with automated feature fusion using quantum convolutional neural network
16
作者 Chen Liang Shengyu Tao +3 位作者 Xinghao Huang Yezhen Wang Bizhong Xia Xuan Zhang 《Journal of Energy Chemistry》 2025年第7期205-219,共15页
The accurate state of health(SOH)estimation of lithium-ion batteries is crucial for efficient,healthy,and safe operation of battery systems.Extracting meaningful aging information from highly stochastic and noisy data... The accurate state of health(SOH)estimation of lithium-ion batteries is crucial for efficient,healthy,and safe operation of battery systems.Extracting meaningful aging information from highly stochastic and noisy data segments while designing SOH estimation algorithms that efficiently handle the large-scale computational demands of cloud-based battery management systems presents a substantial challenge.In this work,we propose a quantum convolutional neural network(QCNN)model designed for accurate,robust,and generalizable SOH estimation with minimal data and parameter requirements and is compatible with quantum computing cloud platforms in the Noisy Intermediate-Scale Quantum.First,we utilize data from 4 datasets comprising 272 cells,covering 5 chemical compositions,4 rated parameters,and 73operating conditions.We design 5 voltage windows as small as 0.3 V for each cell from incremental capacity peaks for stochastic SOH estimation scenarios generation.We extract 3 effective health indicators(HIs)sequences and develop an automated feature fusion method using quantum rotation gate encoding,achieving an R2of 96%.Subsequently,we design a QCNN whose convolutional layer,constructed with variational quantum circuits,comprises merely 39 parameters.Additionally,we explore the impact of training set size,using strategies,and battery materials on the model’s accuracy.Finally,the QCNN with quantum convolutional layers reduces root mean squared error by 28% and achieves an R^(2)exceeding 96% compared to other three commonly used algorithms.This work demonstrates the effectiveness of quantum encoding for automated feature fusion of HIs extracted from limited discharge data.It highlights the potential of QCNN in improving the accuracy,robustness,and generalization of SOH estimation while dealing with stochastic and noisy data with few parameters and simple structure.It also suggests a new paradigm for leveraging quantum computational power in SOH estimation. 展开更多
关键词 Lithium-ion battery State of health Feature fusion Quantum convolutional neural network Quantum machine learning
在线阅读 下载PDF
Noninvasive Hemoglobin Estimation with Adaptive Lightweight Convolutional Neural Network Using Wearable PPG
17
作者 Florentin Smarandache Saleh I.Alzahrani +2 位作者 Sulaiman Al Amro Ijaz Ahmad Mubashir Ali 《Computer Modeling in Engineering & Sciences》 2025年第9期3715-3735,共21页
Hemoglobin is a vital protein in red blood cells responsible for transporting oxygen throughout the body.Its accurate measurement is crucial for diagnosing and managing conditions such as anemia and diabetes,where abn... Hemoglobin is a vital protein in red blood cells responsible for transporting oxygen throughout the body.Its accurate measurement is crucial for diagnosing and managing conditions such as anemia and diabetes,where abnormal hemoglobin levels can indicate significant health issues.Traditional methods for hemoglobin measurement are invasive,causing pain,risk of infection,and are less convenient for frequent monitoring.PPG is a transformative technology in wearable healthcare for noninvasive monitoring and widely explored for blood pressure,sleep,blood glucose,and stress analysis.In this work,we propose a hemoglobin estimation method using an adaptive lightweight convolutional neural network(HMALCNN)from PPG.The HMALCNN is designed to capture both fine-grained local waveform characteristics and global contextual patterns,ensuring robust performance across acquisition settings.We validated our approach on two multi-regional datasets containing 152 and 68 subjects,respectively,employing a subjectindependent 5-fold cross-validation strategy.The proposed method achieved root mean square errors(RMSE)of 0.90 and 1.20 g/dL for the two datasets,with strong Pearson correlations of 0.82 and 0.72.We conducted extensive posthoc analyses to assess clinical utility and interpretability.A±1 g/dL clinical error tolerance evaluation revealed that 91.3%and 86.7%of predictions for the two datasets fell within the acceptable clinical range.Hemoglobin range-wise analysis demonstrated consistently high accuracy in the normal and low hemoglobin categories.Statistical significance testing using the Wilcoxon signed-rank test confirmed the stability of performance across validation folds(p>0.05 for both RMSE and correlation).Furthermore,model interpretability was enhanced using Gradient-weighted Class Activation Mapping(Grad-CAM),supporting the model’s clinical trustworthiness.The proposed HMALCNN offers a computationally efficient,clinically interpretable,and generalizable framework for noninvasive hemoglobin monitoring,with strong potential for integration into wearable healthcare systems as a practical alternative to invasive measurement techniques. 展开更多
关键词 Hemoglobin estimation photoplethysmography(PPG) convolutional neural network(CNN) noninvasive method wearable healthcare
在线阅读 下载PDF
SGP-GCN:A Spatial-Geological Perception Graph Convolutional Neural Network for Long-Term Petroleum Production Forecasting
18
作者 Xin Liu Meng Sun +1 位作者 Bo Lin Shibo Gu 《Energy Engineering》 2025年第3期1053-1072,共20页
Long-termpetroleum production forecasting is essential for the effective development andmanagement of oilfields.Due to its ability to extract complex patterns,deep learning has gained popularity for production forecas... Long-termpetroleum production forecasting is essential for the effective development andmanagement of oilfields.Due to its ability to extract complex patterns,deep learning has gained popularity for production forecasting.However,existing deep learning models frequently overlook the selective utilization of information from other production wells,resulting in suboptimal performance in long-term production forecasting across multiple wells.To achieve accurate long-term petroleum production forecast,we propose a spatial-geological perception graph convolutional neural network(SGP-GCN)that accounts for the temporal,spatial,and geological dependencies inherent in petroleum production.Utilizing the attention mechanism,the SGP-GCN effectively captures intricate correlations within production and geological data,forming the representations of each production well.Based on the spatial distances and geological feature correlations,we construct a spatial-geological matrix as the weight matrix to enable differential utilization of information from other wells.Additionally,a matrix sparsification algorithm based on production clustering(SPC)is also proposed to optimize the weight distribution within the spatial-geological matrix,thereby enhancing long-term forecasting performance.Empirical evaluations have shown that the SGP-GCN outperforms existing deep learning models,such as CNN-LSTM-SA,in long-term petroleum production forecasting.This demonstrates the potential of the SGP-GCN as a valuable tool for long-term petroleum production forecasting across multiple wells. 展开更多
关键词 Petroleum production forecast graph convolutional neural networks(GCNs) spatial-geological rela-tionships production clustering attention mechanism
在线阅读 下载PDF
Implementing Convolutional Neural Networks to Detect Dangerous Objects in Video Surveillance Systems
19
作者 Carlos Rojas Cristian Bravo +1 位作者 Carlos Enrique Montenegro-Marín Rubén González-Crespo 《Computers, Materials & Continua》 2025年第12期5489-5507,共19页
The increasing prevalence of violent incidents in public spaces has created an urgent need for intelligent surveillance systems capable of detecting dangerous objects in real time.While traditional video surveillance ... The increasing prevalence of violent incidents in public spaces has created an urgent need for intelligent surveillance systems capable of detecting dangerous objects in real time.While traditional video surveillance relies on human monitoring,this approach suffers from limitations such as fatigue and delayed response times.This study addresses these challenges by developing an automated detection system using advanced deep learning techniques to enhance public safety.Our approach leverages state-of-the-art convolutional neural networks(CNNs),specifically You Only Look Once version 4(YOLOv4)and EfficientDet,for real-time object detection.The system was trained on a comprehensive dataset of over 50,000 images,enhanced through data augmentation techniques to improve robustness across varying lighting conditions and viewing angles.Cloud-based deployment on Amazon Web Services(AWS)ensured scalability and efficient processing.Experimental evaluations demonstrated high performance,with YOLOv4 achieving 92%accuracy and processing images in 0.45 s,while EfficientDet reached 93%accuracy with a slightly longer processing time of 0.55 s per image.Field tests in high-traffic environments such as train stations and shopping malls confirmed the system’s reliability,with a false alarm rate of only 4.5%.The integration of automatic alerts enabled rapid security responses to potential threats.The proposed CNN-based system provides an effective solution for real-time detection of dangerous objects in video surveillance,significantly improving response times and public safety.While YOLOv4 proved more suitable for speed-critical applications,EfficientDet offered marginally better accuracy.Future work will focus on optimizing the system for low-light conditions and further reducing false positives.This research contributes to the advancement of AI-driven surveillance technologies,offering a scalable framework adaptable to various security scenarios. 展开更多
关键词 Automatic detection of objects convolutional neural networks deep learning real-time image processing video surveillance systems automatic alerts
在线阅读 下载PDF
Atmospheric neutron single event effects for multiple convolutional neural networks based on 28-nm and 16-nm SoC
20
作者 Xu Zhao Xuecheng Du +3 位作者 Chao Ma Zhiliang Hu Weitao Yang Bo Zheng 《Chinese Physics B》 2025年第1期477-484,共8页
The single event effects(SEEs)evaluations caused by atmospheric neutrons were conducted on three different convolutional neural network(CNN)models(Yolov3,MNIST,and ResNet50)in the atmospheric neutron irradiation spect... The single event effects(SEEs)evaluations caused by atmospheric neutrons were conducted on three different convolutional neural network(CNN)models(Yolov3,MNIST,and ResNet50)in the atmospheric neutron irradiation spectrometer(ANIS)at the China Spallation Neutron Source(CSNS).The Yolov3 and MNIST models were implemented on the XILINX28-nm system-on-chip(So C).Meanwhile,the Yolov3 and ResNet50 models were deployed on the XILINX 16-nm Fin FET Ultra Scale+MPSoC.The atmospheric neutron SEEs on the tested CNN systems were comprehensively evaluated from six aspects,including chip type,network architecture,deployment methods,inference time,datasets,and the position of the anchor boxes.The various types of SEE soft errors,SEE cross-sections,and their distribution were analyzed to explore the radiation sensitivities and rules of 28-nm and 16-nm SoC.The current research can provide the technology support of radiation-resistant design of CNN system for developing and applying high-reliability,long-lifespan domestic artificial intelligence chips. 展开更多
关键词 single event effects atmospheric neutron system on chip convolutional neural network
原文传递
上一页 1 2 250 下一页 到第
使用帮助 返回顶部